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Preface 

The experimental work for this dissertation was conducted under the supervision of 

Assoc. Prof. George Diallinas in the Aspergillus Genetics and Molecular Biology 

laboratory of the Faculty of Biology, University of Athens. It consists of three 

independent parts, the common denominator of which are the use of UapA as a 

prototype cargo and the principal aim to unravel its endocytic and exocytic 

processes. The work presented herein reflects the joint effort of the author and other 

members of the Aspergillus Genetics and Molecular Biology group, the individual 

projects of whom are also related to the elucidation of the mechanisms of transporter 

intracellular trafficking. More specifically, experiments presented in Chapter 3 were 

performed in collaboration with Vassilis Bitsikas (then an undergraduate student), 

Christos Gournas (then an PhD student) and George Diallinas, while experiments 

presented in Chapter 4 were performed in collaboration with Dr. Sotiris Amillis, 

Minoas Evangelinos (then an undergraduate student), Alexandros Kokotos (then an 

undergraduate student), Vassilis Yalelis (then an undergraduate student) and George 

Diallinas. The precise contribution of each partner will be described in detail in the 

corresponding chapters. Experiments in Chapter 5 were exclusively performed by the 

author. The experimental work of the author demonstrated herein is a major part of 

the results obtained during her post-graduate academic years. Other projects that 

have been undertaken by the author during this period, and not pertaining directly to 

the thesis subject, are largely represented in the attached peer-reviewed publications 

in the appendix of this manuscript. 
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Περίληψη 

Οι ευκαρυωτικοί διαμεμβρανικοί μεταφορείς ανταποκρίνονται σε περιβαλλοντικά 

και αναπτυξιακά σινιάλα τόσο στο μεταγραφικό όσο και στο μετα-μεταφραστικό 

επίπεδο. Η έκφραση των μεταφορέων ρυθμίζεται αυστηρά με την ταχεία de novo 

σύνθεση και στόχευση τους στη πλασματική μεμβράνη, αλλά και την ακόμη πιο 

ταχεία απομάκρυνσή τους απο αυτήν μέσω της διαδικασίας της ενδοκύτωσης, ως 

απόκριση στην παρουσία ιόντων αμμωνίου ή περίσσειας υποστρώματος. Ο εκτενώς 

μελετημένος μεταφορέας ουρικού οξέος-ξανθίνης UapA του Aspergillus nidulans 

χρησιμοποιήθηκε για τη διερεύνηση τριών βασικών ερωτημάτων που σχετίζονται με 

τους μηχανισμούς που διέπουν την ενδοκυτταρική διακίνηση των μεταφορέων. 

Συγκεκριμένα, μελετήθηκαν οι συνέπειες του υπερτονικού στρες στην φυσιολογία 

των μυκήτων και την ενδοκύτωση των μεταφορέων τους, οι μηχανισμοί που 

ρυθμίζουν την ουβικουιτινίωση των μεταφορέων με σκοπό την απομάκρυνση τους 

από την πλασματική μεμβράνη και την καταστροφή τους στα χυμοτόπια, και ο ρόλος 

του ολιγομερισμού στην διακίνηση των μεταφορέων προς και από την πλασματική 

μεμβράνη. 

Xρησιμοποιώντας στελέχη του A. nidulans που εκφράζουν διαμεμβρανικούς 

μεταφορείς σημασμένους με την πράσινη φθορίζουσα πρωτεΐνη (GFP), μελετήσαμε 

(σε συνεργασία με τους Β. Μπίτσικα, Χ. Γουρνά και Γ. Διαλλινά) την άμεση 

εμφάνιση στατικών φθοριζουσών κηλίδων στο επίπεδο της πλασματικής τους 

μεμβράνης, μετά από έκθεση σε υπερτονικές συνθήκες. Οι φθορίζουσες κηλίδες που 

παρατηρήθηκαν δεν αντιστοιχούν σε μικροπεριοχές της μεμβράνης ειδικές για 

μεταφορείς, αλλά αντικατοπτρίζουν ένα μάλλον γενικό φαινόμενο που σχετίζεται με 

την αναδιοργάνωση της μεμβράνης. Αυτό φάνηκε από τον συνεντοπισμό τους με 

άλλα μόρια που σχετίζονται με τη πλασματική μεμβράνη, όπως το πεπτίδιο ομόλογο 

της πλεξτρίνης (PH) και η t-SNARE SsoA, ή με λιπόφιλους δείκτες, όπως η FM4-64 

και η φιλιπίνη. Επιπλέον, οι κηλίδες αυτές δεν εμφανίζουν χαρακτηριστικά 

γνωρίσματα λιπιδικών σχεδιών ή άλλων μεμβρανικών μικροπεριοχών. Εικόνες από 

συνεστιακό μικροσκόπιο που έχουν επεξεργαστεί με αλγόριθμους απο-

αλληλεπικάλυψης (deconvolution) δείχνουν ότι οι φθορίζουσες αυτές κηλίδες 

αντιστοιχούν σε εκτεταμένες εγκολπώσεις της μεμβράνης. Οι μεταφορείς 

παραμένουν πλήρως λειτουργικοί κατά τη διάρκεια του φαινόμενου της 

εντοπισμένης πλασμόλυσης. Η εμφάνιση αυτών των εγκολπώσεων συνοδεύεται 
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εντούτοις από μειωμένο ρυθμό ανάπτυξης και πλήρη παρεμπόδιση τόσο της 

ενδοκύτωσης των μεταφορέων μέσω κλαθρίνης, όσο και της ενδοκύτωσης ρευστής 

φάσης της FM4-64. Τα παραπάνω φαινόμενα είναι παροδικά και άμεσα 

αναστρέψιμα μετά την απομάκρυνση από το υπερτονικό περιβάλλον, ενώ 

εξαρτώνται άμεσα από τη συγκέντρωση των υπερτονικών διαλυμάτων που έχουν 

χρησιμοποιηθεί. Το υπερτονικό στρες δεν επηρέασε την τοπολογία πρωίμων (SlaB) 

και όψιμων (AbpA) ενδοκυτικών παραγόντων, αλλά τροποποίησε σε μεγάλο βαθμό 

την τοπολογία της τροπομυοσίνης, υποδεικνύοντας ότι η παρεμπόδιση της 

ενδοκύτωσης των μεταφορέων και των λιπόφιλων χρωστικών γίνεται έμμεσα, μέσω 

δυναμικής τροποποίησης της ακτίνης. Παράλληλα, η δράση της λατρουνκουλίνης Β 

στην ενδοκύτωση, ενός παράγοντα αποπολυμερισμού της ακτίνης, ενίσχυσε 

περαιτέρω τις παραπάνω παρατηρήσεις. Παρόμοια φαινόμενα παρατηρήθηκαν και 

στον Saccharomyces cerevisiae, γεγονός που υποδεικνύει ότι οι ασκομύκητες 

αποκρίνονται στις υπερτονικές συνθήκες χρησιμοποιώντας παρόμοιους 

μηχανισμούς. 

Προκειμένου να διαλευκανθούν οι μηχανισμοί που ρυθμίζουν την 

ουβικουιτινίωση των μεταφορέων και την απομάκρυνση τους από τη μεμβράνη, 

μελετήσαμε (σε συνεργασία με τους Σ. Αμίλλη, Μ. Ευαγγελινό, Α. Κοκοτό, Β. 

Γιαλελή και Γ. Διαλλινά) το ρόλο όλων των πρωτεϊνών που ομοιάζουν με 

αρρεστίνες του Aspergillus nidulans, σχετικά με την ανάπτυξη, τη μορφολογία, την 

ευαισθησία του οργανισμού σε φάρμακα, και κυρίως την ενδοκύτωση του 

μεταφορέα UapA. Μία μόνο αρρεστίνη, η ArtA, βρέθηκε να είναι απαραίτητη για 

την εξαρτώμενη από τη HulA
Rsp5

 ουβικουιτινίωση και ενδοκύτωση του UapA, ως 

απόκριση στην παρουσία αμμωνιακών ιόντων ή υποστρωμάτων. Περαιτέρω 

γενετική ανάλυση έδειξε ότι τα κατάλοιπα 545-563 του καρβοξυτελικού άκρου του 

UapA, που περιλαμβάνουν και ένα σημαντικό δισόξινο μοτίβο, είναι απαραίτητα για 

την ενδοκύτωση του, γεγονός που υποδεικνύει ότι αυτή ενδεχομένως είναι η περιοχή 

αλληλεπίδρασης της αρρεστίνης και του μεταφορέα. Επιπλέον, τα PPXY μοτίβα του 

ArtA είναι απαραίτητα και επαρκή για την ουβικουιτινίωση και την ενδοκύτωση του 

UapA. Η δράση της ArtA εντοπίζεται πριν από αυτήν του όψιμου ενδοκυτικού 

παράγοντα SagA
End3

, υποδεικνύοντας ότι η ουβικουιτινίωση του UapA λαμβάνει 

χώρα στην πλασματική μεμβράνη και όχι στα ενδοσώματα. Η ArtA 

ουβικουιτινιώνεται επίσης από τη HulA στη λυσίνη 343 και αυτή η τροποποίηση 

είναι σημαντική για την ουβικουιτινίωση και την ενδοκύτωση του UapA. Η ArtA 
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είναι απαραίτητη για την ενδοκύτωση και άλλων μεταφορέων ειδικών για πουρίνες 

(AzgA) και L-προλίνη (PrnB), αλλά όχι για το μεταφορέα ασπαρτικού/γλουταμικού 

(AgtA). Είναι αξιοσημείωτο ότι τα δεδομένα που έχουμε στη διάθεσή μας 

υποδεικνύουν ότι το ενδοκυτικό μονοπάτι που επάγεται από την παρουσία ιόντων 

αμμωνίου είναι διαφορετικό από αυτό που ακολουθείται υπό την παρουσία 

περίσσειας υποστρώματος. Το  δεύτερο μονοπάτι, μάλιστα, φαίνεται να εξαρτάται 

άμεσα από τις δομικές αλλαγές που υφίσταται το μόριο του UapA κατά την 

κατάλυση της μεταφοράς. 

Τα παραπάνω συμφωνούν με προηγούμενες παρατηρήσεις που έδειξαν ότι η 

ενδοκύτωση που επάγεται από την παρουσία περίσσειας υποστρώματος λαμβάνει 

χώρα μόνο εφόσον τα μόρια του μεταφορέα είναι λειτουργικά. Εντούτοις, 

μεταλλαγμένες ανενεργές μορφές του UapA μπορούν να ενδοκυτωθούν in trans 

όταν εκφράζονται παράλληλα με λειτουργικές μορφές του μεταφορέα στο ίδιο 

στέλεχος, το οποίο αποτελεί μια ένδειξη ότι ο UapA ολιγομερίζεται. Ο 

ολιγομερισμός του UapA επιβεβαιώθηκε χρησιμοποιώντας δύο ξεχωριστές 

προσεγγίσεις: την in vivo διμοριακή ανασύσταση φθορισμού (BiFC) και την 

παράλληλη ανοσοκατακρήμνιση διαφορικά σημασμένων UapA μορίων (pull-down 

assay). Επιπλεόν, γενετικά δεδομένα που δείχνουν αλληλοεξαρτώμενη δράση 

ανενεργών UapA μορίων στην ενεργότητα μεταφορέων αγρίου τύπου, συμφωνούν 

με την ιδέα του ολιγομερισμού. Τα ολιγομερή του UapA φαίνεται να σχηματίζονται 

πρώτα στο ενδοπλασματικό δίκτυο (ΕΔ) και παραμένουν σταθερά και λειτουργικά 

στην πλασματική μεμβράνη. Η χρήση μεταλλαγμένων μορφών του UapA που 

παραμένουν στο ΕΔ συνέβαλε στον προσδιορισμό ενός αμινοτελικού μοτίβου καθώς 

και άλλων στοιχείων που επηρεάζουν τον ολιγομερισμό. Ενδιαφέρον παρουσιάζει το 

γεγονός ότι η επαγόμενη από το υπόστρωμα ενδοκύτωση φαίνεται να συμπίπτει με 

τον απο-ολιγομερισμό του μεταφορέα, κάτι που δεν ισχύει στην περίπτωση της 

ενδοκύτωσης που επάγεται από τα αμμωνιακά ιόντα. Όλα τα παραπάνω ευρήματα 

υποδεικνύουν ότι ο ολιγομερισμός του UapA είναι σημαντικός για την έξοδο του 

από το ΕΔ, τη στόχευσή του στη πλασματική μεμβράνη αλλά και την ενδοκύτωσή 

του, όπως άλλωστε έχει δειχθεί και για μεταφορείς στα φυτά και τα θηλαστικά. 





 

Abstract 

Eukaryotic transporters respond to environmental and developmental signals at both 

the transcriptional and post-translational levels. Their tight control includes rapid de 

novo synthesis and targeting to the plasma membrane (PM) and even more rapid 

down-regulation through endocytosis and vacuolar degradation, triggered by NH4
+
 or 

excess substrate. The extensively studied uric acid-xanthine transporter UapA of 

Aspergillus nidulans was used to address three questions concerning the mechanisms 

underlying intracellular trafficking of transport proteins: what are the effects of 

hypertonicity in fungal physiology and transporter endocytosis, which are the 

mechanisms regulating transporter ubiquitination and turnover, and what is the role 

of transporter oligomerization in membrane trafficking and endocytosis.  

In particular, A. nidulans strains expressing GFP-tagged transporters were used 

to study the rapid appearance of cortical, relatively static, fluorescent patches in 

response to hypertonic treatment (in collaboration with V. Bitsikas, C. Gournas and 

G. Diallinas). Patch formation is not a transporter-specific effect, but rather reflects 

global membrane reorganization. This was shown by co-localization with other 

plasma membrane-associated molecules, such as a pleckstrin homology (PH) domain 

and the SsoA t-SNARE, or the lipophilic markers FM4-64 and filipin. Moreover, 

patches did not show characteristics of lipid rafts or any other membrane 

microdomains. Accordingly, deconvoluted microscopic images showed that 

fluorescent patches correspond to PM invaginations. Transporters remain fully active 

during this phenomenon of localized plasmolysis. Plasmolysis is, however, 

associated with reduced growth rate and a dramatic blockage of both clathrin-

mediated endocytosis of transporters and fluid-phase internalization of FM4-64. 

These phenomena are concentration-dependent, transient and rapidly reversible upon 

wash-out of hypertonic media. Blockage of endocytosis by hypertonicity did not 

affect the cortical appearance of upstream (SlaB) or downstream (AbpA) endocytic 

markers, but dramatically modified the subcellular localization of tropomyosin, 

suggesting that hypertonicity acts indirectly on endocytosis by modifying actin 

dynamics. This was further supported by the effect of latrunculin B, an actin 

depolymerization agent, on endocytosis. Hypertonic conditions elicited similar 

phenomena in Saccharomyces cerevisiae, which suggests that they constitute basic 

homeostatic responses of ascomycetes to hypertonic stress. 
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In order to elucidate the mechanisms regulating transporter ubiquitination and 

internalization from the PM, the role of all arrestin-like proteins of A. nidulans was 

investigated in respect to growth, morphology, sensitivity to drugs and specifically 

for UapA turnover. A single arrestin, ArtA, was found to be essential for HulA
Rsp5

-

dependent ubiquitination and endocytosis of UapA in response to either NH4
+
 or 

substrates (in collaboration with S. Amillis, M. Evangelinos, A. Kokotos, V. Yalelis 

and G. Diallinas). Mutational analysis showed that residues 545-563 of the UapA C-

terminal region, which includes a critical di-acidic motif, are required for efficient 

UapA endocytosis, thus suggesting that this might be the interaction interface 

between the arrestin and the transporter. Furthermore, PPXY motifs of ArtA are 

essential and sufficient for UapA ubiquitination and endocytosis. ArtA functions 

upstream from the late endocytic factor SagA
End3

, indicating that UapA 

ubiquitination takes place in the PM rather than in an early endosomal compartment. 

ArtA is itself ubiquitinated by the same ubiquitin ligase (HulA) at residue Lys343 

and this modification is critical for the efficiency of UapA ubiquitination and 

endocytosis. ArtA is also essential for vacuolar turnover of transporters specific for 

purines (AzgA) or L-proline (PrnB), but not for an aspartate/glutamate transporter 

(AgtA). Notably, evidence presented herein indicates that NH4
+
-induced and 

substrate-elicited endocytosis occur via two distinct pathways and the latter is 

dependent on conformational changes of UapA associated with transport catalysis. 

This is consistent with previous observations showing that substrate-induced 

endocytosis operates only for functional UapA molecules. However, inactive UapA 

versions can be endocytosed in trans when co-expressed with active ones, an 

indication that UapA homo-oligomerizes. Oligomerization of UapA was confirmed 

using two different approaches: in vivo bimolecular fluorescence complementation 

(BiFC) and direct pull-down assays of differentially tagged UapA molecules. It was 

also supported by genetic evidence showing an apparent dominant-negative effect of 

inactive mutants on the activity of wild-type UapA. UapA oligomers seem to be 

initially formed in the ER and remain stable and functional in the PM. Using UapA 

showing ER-retention mutants, an N-terminal motif and other elements affecting 

oligomerization were identified. Interestingly, substrate-elicited endocytosis, unlike 

NH4
+
-induced, seems tocoincide with the dissociation of transporter oligomers prior 

to internalization. Therefore, UapA oligomerization, analogously to some plant and 

mammalian transporters, is critical for ER-exit, sorting to the PM and endocytosis. 
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1 General Introduction 

1.1 Ascomycota 

1.1.1 Basic features 

Ascomycota, the largest phylum of the Fungi Kingdom, consists of more than 6300 

genera and 64000 species, ranging from unicellular yeasts to fairly large morels and 

truffles, as well as some of the common black and green moulds, the powdery 

mildews and the cup fungi (Kirk et al., 2008; Figure 1.1A).  

 

 

Figure 1.1. A. Various ascomycetes growing in axenic cultures (photograph by Dr. David Midgley, 

retrieved from http://goo.gl/1JLqM5). B. Asci of the hyphal ascomycete Podospora (photomicrograph 

by R. Vilgalys, retrieved from http://tolweb.org/Ascomycota). C. Diagram of the asci, the defining 

characteristic of Ascomycota, each of them carrying eight ascospores. The bursting of an ascus to 

release its ascospores is also illustrated. 
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The primary morphological feature that distinguishes members of Ascomycota 

from all other fungi is the ascus, a saclike cell containing the ascospores, which are 

produced by a combination of meiosis and a subsequent mitotic division 

(Alexopoulos et al., 1996). Eight ascospores are typically formed within the ascus 

(Figure 1.1B and C), although this number may vary according to the species and 

may be as little as one ascospore per ascus (Esser and Stahl, 1976). Asci are usually 

produced in fruiting bodies called ascocarps, also known as ascomata. Besides this 

sexual cycle of reproduction, ascomycetes can also reproduce asexually (Figure 

1.2B). In asexual reproduction, conidiospores are formed as a result of mitosis and 

are released in large numbers, allowing the fungus to disperse over a wide area. 

Filamentous ascomycetes are characterized by a compartmentalized mycelium 

with distinctive walls, called septa (Figure 1.2A). Septa generate from the hyphal 

periphery and advance towards the centre. There, a small circular pore is formed, 

through which the plasma membrane (PM) and cytoplasm extend, and nuclei are 

permitted to migrate from one hyphal compartment to the next (Alexopoulos et al., 

1996; Figure 1.2C). 

 

 

Figure 1.2. A. Hyphae of ascomycetes divided into compartments by septa placed at regular intervals. 

These miniature bulkheads give the hyphae some physical rigidity and limit loss of cytoplasm, if the 

hyphal wall is ruptured (retrieved from http://goo.gl/Q5GRjC). B. Ascomycetes may have two distinct 

reproductive phases, the sexual, where asci and ascospores are formed and the asexual, where 

conidiospore (conidia) production occurs at different times on the same mycelium (scheme by A. 

Edwards and G. Wyn Griffith, retrieved from http://goo.gl/9FVAoM). C. Septa are centrally 

perforated to allow movement of cytoplasm and nuclei between compartments. This transmission 

electron micrograph of a short segment of Neurospora crassa hypha shows a nucleus in the act of 

squeezing through the septal pore (photomicrograph by Beth Richardson, retrieved from 

http://goo.gl/Q5GRjC). 
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In the past, ascomycetes have often been grouped on fruit body type and ascus 

arrangement (Hemiascomycetes, Plectomycetes, Pyrenomycetes, Discomycetes, 

Loculoascomycetes). In recent years, molecular sequence data have changed the way 

this phylum is classified (Kirk et al., 2008). Thus, based on a series of major 

phylogenetic studies, the phylum Ascomycota is divided in three subphyla, the 

Pezizomycotina (Ascomycotina), containing almost all ascomycetes that produce 

ascocarps, the Saccharomycotina, consisting of most of the true yeasts, and the basal 

group Taphrinomycotina (Lutzoni et al., 2004; Kirk et al., 2008). Nevertheless, fruit 

body-based taxa names are still occasionally used (Figure 1.3). 

 

Figure 1.3. Diagrams (Alexopoulos et al., 1996) and photomicrographs (retrieved from 

http://goo.gl/Q5GRjC) of the ways in which ascomycetes bear their asci. Naked asci (absence of an 

ascocarp) are characteristic of Hemiascomycetes, consisting of the yeasts and yeast-like fungi that 

have now been placed into the subphyla Saccharomycotina or Taphrinomycotina. The four different 

types of ascocarps found in ascomycetes, cleistothecium, perithecium, apothecium and 

pseudothecium, are borne by Plectomycetes, Pyrenomycetes, Discomycetes and Loculoascomycetes, 

respectively, all of which (except one genus) are now placed in the subphylum Pezizomycotina. 

1.1.2 Ecology and importance of Ascomycota 

Ascomycetes rival other groups of eukaryotic organisms in their ability to occupy a 

broad range of habitats. Corticolous, lignicolous, foliicolous, coprophilous and 

marine ascomycetes are present in ecosystems worldwide, even at some of the most 

extreme environments on earth, such as the inside of rocks on the frozen plains of 

Antarctica (Selbmann et al., 2005) and the deep-sea sediments (Raghukumar et al., 

2010). While a few are entirely hypogean, others form long-lived symbiotic 
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associations with green algae or cyanobacteria (lichens), as well as with plants 

(mycorrhizae) and animals (Figure 1.4). They are important decomposers and have 

substantial roles in nutrient cycling, since they can break down large molecules, such 

as cellulose and lignin (Schoch et al., 2009). 

 

 

Figure 1.4. A. Highly branched conidium of the marine fungus Varicosporina ramulosa (Shearer, 

1986; Zhang et al., 2006). B. Ascostromata of coprophilus fungus Poronia oedipus dissected from 

horse dung (photograph by M. J. Richardson, retrieved from http://goo.gl/qnvpgB). C. The lichen 

Pseudevernia furfuracea, a symbiotic association of an ascomycete with a green alga (retrieved from 

http://goo.gl/imj8F9). D, E. Apothecia of the saprobic cup fungus Aleuria aurantia (photograph by 

J.H. Petersen/MycoKey, retrieved from http://tolweb.org/Pezizomycotina/29296). 

Ascomycetes are also very important for food production. The fermentative 

ability of certain yeasts is the basis of the baking and brewing industries (Figure 

1.5A). The enzymes produced by some species of the genus Penicillium play a 

significant role in the manufacture of the famous French cheeses Camembert, Brie 

and Roquefort, while Aspergilli have been used since more than 2000 years in the 

orient for the production of local specialties, such as soyu (soy sauce), miso 

(fermented soybean paste) and sake (rice wine) (Scazzocchio, 2009). Morels 

(Morchella) and truffles (Tuber) are also known as some of the most sought-after 

fungi delicacies (Figure 1.5B).  

A huge array of metabolic products, such as antibiotics, organic acids, enzymes 

and vitamins, is provided by ascomycetes. The most famous case may be that of 

penicillin, an antibiotic which triggered a revolution in the treatment of bacterial 

infectious diseases in the 20th century. Fleming’s penicillin-producer was recently 

identified as Penicillium rubens (Houbraken et al., 2011). Moreover, some species 

can be relatively easily genetically engineered to produce useful proteins, such as 

insulin produced in Saccharomyces cerevisiae (Kjeldsen, 2000) and human growth 

hormone in Pichia pastoris (Apte-Deshpande et al., 2009). 

However, along with their benefits and positive contributions, ascomycetes can 

also be very harmful. Some secondary metabolites they secrete are responsible for 
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food contaminations, which result in food spoilage and in some cases may lead to 

fatal intoxications (Scazzocchio, 2009). Aflatoxin B1, a mycotoxin produced by 

Aspergillus flavus, is one of the most toxic and carcinogenic compounds known 

(Figure 1.5C). Furthermore, ascomycetes are widespread plant pathogens, causing 

great economic damages in agriculture (Dutch elm disease, powdery mildew), but are 

also responsible for human and animal infections, such as candidiasis (Candida 

albicans) and several dermatophyte (Epidermophyton floccosum) skin diseases 

(Berbee, 2001). Aspergilli are important opportunistic pathogens of individuals with 

compromised immune systems, causing a group of diseases collectively known as 

aspergilloses (Figure 1.5D-F). 

 

 

Figure 1.5. A. Cells of Saccharomyces cerevisiae, commonly called the brewer’s yeast (retrieved 

from http://goo.gl/1qs5UB). B. The morel Morchella rigida, a highly prized gourmet delicacy 

(photograph by Paco Serrano, retrieved from http://goo.gl/UunM9W). C. Solid cultures of mycotoxin-

producing ascomycetes. The yellowish colonies are of Aspergillus flavus, a producer of aflatoxin, 

while the green colonies are of Penicillium, another mycotoxin-producing genus (retrieved from 

http://goo.gl/VB9QxK). D. Macroconidia of the dermatophytic fungus Epidermophyton floccosum, a 

cause of tinea pedis (athlete’s foot), tinea corporis (ringworm), tinea cruris (jock itch) and 

onychomycosis (photomicrograph by L. Ajello, retrieved from http://goo.gl/zkflrn) E. Cleistothecium 

of Uncinula necator, the causal agent of powdery mildew of grapes (photomicrograph by G. Barron, 

retrieved from http://goo.gl/xRIxJV). F. Histopathologic image of pulmonary invasive aspergillosis in 

a patient with interstitial pneumonia (retrieved from http://goo.gl/Iv9HX7). 

Finally, fungi are eukaryotes, more closely related to metazoans than to plants; 

this is why ascomycetes can be useful models in molecular and cell biology 

(Scazzocchio, 2009). Moreover, several species have biological properties and 

genetic systems that make them ideally suited for basic biological research. Among 

them, S. cerevisiae and A. nidulans hold prominent positions in this field 

(Alexopoulos et al., 1996).  
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1.2 Aspergillus nidulans 

1.2.1 Basic Features 

Aspergilli are homothallic, filamentous fungi belonging to the phylum Ascomycota. 

This genus was first described in 1729 by the priest and botanist Pietro Antonio 

Micheli and was named after an instrument called Aspergillum, which he used in the 

Roman Catholic mass to sprinkle holy water over the heads of the faithful. Figure 1.6 

compares the original Micheli’s drawing with modern observations of conidiophores 

(Scazzocchio, 2009). 

 

 

Figure 1.6. A. Scan of copper-engraving 91 from Micheli’s Nova plantarum genera, showing his 

drawings of Aspergillus conidiophores (retrieved from Scazzocchio, 2009). Scanning electron 

micrograph (B) and epifluorescence micrograph (C) of a conidiophore of A. nidulans. Staining with 

DAPI reveals the nuclei of the conidia and of the subjacent structures of the conidiophores 

(photomicrograph by U. Kues and R. Fischer, 2006, retrieved from Scazzocchio, 2009).  

A. nidulans is commonly isolated from soil, plant debris, and house dust and is 

an opportunistic pathogen of immunocompromised individuals. It is recognized by 

its distinct conidiophores terminated by a swollen vesicle bearing flask-shaped 

phialides, which are borne on the intervening metulae. Conidia are produced in long 

chains, budding from the ends of the phialides, and have a green pigment in the wild 

type strain. The hyphal compartment that branches to give rise to the conidiophore is 

the foot cell (Figure 1.7A). A. nidulans is normally haploid, but can also be induced 

to grow as heterokaryon or vegetative diploid. It produces asexual conidiospores for 

rapid distribution in the environment and sexual ascospores for long-term survival in 

soil (Figure 1.7B). The asci, containing the ascospores, are dispersed in cleistothecia 

(see 1.1.1), which are surrounded by thick-walled nurse cells, called "hülle cells". 
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Figure 1.7. A. Diagram of the typical conidiophore of A. nidulans. See text for description (diagram 

adapted from Thom and Raper, 1945). B. The life cycle of A. nidulans. In the asexual cycle, A. 

nidulans forms haploid vegetative filamentous hyphae following germination of uninucleate conidia 

or binuceate ascospores. Vegetative hyphae differentiate to form conidiophores, on which conidia are 

produced (Todd et al., 2007). In the sexual cycle, two nuclei divide synchronously as a dikaryon in a 

specialized structure. Eventually, the nuclei fuse to give a diploid, which does not divide as such but 

undergo meiosis followed by a post-meiotic mitosis. One last mitotic e yields eight binucleate 

ascospores in each ascus. Classical genetics procedures are facilitated by the fact that one 

cleistothecium derives from only one fertilization event. In the parasexual cycle, a heterokaryon is 

formed and nuclei fuse to yield a diploid, which does not undergo meiosis but divides as such. 

Breaking up of the diploid (haploidization) and mitotic recombination are additional genetic tools. 

Both diploids and heterokaryons can undergo the asexual cycle (Todd et al., 2007; Scazzocchio, 2009; 

scheme by Stephane Demais, modified by Claudio Schazzocchio, retrieved from Scazzocchio, 2009). 

The modern classification of Ascomycota, places A. nidulans in the subphylum 

Pezizomycotina, class Eurotiomycetes, order Eurotiales and family Aspergillaceae 

(Kirk et al., 2008; Houbraken et al., 2014). Moreover, unlike the past classification 

of A. nidulans as the anamorph of the teleomorph Emericella nidulans, the single-

named, but pleomorphic, nomenclatural and taxonomical system classifies both 

anamorphic and telomorphic states in Aspergillus, while Emericella is considered 

synonymus to the latter (Houbraken et al., 2014). 

1.2.2 A. nidulans as a model organism 

It was about 1946 in Glasgow, when an enthusiastic scientist named Guido 

Pontecorvo searched for a potentially ideal genetic organism, in order to raise
 
the 

“resolving power of genetic analysis”. After testing several microorganisms (e.g. 

Aerobacter, Serratia) for this purpose, he finally selected A. nidulans, despite the 
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scorn from his colleagues who thought
 
that its homothallism would be a practical 

barrier (Cohen, 2000). The supposed
 
difficulties due to homothallism turned into 

advantage with the discovery that segregation of autonomously expressed
 
conidial 

color mutations could be used to identify crossed cleistothecia and by 1953 

(Pontecorvo et al., 1953), the utility of A. nidulans as a genetic organism
 
had been 

comprehensively established (Cohen, 2000). Moreover, since the development of 

transformation protocols (Tilburn et al., 1983), A. nidulans has also become a model 

microbial system for molecular biology and reverse genetics. 

The sophisticated system of A. nidulans genetics, molecular and cell biology 

led to the analysis of multiple metabolic and cellular processes. The work of Pateman 

et al. (1964) on enzymes of nitrate assimilation in A. nidulans, initiated the use of 

this organism as a model system to study the control of gene expression 

(Scazzocchio, 2013). About a decade later, the main factors of nitrogen metabolite 

repression and carbon catabolite repression had been identified (Arst and Cove, 

1973; Bailey and Arst, 1975).Work carried out in A. nidulans has also contributed to 

our understanding of the biochemistry and regulation of mitosis (Morris, 1975; 

Morris and Enos, 1992). One useful consequence of these regulatory studies was the 

characterization and development of the alcA alcohol dehydrogenase regulatable 

promoter, which is induced by alcohol and repressed by glucose, as an effective tool 

to control gene expression (Felenbok, 1991). Other important contributions include 

the dissection of the development of conidiophores (Timberlake, 1990), extensive 

work on transporter proteins (Diallinas, 2008a and references therein) and the recent 

work of Peñalva et al. (2012) on membrane trafficking, Golgi dynamics and 

endocytosis in A. nidulans. A significant step for A. nidulans research was the 

sequencing of its entire genome (Galagan et al., 2005), which was calculated to be 

30.07 Mb in size and to contain 10560 putative protein-coding genes 

(http://www.broadinstitute.org/annotation/genome/aspergillus_group/ GenomeStats.html) 

A. nidulans has considerable advantages as a laboratory model organism. It has 

eight well-marked chromosomes with many color, auxotrophic and drug resistance 

markers. It is homothallic (there are no mating types), so any two strains can be 

mated. While it is normally haploid, heterokaryons and stable diploids can be 

produced for complementation analysis of mutations. It is also efficiently 

transformed in an integrative and site-specific fashion and can generate stable 

transformants. Thus, its genes can be cloned, altered, disrupted or deleted at will, at 
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their normal or any other location in the genome (Morris and Enos, 1992). The fact 

that its conidiospores are uninucleate enables the direct screening of 

mutants/transformants by plating on appropriate media. Moreover, mutations often 

result in detectable colony phenotypes. A. nidulans can also serve as a host for the 

functional heterologous expression of genes coming from other microorganisms or 

even higher eukaryotes (Argyrou et al., 2001; Goudela et al., 2008). Additionally, it 

grows rapidly on inexpensive media under a variety of nutritional conditions and 

produces conidia or ascospores that can be stored for long periods of time. 

Even when compared to S. cerevisiae, whose wealth in genetic and 

biochemical tools and resources of all kinds cannot be matched by any other 

competitor, A. nidulans has several benefits to display. First, although it has almost 

twice the number of genes of S. cerevisiae, it has an almost complete absence of 

genetic redundancy, since, unlike the budding yeast, it has not undergone genome 

duplication. Also, the level of similarity between human and A. nidulans orthologs is 

usually higher than that between budding yeast and humans. On the practical side, 

the large size of the cells facilitates studies with conventional microscopy, as the 

organelles are less crowded than in the unicellular yeasts (Peñalva et al., 2012). Most 

importantly, what clearly distinguishes A. nidulans is its polar lifestyle. Apical 

extension is highly demanding in special mechanisms for rapid protein exocytosis 

and endocytosis, which are dependent on the microtubule cytoskeleton (Taheri-

Talesh et al., 2008). Interestingly, the molecular mechanisms underlying fungal 

polarity are analogous or/and homologous to those found in the cells of higher 

eukaryotes, such as mammalian neurons.  

Finally, A. nidulans is closely related to a large number of other Aspergillus 

species of industrial and medical significance, such as A. niger, A. oryzae, A. flavus, 

and A. fumigates, which have no sexual cycle but are exploited experimentally using 

technologies developed for A. nidulans (Scazzocchio, 2006).  

1.3 Saccharomyces cerevisiae 

1.3.1 Basic Features 

S. cerevisiae is mankind’s oldest domesticated organism and the world’s premier 

commercial microorganism for biotechnological applications (Pretorius et al., 2003; 

see 1.1.2). Legend has it that, many years ago, a Mesopotamian farmer found that the 
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water some grain had been soaking in had developed a funny taste. He woke the next 

day having made two important discoveries, beer and hangover. Whether this is just 

a tale or not, it is very likely that mankind's first encounter with alcoholic beverages 

was by chance.  

Chemical analysis of ancient organics absorbed into pottery jars from an early 

Neolithic village in China have revealed that fermented beverages were produced as 

early as the 7000 BC (McGovern et al., 2004). Moreover, S. cerevisiae DNA has 

been isolated from residue present inside an Egyptian wine jar that dates back to 

3150 BC (Cavalieri et al., 2003). In 1680, the Dutch naturalist Antonie van 

Leeuwenhoek observed yeast cells microscopically for the first time, although at the 

time he did not consider them to be living organisms, but rather starchy globular 

structures (Alba-Lois and Segal-Kischinevzky, 2010). It was about 150 years later 

that three pioneer scientists, Charles Cagniard-Latour, Theodor Schwann and 

Friedrich Kützing, showed independently that alcoholic fermentation was conducted 

by living yeasts and not by a chemical catalyst (Barnett, 1998). The role of yeast in 

the fermentation process was elucidated two decades later by French microbiologist 

Louis Pasteur (Pasteur, 1857). 

S. cerevisiae naturally occurs in very diverse habitats, such as the soil, the 

aquatic environments, the surface of plants and the gastrointestinal tracts and body 

surface of insects and warm-blooded animals. Most often, it is found in areas where 

fermentation can occur, such as the surface of ripe fruits (Walker, 2009). It has a 

predominantly unicellular thallus, although it can form pseudohyphae, as a 

physiological response to nitrogen starvation or a stressful environment (Zaragoza 

and Gancedo, 2000).Vegetative cell division of S. cerevisiae occurs by budding, in 

which a daughter cell is initiated as an outgrowth from the parent cell, followed by 

nuclear division, cell wall formation and finally cell separation. Yeast can be found 

as a haploid or a diploid. Haploid cells have buds that appear adjacent to the previous 

one, whereas diploid cells have buds that appear at the opposite pole (Figure 1.8). 

Each mother cell usually forms no more than 20-30 buds and its age can be 

determined by the number of bud scars left on the cell wall (Sherman, 1997). 

Moreover, S. cerevisiae has two mating types, MATa and MATα. The conjugation of 

two haploid cells of opposite mating types leads, as in many other eukaryotes, to 

genetic recombination (Walker, 2009).  
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Figure 1.8. A. S. cerevisiae growing in an axenic culture (retrieved from http://goo.gl/QkxJA3).       

B. Fluorescent micrograph of S. cerevisiae with GFP-tagged septin, a protein critical for the formation 

and effectiveness of the diffusion barrier between the parent and the daughter cells. Red: outline of the 

cells (phase contrast), scale bar: 10μm (by Philippsen Lab, Biozentrum Basel, retrieved from 

http://goo.gl/1WNkHR). C. False color SEM micrograph of S. cerevisiae cells. The cell with the 

appearance of pinched in waistline is in the process of dividing (by D. Scharf, retrieved from 

http://goo.gl/tkFWmz) D. False color SEM micrograph of a haploid S. cerevisiae parent cell that has 

produced at least six daughter cells, as shown by the polar contiguous array of circular bud scars 

(blue) (by A. Cosney and J. Forsdyke; original version published in Harold, 1990; adapted version 

retrieved from http://goo.gl/lS1IEP). 

The modern classification of Ascomycota, places S. cerevisiae in the 

subphylum Saccharomycotina, class Saccharomycetes, order Saccharomycetales and 

family Saccharomycetaceae (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/ 

wwwtax.cgi?id=559292; Kirk et al., 2008). 

1.3.2 S. cerevisiae as a model organism 

Although yeasts have greater genetic complexity than bacteria, they share many of 

the technical advantages that permitted rapid progress in the molecular genetics of 

prokaryotes. Properties that make S. cerevisiae a good model system for biological 

studies include rapid growth, dispersed cells, lack of pathogenicity, ease of replica-

plating and mutant isolation, a well-defined genetic system, as well as a highly 

versatile DNA transformation system, the development of which made S. cerevisiae 

particularly accessible to gene cloning and genetic engineering techniques (Sherman, 

1997). Plasmids can be introduced into yeast cells either as replicating molecules or 

by integration into the genome. In the latter case, integration proceeds only by 

homologous recombination, unlike most other organisms. Recombinant DNA with at 

least partial homologous segments can therefore be directed at will to specific 

locations in the genome. Thus, wild type genes can be conveniently replaced with 

altered or disrupted alleles, so as to study the function of certain proteins in vivo. 

Interestingly, disruption of some genes that were previously assumed to be essential, 

led to viable mutants with little or no abnormal phenotypes. Moreover, because of S. 

cerevisiae double nature, being stable both as a haploid and a diploid, recessive 
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mutations can be conveniently isolated in the haploid and complementation tests can 

be carried out in the diploid (Sherman, 1997). 

S. cerevisiae has proved to be a valuable tool also for studies of other 

organisms. Examples are the development of the two-hybrid screening system for the 

general detection of protein-protein interactions (Fields and Song, 1989), the use of 

yeast artificial chromosomes (YACs) for cloning large DNA fragments (Murray and 

Szostak, 1983)and the use of yeast as a heterologous expression system for proteins 

from other eukaryotes, for the systematic analysis of their functions (Leung et al., 

2010). The importance of S. cerevisiae as a model organism is also illustrated by the 

fact that it was the first eukaryotic organism to have its genome fully sequenced 

(Goffeau et al., 1996), which, combined with the current availability of a complete 

set of deletion mutants, has further enhanced the potential use of S. cerevisiae as a 

model for unraveling the basic cellular mechanisms of eukaryotic cells.  

1.4 Nitrogen metabolism in fungi 

1.4.1 General aspects of nitrogen metabolism in fungi 

Nitrogen, one of the most abundant chemical elements on earth, is a fundamental 

component of nearly all of the macromolecules of living organisms, and thus an 

essential growth factor for all biological systems. Nitrogen metabolism has been 

extensively studied in fungi, for which the availability of several nitrogen sources is 

often a regulatory signal for activation or inactivation of the various regulatory 

pathways and is, consequently, of great significance for the morphological 

development, the production of secondary metabolites and, in the case of 

phytopathogenic fungi, the regulation of virulence determinants (Marzluf, 1997; 

Caddick, 2004). Moreover, nitrogen is implicated to a number of serious 

environmental issues, such as global warming, ozone depletion and eutrophication 

caused by nitrate-based fertilization in agriculture, which not only lead to ecological 

instability, but also consist a threat to human health (Giles, 2005). Therefore, beyond 

getting an insight into the molecular processes involved in nitrogen utilization, the 

study of nitrogen metabolism has a great ecological value. 

Fungi can use a surprisingly diverse array of compounds as nitrogen sources, 

such as purines, nitrate, nitrite, ammonium and most amino acids (Figure 1.9A), and 

are capable of expressing upon demand the catabolic enzymes of many different 
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pathways. However, not all nitrogen sources are used in the same preference. It has 

been shown that certain nitrogenous compounds, such as ammonia, glutamine, 

glutamate and asparagine, are preferentially used, whereas others are utilized only 

when these so-called primary nitrogen sources are absent or in limiting amounts. 

Utilization of any of the secondary nitrogen sources is highly regulated. The 

activation of the corresponding catabolic pathways is controlled at the level of 

transcription and often requires two distinct positive signals: a global acting signal 

indicating nitrogen derepression due to absence of a primary source and pathway-

specific induction, which indicates the presence of a substrate or an intermediate of 

the pathway (Marzluf, 1997). For purine catabolism in A. nidulans, the de novo 

synthesis of a set of catabolic enzymes and permeases is required. This can only 

happen upon nitrogen derepression, mediated by AreA, a global GATA-type zinc 

finger transcription factor (Arst and Cove, 1973; Ravagnani et al., 1997), and upon 

simultaneous induction with uric acid, mediated by the pathway-specific 

transcription factor UaY (Scazzocchio et al., 1982); Figure 1.9; see also 1.5.6). 

 

 

Figure 1.9. A. A schematic representation of relevant aspects of nitrogen metabolism. A wide variety 

of compounds are utilised by fungi as nitrogen sources, including purines, various amino acids, nitrate 

and nitrite. These are metabolised through ammonium (NH4
+) and/or glutamate (Glu) to glutamine 

(Gln), the last two being utilized by the cell for the production of macromolecules. NH4
+ and Gln are 

excellent nitrogen sources and their presence in the medium results in the repression of metabolic 

pathways required for the utilization of most other compounds(adapted from Caddick, 2004).            

B. General scheme of the transcriptional regulation of genes involved in the utilization of nitrogen 

sources in A. nidulans: (1) In the absence of a specific inducer and in the presence of a preferred, 

repressing nitrogen source (NH4
+ or Gln), neither the specific transcription factor, nor the broad-

domain transcription factor is activated; no or only basal transcription is seen. (2) In the absence of a 

specific inducer and in the presence of a non-repressive nitrogen source, only AreA is active; only 

basal transcription is seen. (3) In the presence of a specific inducer and in the absence of a repressing 

nitrogen source, both transcription factors are active; full transcription is seen. (4) In the presence of 

both a specific inducer and of a repressing nitrogen source, the specific transcription factor is active, 

but AreA is inactive; no transcription is seen (adapted from Scazzocchio, 2009). 
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1.4.2 Purine assimilation pathway 

Bacteria, fungi, protozoa, plants, insects and mammalian tissues, all have the 

ability to take up purines. In most of these microorganisms, the uptake of purines 

fulfils two main functions. One is to scavenge exogenous preformed bases for 

nucleotide biosynthesis and the other is catabolic, since most fungi can use purines as 

fairly good nitrogen sources (De Koning and Diallinas, 2000). This is due to the 

degradation of purines, first to ureides (allantoin, allantoic acid) and eventually to 

urea, via several enzyme-catalyzed oxidations. The complete purine catabolic 

pathway (Figure 1.10) is present in most filamentous fungi and is the same as that of 

most bacteria and plants. In contrast, most yeasts have degenerate variations of the 

purine degradation pathway (Pantazopoulou and Diallinas, 2007).  

More specifically, most yeasts lack xanthine dehydrogenase (HxA, also known 

as purine hydroxylase I), the major enzyme-oxidizing hypoxanthine to xanthine and 

xanthine to uric acid, and urease (UreA), the last enzyme-oxidizing allantoic acid to 

urea. Some yeasts however, like Candida albicans and Schizosaccharomyces pombe, 

can use purines as nitrogen sources through XanA (xanthine a-ketoglutarate-

dependent dioxygenase) .S. cerevisiae lacks all the enzymes necessary for purine 

oxidation, but can still break down allantoin or allantoic acid to urea and ammonia. 

This is reflected in the evolution of its uptake systems, which include transporters 

specific for salvageable purines, while they lack transporters for the oxidized purines 

uric acid or xanthine ( Pantazopoulou and Diallinas, 2007). 

In A. nidulans, the complete purine utilization pathway has been described 

(Figure 1.10; Gournas et al., 2011). Recently, the in vivo subcellular localization of 

seven key enzymes of this catabolic pathway, namely xanthine dehydrogenase 

(HxA), urate oxidase (UaZ), 5-hydroxy-isourate hydrolase (UaX), 2-oxo-4-hydroxy-

4-carboxy ureido imidazoline carboxylase (UaW), allantoinase (AlX), allantoicase 

(AaX) and ureidoglycolate hydrolase (UglA), as well as, that of the alpha-

ketoglutarate Fe(II)-dependent dioxygenase (XanA), has been identified. HxA, AlX, 

UaW, AaX and XanA are localized in the cytoplasm, while UaZ, UaX and UglA 

were found to be peroxisomal (Katerina Galanopoulou, Claudio Scazzocchio,
 
Maria 

Eleftheria Galinou, Weiwei Liu, Fivos Borbolis, Mayia Karachaliou, Nathalie 

Oestreicher, Dimitris G. Hatzinikolaou, George Diallinas and Sotiris Amillis. Fungal 

Genetics and Biology. In revision). 
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Figure 1.10. The complete pathway of purine degradation to ammonium in A. nidulans. Arrows 

connect the metabolic intermediates. Adjacent to each arrow the corresponding enzymatic reaction is 

shown, together with the name and identifier of the cognate gene. To the left of the figure, and 

opposite to their substrates, the transporters involved in the uptake of different metabolites are shown. 

The FcyB and FurD transporters play a minor role in the transport of purines, but are included for the 

sake of completion. In grey type, genes and their cognate proteins involved in co-factor synthesis or 

modification are shown. They are connected by a squiggly line to the relevant enzymes. Guanine is a 

nitrogen source for A. nidulans and thus it must be metabolised through this pathway. However, as no 

experimental work on the conversion of guanine, presumably to xanthine, is extant, nor has a guanine 

deaminase activity been characterized, a grey arrow indicates this predicted step (retrieved from 

Gournas et al., 2011). 

1.5 Nutrient transport across the plasma membrane 

1.5.1 Biological membranes and membrane proteins 

Biological membranes are indispensable to the life of the cell. The PM encloses the 

cell, defines its boundaries and maintains the essential differences between the 

cytosol and the extracellular environment. Inside the cell, the membranes of the 

endoplasmic reticulum (ER), Golgi apparatus, mitochondria, and other membrane-

bounded organelles of eukaryotic cells maintain the characteristic differences 

between the contents of each organelle and the cytosol (Alberts et al., 1994). Despite 
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their differing functions, all biological membranes have a common general structure, 

consisting of lipids, carbohydrates and proteins (Figure 1.11).  The basic unit of the 

membrane is a bilayer formed by phospholipids and sphingolipids organized in two 

layers, with their polar headgroups along the two surfaces and their acyl chains 

forming a non-polar domain in between. Embedded in the lipid bilayer are sterols 

and integral membrane proteins, while peripheral membrane proteins are associated 

with the surface of the bilayer. Carbohydrates are solely externally attached to 

proteins (glycoproteins) or lipids (glycolipids).  

 

 

Figure 1.11. Components of biological membranes (retrieved from Nelson and Cox, 2004). 

The understanding of lipid membrane structures and their role in cellular 

functions has developed significantly since the introduction of the classical fluid-

mosaic model by Singer and Nicolson (1972). This model predicted that cellular 

membranes are fluid, homogenous and characterized by random distribution of their 

molecular components, resulting in lateral and rotational freedom. A large number of 

experimental data, however, converge toward the idea that membrane components 

move both in the transverse direction across the bilayer and the lateral direction in 

the plane of this two-dimensional matrix. These movements enable interactions 

among proteins and between proteins and lipids, to provide temporal associations 

that are important to membrane functions (Luckey, 2008). Moreover, transbilayer 
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(flip-flop) motions of lipids have been shown to have a role in the maintenance of 

membrane asymmetry (Gurtovenko and Vattulainen, 2007). 

It has also become evident that several lipid environments with different 

physical properties may coexist in membrane bilayers. A widely accepted example of 

this heterogeneity is the existence of lateral domains within the bilayer, enriched in 

sphingomyelin and cholesterol (Figure 1.12). These nanosized domains, called lipid 

rafts (Simons and Ikonen, 1997), have been suggested to provide the membranes 

with characteristic physical properties and to take part in various dynamic cellular 

processes, such as membrane trafficking, signal transduction and regulation of the 

activity of membrane proteins. In agreement to that, recent atom-scale computer 

simulations for lipid rafts have shown that the elastic and dynamic properties of the 

membranes depend strongly on their lipid composition. Changes in these elastic 

properties are likely to influence conformational state, dynamic sorting and thus 

functionality of membrane proteins (Niemela et al., 2007).  

 

 

Figure 1.12. Lipid rafts. Membranes have stable but transient microdomains that are enriched in 

cholesterol and sphingolipids, along with glycosylphosphatidylinositol (GPI)-linked proteins and 

proteins anchored by acyl groups (retrieved by Nelson and Cox, 2004). 

Novel aspects of membrane structure also include the high density of proteins 

in the bilayer, which makes it a molecularly “crowded” space with important 

physiological consequences, as well as the existence of proteins that bind the 

membranes on a temporary basis, thus establishing a continuum between the purely 

soluble proteins, never in contact with membranes, and those who cannot exist unless 

bilayer-bound (Goñi, 2014). 
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The biological importance of membrane proteins is clearly reflected in two 

numbers. First, about 30% of eukaryotic genome is predicted to encode for 

membrane proteins (Engel and Gaub, 2008) and second, membranes contain up to 

80% (w/w) of proteins (Luckey, 2008). Membrane proteins perform a wide range of 

essential cellular functions, most of which are regulated by a variety of membrane 

protein interactions. Channels, pores, pumps and transporters facilitate the exchange 

of membrane-impermeable molecules between cellular compartments and between a 

cell and its extracellular environment. Transmembrane receptors sense changes in the 

cellular environment and, typically through associated proteins, initiate specific 

cellular responses. Owing to their central role in almost all physiological processes, 

membrane proteins constitute more than 60% of approved drug targets and their 

three-dimensional (3D) structures are eagerly sought to assist in structure-based drug 

design (Yildirim et al., 2007; Salom and Palczewski, 2011).  

1.5.2 Principles of membrane transport 

Membranes are responsible for the selective permeability of cell envelopes that 

enables cells to take up nutrients and exclude harmful agents. The permeability 

properties are determined by the lipid and protein components of membranes. In 

general, the lipid bilayer is readily penetrated by non-polar molecules, but is nearly 

impermeable to ions and hydrophilic compounds (Figure 1.13), thus enabling the 

conservation of electrochemical gradients that are critical for cell metabolism. The 

movement of those substances across the membrane is assisted by specialized 

membrane proteins or protein complexes. Surprisingly, some small polar molecules 

are capable of permeating the bilayer without the aid of transport proteins (Luckey, 

2008). 

 

Figure 1.13. Permeation through pure lipid bilayers (adapted from http://www.physiologyweb.com). 
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Based on its energetics, a transport system can be classified as passive or 

active. Passive transport may be through the lipid bilayer (simple diffusion) or 

mediated by a channel (passive diffusion) or a facilitative transporter (facilitated 

diffusion or uniport). Passive transport systems are energy independent, since 

substances cross the lipid bilayer down their electrochemical gradient (Figure 1.14). 

 

 

Figure 1.14. Overview of the mechanisms of membrane transport (adapted from 

http://www.physiologyweb.com). 

In contrast, transport is considered active when the solute is transported against 

its chemical and/or electrical gradient. Active transport is also mediated by 

transporters (also called carriers or permeases) and can be divided in two types based 

on the type of energy used. Primary active transport uses a primary source of energy, 

such as adenosine-triphosphate (ATP) hydrolysis, light absorption or electron force. 

The resulting membrane potential can be used in turn to drive other cellular 

processes, such as the formation of action potentials in neurons or the transport of 

nutrients and metabolites by secondary active transporters. Primary active 

transporters are also referred to as pumps. 

Secondary active transporters, on the other hand, use electrochemical potentials 

of co-substrates as an energy source. They do that by coupling the movement of the 

substrate to be transported against the electrochemical gradient to the movement of 

an ion, usually H
+
 or Na

+
, downhill the electrochemical gradient, which is an energy-

releasing procedure. It is thus a “secondary” process in the sense that the source of 
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energy must be first generated by ATP-dependent (primary transport) mechanisms 

(Forrest et al., 2011). Secondary active transporters can be symporters, that transport 

two or more chemical species in the same direction or antiporters that catalyze the 

exchange of one or more chemical species for another (Figure 1.14). They exhibit a 

huge diversity of amino acid sequences, 3D structures and substrates. At the level of 

primary structure, amino acid sequence analyses suggest that there are more than 100 

distinct families of secondary active transporters (Krishnamurthy et al., 2009). 

The main difference between channels and carriers is that channel proteins do 

not need to bind the substrate. Instead, they form hydrophilic selective gated pores 

that extend across the lipid bilayer and allow specific solutes (usually ions of 

appropriate size and charge) to flow rapidly down chemical and electrostatic 

gradients. Carriers, on the other hand, bind the specific substrate and undergo a series 

of conformational changes in order to transfer the bound solute across the membrane, 

downhill (facilitated diffusion) or uphill (active transport) electrochemical gradients. 

Not surprisingly, transport through channel proteins occurs at a significantly faster 

rate than transport mediated by carrier proteins (Dahl et al., 2004; Diallinas, 2008a). 

1.5.3 Structural and functional features of secondary active transporters 

In recent years, the availability of 2D and 3D structures obtained by X-ray and EM 

crystallography, as well as contributions from computational and theoretical 

approaches, have greatly enhanced our understanding of the molecular function of 

transporters. Since 2002, when the first crystal structure of a secondary transporter at 

atomic resolution was obtained (bacterial multidrug efflux transporter AcrB; 

Murakami et al., 2002), there is a growing amount of well-resolved 3D structures, 

providing structural information on membrane-bound transporters. Despite these 

advancements, however, the number of well-resolved transporter structures is still 

rather limited in comparison to the numerous high-resolution structures available for 

soluble enzymes. Moreover, static pictures, even of high resolution, cannot explicitly 

describe the dynamic aspects of carrier function and thus the inherently dynamic 

process of transport is still not completely understood (Forrest et al., 2011).  

All described secondary active transporters are integral membrane proteins 

with 4-14 (most commonly 10-12) transmembrane α-helices connected by 

intracellular and extracellular loops. Surprisingly, transporters of functionally and 

evolutionary distinct protein families with no primary amino acid sequence similarity 
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and different substrate specificities have repeatedly been found to exhibit similar 

folds, such as the MFS (Major Facilitator Superfamily), the NhaA or the LeuT folds 

(see later). Moreover, several symporters and antiporters have been shown to share 

common structural folds, indicating that protein architecture does not dictate the 

mode of transport (Diallinas, 2008a; Forrest et al., 2011). 

A prominent feature of most available structures is an occurring internal 

structural symmetry, where two or more repeated structural elements (repeats) are 

related to each other by a distinct symmetry axis. The conformational changes that 

transporters undergo appear to involve symmetry-related movements of those 

structural repeats. In some cases, such as the MFS fold, the repeats show sequence 

homology, suggesting that they resulted from a gene duplication event. The 

symmetry axis runs perpendicular to the membrane plane and in between the repeats, 

straight through the center of the carrier, dividing it into two distinct N- and C-

terminal halves (Forrest et al., 2011; Figure 1.15A). In other cases, however, no 

sequence homology is observed. The symmetry axis runs parallel to the membrane 

plane and through the repeats (rather than between them). Therefore, the repeats have 

inverted topologies and their helices are interwoven (Figure 1.15B). 

 

 

Figure 1.15. Internal structural symmetry within secondary active transporters. A. Sideview of 

bacterial H+/lactose symporter LacY. The six α-helices from each of the two structural repeats are 

depicted in blue and red, respectively. B. Sideview of a monomer of the bacterial Na+/ Leu symporter 

LeuT. The five α-helices from each of the two structural repeats are depicted in blue and green, 

respectively. Both domains exhibit strong intertwining. Symmetry-unrelated helices are depicted in 

white. The symmetry axis is shown as an arrow. Bound substrates, thiogalactoside (LacY) and leucine 

(LeuT) are displayed as black spheres. The membrane plane is shown as black lines (adapted from 

Kebbel, 2013). 

Most transporters are found in dimeric forms (e.g. bacterial Na
+
/ Leu symporter 

LeuT; Yamashita et al., 2005; Figure 1.16B), although there are examples available 

for other oligomeric states, such as monomers (e.g. bacterial H
+
/lactose symporter  
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Figure 1.16. Structural diversity of secondary active transporters. Sideview (left) and topview (right) 

of (A) NhaA, (B) LeuT, (C) VcINDY, (D) GltPh and (E) LacY, a paradigm for the MFS family. 

Monomers within higher oligomers are depicted in different colors. Bound substrates are displayed as 

spherical structures, where available. The membrane plane is shown as black lines (retrieved from 

Kebbel, 2013). 
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LacY; Abramson et al., 2003; Figure 1.16E) and trimers (e.g. bacterial Na
+
/aspartate 

symporter GltPh; Yernool et al., 2004; Figure 1.16D). The interaction interface 

between monomers can be formed by β-sheets, as exclusively found in NhaA 

(bacterial H
+
/ Na

+
 antiporter; Hunte et al., 2005; Figure 1.16A) or by up to seven α-

helices (e.g. bacterial Na
+
/dicarboxylate symporter VcINDY; (Mancusso et al., 2012; 

Figure 1.16C). In addition, several transporters have been crystallized in the presence 

of native or artificial substrates (Figure 1.16B, C), which were bound in the center of 

each monomer, close to the middle of the membrane plane. 

In respect to function, transport is characterized by Michaelis-Menten kinetics, 

similar to enzymatic reactions. Transporters are “saturable”, meaning that at high 

substrate concentrations all of the transporter molecules have their binding sites 

occupied and the rate of transport reaches a maximum (Vmax). Each transport protein 

binds specific substrates and has an affinity constant (Km) for each of those substrates 

that is equal to the concentration of the solute when the transport velocity is half its 

maximum value. 

1.5.4 The model of “alternating access” for secondary transporters 

As a basic mechanistic explanation for the transport function of secondary active 

transporters, the model of “alternating access” has been supported by numerous 

kinetic, biochemical and biophysical studies. According to this model, the transporter 

cycles through a set of defined conformational states providing a unique structural 

framework for efficient substrate transport.  

The principle of secondary transport for an importing symporter is illustrated in 

Figure 1.17A. Here, the substrates first bind to the empty transporter in the outward 

facing conformation, where the binding site is only accessible from the outer side 

(Figure 1.17A,B). This is followed by the closure of outer molecular gates to hinder 

substrate diffusion. The gate closure is facilitated by the substrate-induced 

rearrangement of single amino acid side chains or by the bending of single α‐helices 

and/or helical hairpins as found for LacY and LeuT, respectively. The transport cycle 

then proceeds by a substantial conformational change from the closed outward facing 

to the closed inward facing conformation (Figure 1.17A,D). During this structural 

switch the transporter passes through the closed occluded form (Figure 1.17A,C), 

where the substrates are inaccessibly buried within the protein. This is followed by 

the opening of the inner molecular gates that enables the release of the substrates  
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Figure 1.17. The principle of secondary symport by the “alternating access” mechanism. A. 

Secondary active transporters exhibit three main conformations: outward-facing (blue), occluded 

(purple) and inward-facing (red). Substrate binding at one side of the membrane induces the closure of 

outer molecular gates, followed by a substantial conformational change, which eventually leads to the 

inward-facing conformation. Opening of the inner molecular gates enables the substrates to be 

released. Main substrates and co-substrates are shown as yellow stars and green rectangles (modified 

version from Kebbel, 2013, original published in Forrest et al., 2011). B. V-shaped outward-facing 

conformation of FucP (Dang et al., 2010). C. Occluded state of EmrD (Yin et al., 2006). D. A-shaped 

inward-facing conformation of LacY. All three belong in the MFS. The symmetry-related N- and C-

terminal halves (blue and red) rock against each other. Where available, substrates are shown as black 

spheres. Green arrows show substrate diffusion routes (retrieved from Kebbel, 2013). 

from the transporter protein into the cytosol. The transport cycle is completed by the 

switching of the transporter from the empty internal form, back to the empty external 

conformation, where the protein is ready to start further cycles (Diallinas, 2008a; 

Forrest et al., 2011). In the case of an antiporter, a single substrate is transported 

during the conversion from the closed outward facing to the closed inward facing 

conformation, while the co-substrate is transported in the returning step.  

The transition from the outward to the inward-facing state requires a substantial 

conformational change of the carrier protein, which usually occurs via rocking 

movements of its structural repeats. A rocker-switch mechanism has been described 

for LacY and other proteins of the MFS fold (Figure 1.17A-C). Two other variations 

of this mechanism exist, the “rocking bundle” mechanism available for the LeuT fold 

(Forrest and Rudnick, 2009) and the less common “gating mechanism” for GltPh 

(Reyes et al., 2009). All three mechanisms, however, are in good agreement with the 

“alternating access” model. 
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1.5.5 Fungal nucleobase transporters 

Nucleobases (purines and pyrimidines) and nucleobase analogues are highly 

hydrophilic compounds that do not readily diffuse across lipid bilayers (Figure 1.18). 

Thus, their transport is mediated by specific transmembrane transport proteins. 

Nucleobase transporters have been identified in bacteria, fungi, protozoa, algae, 

plants and mammals. The universality of specific purine-pyrimidine transport 

systems reflects the importance of nucleobases, not only in nucleotide and nucleic 

acid biosynthesis, but also in cell signaling, nutrition, response to stress and cell 

homeostasis (De Koning and Diallinas, 2000). Moreover, nucleobase analogues are 

widely used as antimetabolites against a host of different diseases and infections, 

ranging from antitumour and leukaemia chemotherapy (5-fluorouracil, 6-

mercaptopurine, thioguanine) and antiviral compounds (acyclovir, ganciclovir, 

carbovir) to antibiotics and drugs against parasitic disease (allopurinol, 

pyrimethamine) and even for the prevention of organ transplant rejection 

(azathioprine) and the treatment of gout (allopurinol; Rundles et al., 1966; Elion, 

1989; Kolb, 1997). 

 

 

Figure 1.18. Structural formulas of (A) purines and (B) pyrimidines transported by fungal nucleobase 

transporters (adapted from http://goo.gl/SH45rB). 

Early genetic and biochemical studies established the presence of highly 

specific nucleobase transporters in fungi (Darlington and Scazzocchio, 1967). Most 

fungi can use purines, but not pyrimidines, as fairly good nitrogen sources (see 

1.4.2). The lack of growth on purines or the use of purine or pyrimidine toxicity, 

caused either by an excess of a base (e.g. uric acid, uracil) or by a cytotoxic analogue 

(e.g. oxypurinol, allopurinol, 8-azaguanine, 5-fluorouracil), provided a powerful tool 
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to select mutants and identify the corresponding genes (Pantazopoulou and Diallinas, 

2007; Katerina Galanopoulou, Claudio Scazzocchio,
 

Maria Eleftheria Galinou, 

Weiwei Liu, Fivos Borbolis, Mayia Karachaliou, Nathalie Oestreicher, Dimitris G. 

Hatzinikolaou, George Diallinas and Sotiris Amillis. Fungal Genetics and Biology. 

In revision).  

Cloning and genome sequencing showed that the fungal nucleobase 

transporters belong to three evolutionary distinct protein families: the Nucleobase 

Cation Symporter family 1 (NCS1), also known as the Purine-Related Transporter 

family (PRT), the AzgA-like family and the Nucleobase-Ascorbate Transporter 

family(NAT), also known as the Nucleobase Cation Symporter family (NCS2). All 

these families are classified as secondary active transporters catalyzing the symport 

of purines with protons. Three criteria have been used for classifying transporters 

into these families. Firstly, an overall sequence identity >21% and sequence 

similarity >40%. Secondly, similar hydropathy profiles compatible with 9–14 

putative α-helical transmembrane segments (TMS). Thirdly, the presence of several 

conserved short sequence motives located at similar topological positions (De 

Koning and Diallinas, 2000; Pantazopoulou and Diallinas, 2007).  

The NCS1/PRT family 

Members of this family are, in general, 419–635 amino acid residues long and most 

probably possess 12 putative TMSs and cytoplasmic N- and C-termini. At least some 

of them have been shown to function as H
+
 symporters. Based on the fact that some 

NAT/NCS2 symporters have similarities to NCS1/PRT members, the two families 

are considered to be distantly related. The NCS1/PRT family is restricted to 

prokaryotes, fungi and plants and includes transporters for purines, cytosine, uridine, 

allantoin, pyridoxine or thiamine (http://www.tcdb.org/browse.php). In 2008, the 

crystal structure of a bacterial member of the NCS1 family, namely the Mhp1 

benzyl-hydantoin permease from Microbacterium liquefaciens, was reported 

(Weyand et al., 2008). Mhp1 contains 12 transmembrane helices, 10 of which are 

arranged in two inverted repeats of five helices, resulting in a topology very similar 

to that of LeuT (see 1.5.3).  

In A. nidulans, the NCS1 transporters FurA and FurD, homologues of yeast 

Fur4p and the FcyB, homologue of yeast Fcy2p, have been functionally 

characterized (Amillis et al., 2007; Vlanti and Diallinas, 2008; Hamari et al., 2009). 
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FurA is an allantoin transporter, whereas the FurD protein is able to recognize with 

high affinity uracil, thymine and several 5-substituted analogues of uracil, and with 

moderate-affinity uric acid and xanthine (Table 1.1). FcyB mediates high-affinity 

transport of adenine, hypoxanthine, guanine and cytosine, but has a rather low-

capacity, thus acting basically as a cytosine supplier and only secondarily as a purine 

carrier. High-capacity purine uptake in A. nidulans is catalyzed by another 

transporter, called AzgA (see below). Based on the Mhp1 crystal structure a 3D of 

the FcyB has been constructed. The model consists of 12 transmembrane, α-helical 

segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is 

made of two intertwined inverted repeats (TMS1-5 and TMS6-10) that are followed 

by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that 

is predicted to host the substrate binding site (Krypotou et al., 2012).  

Table 1.1. Families, specificity and kinetics of fungal nucleobase transporters (adapted from Pantazopoulou and Diallinas, 2007). 
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The AzgA-like family 

AzgA-like proteins are 423–594 amino acids long and are predicted to possess 10–12 

TMSs. Based on overall primary and secondary sequence comparisons, AzgA-like 

proteins are grouped as a separate subfamily within the MFS (http:// www.tcdb.org/). 

However, AzgA also shares some common features with NAT/NCS2, a family 

clearly grouped outside the MFS. Moreover, AzgA does not possess the two-fold 

symmetry present in MFS proteins; therefore, can be considered an independent 

family. The AzgA-like family includes homologues in bacteria, archaea, fungi and 

plants, but only the A. nidulans and A. fumigatus proteins have been characterized as 

hypoxanthine–adenine–guanine/H
+
 symporters (Cecchetto et al., 2004; Goudela et 

al., 2006). Fungal proteins share up to 35% and 44% identity with bacterial and plant 

homologues, respectively, while identities among fungi vary from 45% to 75%.  

The AzgA protein of A. nidulans is a 580-amino-acid protein consisting of 12 

TMSs. It has been functionally characterized (Cecchetto et al., 2004; Goudela et al., 

2006; Pantazopoulou et al., 2007) as a high-affinity, high-capacity transporter, 

specific for adenine, guanine, hypoxanthine, 8-azaxanthine and 2,6-diaminopurine 

(Table 1.1). It also transports efficiently the analogues purine and 8-azaguanine. 

Very recently, AzgA has been shown to be topologically similar to the NAT/NCS2 

family, implying that AzgA-like proteins constitute a distant sub-group of the latter 

(Krypotou et al., 2014). 

The NAT/NCS2 family 

NAT members usually are 414-650 amino acids long and are predicted to contain 12-

14 α-helical TMSs and cytoplasmic N- and C-termini (http://www.tcdb.org 

/browse.php). NATs contain two highly conserved motifs; the NAT signature motif, 

[Q/E/P]-N-X-G-X-X-X-X-T-[R/K/G] (where X is a hydrophobic amino acid residue) 

located in an amphipathic region just upstream of TMS9 and the QH motif in the 

middle of TMS1, known to be critical for function of well-studied examples of this 

family. Another characteristic of the NATs is the presence of some almost absolutely 

conserved single polar/charged amino acids (Diallinas and Gournas, 2008). 

The NAT is a ubiquitous family consisting of proteins derived from Gram-

negative and Gram-positive bacteria, archaea, fungi, plants and animals 

(http://www.tcdb.org /browse.php). It is subdivided into three sub-families in respect 

to substrate specificity. The first, present in bacteria, fungi and plants, is specific for 
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the oxidized purines xanthine and/or uric acid. The second that is specific for uracil, 

is present only in bacteria, since fungal uracil transporters belong to the NCS1/PRT 

(see above). The third sub-family is present in vertebrates and is specific for L-

ascorbic acid. No function is known for metazoan homologues outside the 

vertebrates (Diallinas and Gournas, 2008). All known bacterial, fungal and plant 

NATs are high-affinity H
+
 symporters, while the mammalian SVCTs use Na

+
 for L-

ascorbate symport (Liang et al., 2001). 

Aspergillus nidulans has two NAT/NCS2 members, called UapA and UapC. 

Both are extensively characterized with respect to transcriptional regulation, post-

translational down-regulation by endocytosis and sorting in the vacuoles, expression 

during asexual and sexual development and structure–function relationships. UapA is 

analyzed in detail in section 1.5.6. UapC (Diallinas et al., 1995; Ravagnani et al., 

1997; Valdez-Taubas et al., 2000; Valdez-Taubas et al., 2004) is a 580 amino acid 

protein and a very similar paralogue of UapA (62% identity). UapC has a high 

affinity for xanthine and a moderate affinity for uric acid and other xanthine 

analogues (Table 1.1). It also has a very low affinity (Km > 500 μM) and very low 

capacity for binding of other purines, not recognized by UapA, such as adenine or 

hypoxanthine (Helen Tsilivi and George Diallinas, unpublished results; 

Pantazopoulou and Diallinas, 2007). 

A single A. fumigatus UapA/UapC homologue (61% and 80% identity, 

respectively) has been characterized kinetically by expression in an A. nidulans strain 

carrying deletions of its endogenous purine transporter genes (Goudela et al., 2008). 

This carrier resembles UapC with respect to its substrate affinity and specificity 

(Table 1.1) but has a high transport capacity, similar to UapA. Xut1, a Candida 

albicans UapA homologue (55% identity) is a high-capacity transporter with a high 

affinity for xanthine and a moderate affinity for uric acid (Table 1.1; Goudela et al., 

2005). Most fungi possess UapA/C homologues, usually one in each species; S. 

cerevisiae and several other members of Saccharomycetaceae, however, do not have 

any NAT/NCS2 protein, reflecting their lack of enzymes involved in xanthine or uric 

acid utilization (Wong and Wolfe, 2005; Claudio Scazzocchio, unpublished results). 

Several protozoa have also been found to lack NAT/NCS2 transporters (Gournas et 

al., 2008). 

Recently, the first crystal structure of a member of the NAT family, namely the 

uracil/ H
+
 symporter UraA from Escherichia coli, was obtained (Lu et al., 2011). 
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UraA was crystallized in complex with uracil at a resolution of 2.8 Å and revealed a 

novel structural fold of 14 TMSs divided into two inverted repeats, with a critical 

pair of anti-parallel β-strands located between TMS3 and TMS10. It was also 

reported that the structure is spatially arranged into a core domain and a gate domain. 

NAT-mediated purine or pyrimidine uptake in microorganisms and plants 

seems to serve both catabolic and anabolic needs, but recent evidence suggests that 

NAT-mediated uric acid redistribution in plant vascular tissues (Maurino et al., 

2006) or fungal conidiospores (Pantazopoulou et al., 2007) might play a critical role 

for development and reproduction. In mammals, NAT-mediated ascorbic acid 

transport is essential for brain development (Sotiriou et al., 2002). Eukaryotic NATs 

are tightly regulated, in response to physiological and developmental signals, both at 

the transcriptional (see 1.4.1) and the post-translational level. The latter is mainly 

exerted by regulated endocytosis and probably recycling to the PM (Gournas et al., 

2008). 

1.5.6 UapA, the prototype member of NAT 

UapA, the prototype member of NAT, is one of the most extensively studied 

eukaryotic carriers with respect to regulation of expression and structure–function 

relationships. Historically, uapA was among the first eukaryotic transporter genes to 

be genetically identified (Darlington and Scazzocchio, 1967) and cloned (Diallinas 

and Scazzocchio, 1989; Gorfinkiel et al., 1993) Since then, the ease of genetic 

manipulation of A. nidulans enabled the selection or construction of a great variety of 

uapA mutants through classical or reverse genetics, which were subsequently 

analysed biochemically in great detail with simple kinetic studies. 

UapA structure and function  

UapA is a high affinity (7-8 μΜ), high capacity H
+
 symporter specific for the uptake 

of the oxidized purines, xanthine and uric acid. Several purine analogues, such as 2-

thioxanthine, 3-methyloxanthine, 8-methyloxanthine, oxypurinol and allopurinol, 

have also been shown to act as substrates or ligands, albeit with lower affinity (Table 

1.1; Goudela et al., 2005; Koukaki et al., 2005). In addition, kinetic analyses of 

UapA-mediated transport using more than a hundred different UapA mutants, 

combined with genetic approaches, have revealed specific amino acid residues that 

are involved in purine specificity, binding and transport. Five of those, Q408, G411, 
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T416, R417 and the irreplaceable N409, belong to the NAT motif 

408
QNNGVIALTR

417
 (Koukaki et al., 2005). 

Based on its primary structure, UapA is predicted to have its 574 amino acids 

distributed in 12 α-helical TMSs, separated by hydrophilic loops and a segment of 

amphipathic nature, and thus ambiguous topology, between TMS8 and TMS9. 

Within this segment lays the NAT signature motif. Moreover, the N- and C-termini 

are predicted to be cytoplasmic (Koukaki et al., 2005; Papageorgiou et al., 2008). 

However, the recent release of the crystal structure of the NAT member UraA of E. 

coli (Lu et al., 2011), allowed the construction of a 3D topological model of UapA. 

The model corresponds to a cytoplasm-facing conformer made of 14 TMSs divided 

into two inverted repeats (TMS1-7 and TMS8-14). The structure is spatially arranged 

into a core and a gate domain, consisting of TMS1-4/8-11 and TMS5-7/12-14, 

respectively (Figure 1.19A; Amillis et al., 2011; Kosti et al., 2012).  

In addition, advanced molecular simulations allowed the outlining of a possible 

substrate translocation mechanism, as well as possible selectivity gates at the 

outward and inward ends of the translocation pathway. The proposed pathway starts 

from the centrally located major substrate binding site (F155, E356, A407, Q408) 

and is followed by subsequent poses of xanthine docking towards the cytoplasmic 

face of the transporter, close to residues D360, A363, G411, T416, R417, V463 and 

A469 (Figure 1.19B; Kosti et al., 2012).  

 

 

Figure 1.19. Theoretical structure of UapA. A. Top view of UapA 3D model, indicating core (TMS1-

4/8-11) and gate (TMS5-7/12-14) domains and TMS numbering (retrieved from Kosti et al., 2012). B. 

A xanthine translocation pathway in the cytoplasm-facing UapA model. Residues F155, Q408, E356 

and A407 define the major substrate binding site, whereas T526 and F528 indicate a putative outward-

facing gate (retrieved from Kosti et al., 2012). 



 
General Introduction 56 

Regulation of UapA expression 

The regulation of UapA expression has also been studied in great detail. In resting 

conidiospores, mRNA steady-state level of uapA gene is undetectable or very low. 

The transcription of uapA is developmentally activated during the isotropic phase of 

conidiospore germination, prior to the first nuclear division and polarity 

establishment, and leads to the appearance of transport activity within a short time 

delay (30-60 min). uapA transcriptional activation seems to be dependent on the 

general transcription factor AreA, but is independent of the pathway-specific 

transcriptional regulator UaY (see also 1.4.1) and is not affected by the temperature, 

the pH or the absence of a carbon or a nitrogen source. In fact, the only requirement 

for the early de novo transcriptional activation of uapA during germination is 

hydration of the dormant conidiospores, suggesting that A. nidulans uses its 

transporters both for sensing the environment and for the transport of solutes. 

Interestingly, genes encoding enzymes necessary for purine catabolism (uaZ, hxA) 

are not transcriptionally activated during the isotropic growth phase of germination, 

but only at later stages of mycelium development (Amillis et al., 2004). 

Once germination is completed, regulation of UapA expression occurs through 

both transcriptional and post-translational mechanisms. Transcription of uapA is 

subject to purine induction and nitrogen metabolite repression (see also 1.4.1). In the 

absence of purines, when a non-repressing nitrogen source (urea, NO3
-
, proline) is 

used in the medium, uapA is transcribed at basal levels. Purines, through their 

oxidation to uric acid, induce uapA transcription several fold. This is mediated by the 

positive-acting pathway-specific regulatory protein UaY that contains a typical zinc 

binuclear cluster domain, through which it binds to the promoter regions of uapA 

(Scazzocchio et al., 1982; Suarez et al., 1995). However, this is only possible in the 

absence of a primary nitrogen source (NH4
+
 or Gln), since their presence drastically 

represses uapA expression by inactivating the global GATA-type zinc finger 

transcription factor AreA (Arst and Cove, 1973; Ravagnani et al., 1997). 

Apart from the transcriptional control, ammonium-elicited down-regulation 

occurs also post-translationally via ubiquitination, endocytosis and targeting of UapA 

to the endosomal/vacuolar pathway for degradation. Recently, it has been shown that 

such a post-translational control is also elicited by the substrates of the transporter 

(Gournas et al., 2010). The regulation of UapA endocytosis will be discussed in 

more detail in section 4.1. 
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UapA subcellular localization 

The subcellular localization of the UapA has been extensively studied using Green 

Fluorescent Protein (GFP) tags (Pantazopoulou and Diallinas, 2006; Vlanti et al., 

2006; Pantazopoulou et al., 2007; Papageorgiou et al., 2008; Leung et al., 2010; 

Gournas et al., 2010; Kosti et al., 2010). UapA-GFP is not expressed in resting 

conidiospores and only becomes evident after 4 h of germination at 25°C (equivalent 

to 2 h germination at 37°C). Interestingly, after 6 h of germination at 25°C, UapA-

GFP is localized in cytoplasmic rings corresponding to the ER membrane. At later 

stages of germination and in mycelia, UapA-GFP appears in the PM and in the 

vacuoles, as a result of its constitutive degradation. The ER rings are not apparent 

anymore, suggesting that UapA exits rapidly from the ER membrane (Figure 1.20; 

Pantazopoulou and Diallinas, 2007). 

 

 

Figure 1.20. Expression of UapA-GFP in conidiospores, a vegetative hypha and a conidiophore, as 

visualized by epifluorescence microscopy. Growth was in minimal media with a non-repressing 

nitrogen source, at 25°C. Under the conditions used, 2 h correspond to the isotropic growth phase 

(conidiospore swelling, nuclear decondensation and changes in surface properties reflected by 

increased adhesion), 4–6 h coincide with the first nuclear division, polarity establishment and 

maintenance, 8 h is just prior germ tube emergence (Pantazopoulou et al., 2007). cs, conidiospores; 

ER, endoplasmic reticulum; PM, plasma membrane; V, vacuoles; S, septa; Ph, phialidae; M, metulae 

(adapted from Pantazopoulou and Diallinas, 2007) 

The expression of UapA-GFP was also tested in the sexual and the asexual 

reproduction structures of A. nidulans. The transporter was found to be expressed in 

the PM of ascogenous hyphae, in the outermost periphery of hülle cells and in the 

interconnecting hyphae of the latter. Interestingly, UapA-GFP is not expressed in the 

conidiophore stalk and the vesicle, but is highly expressed in the periphery of the 

metulae and to a lesser extent in the phialidae, while it was absent in the 

conidiospores. (Figure 1.20; Pantazopoulou et al., 2007). We recently obtained 
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evidence that UapA localization is shared with its paralogue UapC, but not AzgA, 

suggesting that only purine transporters specific for uric acid and xanthine have a 

function in the compartments of the conidiophore of A. nidulans. Moreover, it was 

shown that through the activity of the UapA and UapC that are expressed in the 

asexually differentiated aerial cells, metabolically produced uric acid is actively 

transported from the mycelium to the conidiospores. This is the first time transporters 

are shown to mediate solute redistribution within fungal cells, in addition to their role 

as suppliers of nutrients from the growth medium (Katerina Galanopoulou, Claudio 

Scazzocchio,
 

Maria Eleftheria Galinou, Weiwei Liu, Fivos Borbolis, Mayia 

Karachaliou, Nathalie Oestreicher, Dimitris G. Hatzinikolaou, George Diallinas and 

Sotiris Amillis. Fungal Genetics and Biology. In revision). 

Upon treatment with NH4
+
, UapA-GFP internalizes from the PM and is sorted 

to the vacuoles for degradation. This is evident after 30 min of treatment and is 

clearly visible after 1 h in NH4
+
. After 2 h all UapA-GFP has disappeared from the 

PM and appears only in the vacuoles (Figure 1.21). Rapid internalization of UapA-

GFP has also been observed in response to the substrates of the transporter, but 

seems to be mediated via a distinct regulatory mechanism (for details see 4.1; 

Gournas et al., 2010). 

 

 

Figure 1.21. The effect of NH4
+ on the expression of UapA-GFP. Epifluorescence microscopy of a 

UapA-GFP strain shifted in ammonium for 1, 2 and 4 h, after 16 h of growth in minimal media with 

urea as a nitrogen source, at 25°C. A control sample in urea, not shifted to ammonium, is also shown. 

CMAC vacuolar staining and Nomarski of the same samples are shown in the middle and right panels, 

respectively (adapted from Pantazopoulou et al., 2007). 
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1.6 Intracellular trafficking of membrane proteins 

1.6.1 General aspects of vesicular transport 

A characteristic feature of all eukaryotic cells is compartmentalization. The presence 

of membrane-bound intracellular compartments enables the efficient separation of 

cell functions, but also creates the need for communication between them. A major 

process of communication between the different cellular compartments is vesicular 

transport (Tokarev et al., 2009).  

In this process, cargo-loaded vesicles are formed at a donor compartment with 

the help of specific coat and adaptor proteins, such as COPI (coat protein complex I), 

COPII (coat protein complex II) and clathrin (Kirchhausen, 2000; Bonifacino and 

Lippincott-Schwartz, 2003). These coats are supramolecular assemblies of proteins 

that are recruited from the cytosol to the nascent vesicles. The coats deform flat 

membrane patches into round buds, thus leading to the release of coated transport 

vesicles (Figure 1.22). They also participate in cargo selection by recognizing sorting 

 

 

Figure 1.22. Vesicle budding and fusion. (1) Initiation of coat assembly. The membrane-proximal 

coat components (blue) are recruited to the donor compartment by binding to a membrane-associated 

GTPase (red) and/or to a specific phosphoinositide. Transmembrane cargo proteins and SNAREs 

begin to gather at the assembling coat. (2) Budding. The membrane-distal coat components (green) are 

added, cargo becomes concentrated and membrane curvature increases. (3) Scission. The neck 

between the vesicle and the donor compartment is severed either by direct action of the coat or by 

accessory proteins. (4) Uncoating. The vesicle loses its coat due to inactivation of the small GTPase, 

phosphoinositide hydrolysis and the action of uncoating enzymes, while cytosolic coat proteins are 

recycled. (5) Tethering. The “naked” vesicle moves to the acceptor compartment, possibly guided by 

the cytoskeleton, and becomes tethered by the combination of a GTP bound Rab and a tethering 

factor. (6) Docking. The v- and t-SNAREs assemble into a four-helix bundle. (7) This “trans-SNARE 

complex” promotes fusion of the vesicle and acceptor lipid bilayers. Cargo is transferred to the 

acceptor compartment, and the SNAREs are recycled (retrieved from Bonifacino and Glick, 2004). 
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signals present in the cytosolic domains of transmembrane cargo proteins 

(Bonifacino and Glick, 2004). The vesicles are then targeted to the appropriate 

acceptor compartment, to which they attach with the help of tethers and with which 

they fuse with the help of SNAREs [soluble NSF (N-ethylmaleimide-sensitive fusion 

protein) attachment protein receptor] (Figure 1.22). Thus, membrane-bounded 

vesicles serve as vehicles for the transport of proteins to their appropriate residence. 

The cytoskeleton is an integral component of cellular trafficking mechanisms, as the 

vesicles and endosomes move on actin filaments or microtubules (Tokarev et al., 

2009). 

Protein transport within the cell happens via two major cellular pathways, the 

exocytic/secretory and the endocytic (Figure 1.23). The exocytic pathway moves 

cargo from the ER through the Golgi to the PM, while retrograde transport from the 

Golgi to the ER has also been observed. In the endocytic pathway, proteins are 

internalized from the PM via a set of endosomes, early and late, and are eventually 

targeted to the lysosome/vacuole. The two pathways are connected by bi-directional 

transport between the Golgi and the endosomes. Various proteins follow their own 

specific routes towards their destination; for example, secreted cargo and PM 

receptors and transporters are targeted to the PM, whereas newly synthesized 

endosomal and vacuolar proteins are sorted to the endosomes and the vacuoles, 

respectively (Tokarev et al., 2009).  

 

 

Figure 1.23. Scheme depicting the compartments of intracellular transport pathways. Transport steps 

are indicated by arrows. Colors indicate the known or presumed locations of COPII (blue), COPI 

(red), and clathrin (orange). Clathrin coats are heterogeneous and contain different adaptor and 

accessory proteins at different membranes. Additional coats or coat-like complexes exist but are not 

represented in this figure (retrieved from  Bonifacino and Glick, 2004). 
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Vesicle budding at different stages of the exocytic and endocytic pathways is 

mediated by different coats and sorting signals. The first coats to be identified 

contained clathrin as their main constituent. Clathrin coats mediate vesicular 

transport at post-Golgi locations, including the PM, the trans-Golgi network (TGN) 

and the endosomes. Export from the ER to either the ER-Golgi intermediate 

compartment (ERGIC) or the Golgi complex is mediated by COPII, whereas COPI 

coat is involved in intra-Golgi transport and retrograde transport from the Golgi to 

the ER (Figure 1.23; Bonifacino and Glick, 2004). 

1.6.2 Membrane protein translocation and quality control 

Transmembrane proteins enter the ER co-translationally in a process known as 

translocation. Co-translational translocation begins with a targeting phase; the signal 

or transmembrane sequence of the growing polypeptide chain is recognized by a 

signal recognition particle (SRP), while it is still being synthesized on the ribosome. 

SRP is a cytoplasmic, 11S ribonucleoprotein particle comprised of 6 proteins and a 

single 7S RNA. After this, the ribosome–nascent-chain–SRP complex binds to the 

membrane, first by an interaction between SRP and its membrane receptor, and then 

by an interaction between the ribosome and the translocation channel. The 

translocation channel is formed from an evolutionarily conserved heterotrimeric 

membrane protein complex, called the Sec61 complex in eukaryotes. The channel 

allows hydrophobic TMSs of membrane proteins to move from its aqueous interior 

through the lateral gate and into the lipid phase. Hydrophilic segments between the 

TMSs move alternately from the ribosome through the aqueous channel to the 

external side of the membrane, or merge into the cytosol between the ribosome and 

the channel. The first TMS of a membrane protein can have its N-terminus on either 

side of the membrane, depending on the amino acid sequence of the protein, which 

often determines the orientation of subsequent TMSs (Rapoport, 2008; Fewell and 

Brodsky, 2009). 

Following synthesis and translocation into the ER, nascent proteins must attain 

their proper conformations. The association of these proteins with the various 

chaperones and enzymes of the ER quality control machinery allows segregation of 

folding proteins, preventing their aggregation and giving them time to achieve proper 

folding while still in the permissive environment of the ER. Apart from achieving 
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proper folding, some proteins must assemble into complexes with other proteins 

before they are exported from the ER.  

Newly-synthesized proteins undergo examination through an efficient and 

selective mechanism prior to their export from the ER to the Golgi apparatus. 

Improperly folded secretory proteins, whether they are nascent proteins that have yet 

to achieve proper conformation, misfolded proteins that can be refolded or terminally 

misfolded proteins, are retained in the ER. Although the retention of unfolded 

proteins in the ER primarily aims at allowing such proteins time to fold, 

accumulation of unfolded proteins in the lumen of the ER causes a heightened state 

of ER stress known as the unfolded protein response (UPR). Accumulation of 

misfolded proteins in the ER is a cause of a number of pathological states. The 

misfolded amyloid β protein, for example, is a known causative of Alzheimer’s 

disease while retention of misfolded cystic fibrosis transmembrane conductance 

regulator (CFTR) and β-glucocerebrosidase is linked to cystic fibrosis and Gaucher’s 

disease, respectively (Benyair et al., 2011).  

Once a protein has been identified as terminally mis-folded, in order to protect 

the cell from damage, it is routed to a specialized ER-derived quality control 

compartment (ERQC). ERQC is located around the centrosomes in mammalian cells, 

from where misfolded proteins are targeted to ER-associated degradation (ERAD). 

ERAD is a ubiquitin-mediated degradation pathway that apart from its central role as 

an avenue of cellular quality control, it is also used for the selective degradation of 

correctly folded proteins as a means of regulation of many cellular processes. Apart 

from the quality control mechanisms that operate in the ER ensuring that, until fully 

assembled, cargo proteins are retained and/or not recognized by the export 

machinery, a protein retrieval mechanism exists later in the secretory pathway, in the 

ERGIC and the Golgi complex (Hampton, 2002; Benyair et al., 2011). 

1.6.3 ER-exit and targeting to the Golgi 

Once correctly folded and assembled, proteins are segregated from ER resident 

proteins and are exported from the ER to either the Golgi complex or the ERGIC. 

Prior to ER export, the majority of cargo proteins are actively concentrated in COPII-

coated buds and vesicles. In S. cerevisiae, the formation of COPII vesicles appears to 

proceed throughout the ER, whereas in most other eukaryotes, COPII vesicle-

mediated protein export is restricted to a specialized ER subdomain, called 
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transitional ER (tER) or ER exit site (ERES; Figure 1.23). Assembly of the COPII 

coat is initiated through activation of the small Ras-like GTPase Sar1. Conversion of 

Sar1-GDP to Sar1-GTP is mediated by Sec12, an ER-bound transmembrane guanine 

nucleotide exchange factor (GEF). Sec12 is strictly regulated to localize in the ER, 

and thereby Sar1 activation is restricted to the ER. The GDP-to-GTP transition 

triggers the exposure of the N-terminal amphipathic α-helix element of Sar1 that 

inserts into the ER membrane. Membrane-bound Sar1-GTP recruits Sec23-Sec24 

heterodimer by binding to the Sec23 portion, and Sec23/24-Sar1 complex selects 

cargo to form a pre-budding complex. Subsequently, the pre-budding complex 

recruits Sec13-Sec31 heterotetramer, which provides the outer layer of the coat 

(Figure 1.24). Additional factors are known to contribute in the COPII assembly, 

such as the large ER membrane-associating peripheral protein Sec16 and the integral 

ER membrane protein Sed4, two factors that are likely to function together 

(Bonifacino and Glick, 2004; Sato and Nakano, 2007). 

 

 

Figure 1.24. COPII vesicle formation and the selective uptake of cargo proteins. The COPII vesicle 

formation is initiated by GDP-GTP exchange on Sar1 catalyzed by the transmembrane GEF Sec12. 

Activated Sar1-GTP binds to the ER membrane and recruits the Sec23/24 subcomplex. The 

cytoplasmically exposed signal of transmembrane cargo is captured by direct contact with Sec24, 

forming the pre-budding complex. It is currently not clear whether the membrane-bound Sar1-GTP 

associates with cargo before the recruitment of Sec23/24 or lateral diffusion of Sar1-GTP-Sec23/24 

complex captures cargo. These pre-budding complexes are clustered by the Sec13/31 subcomplex, 

generating COPII- coated vesicles (retrieved from  Sato and Nakano, 2007). 

The selective recruitment of cargo proteins in COPII vesicles is basically 

driven by ER export signals. Export signals of most transmembrane cargo proteins 

are thought to interact directly with the COPII coat subunits, but some 

transmembrane and most soluble cargo proteins bind indirectly to COPII through 
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transmembrane cargo receptors. Cargo receptors leave the ER together with their 

ligands, unload their cargo into the acceptor compartment and recycle back to the ER 

(Bonifacino and Glick, 2004; Sato and Nakano, 2007).  

Genetic, biochemical, and structural analyses have demonstrated that most ER 

export signals interact with one of three binding sites on the COPII coat component 

Sec24.Several Sec24-binding motifs have been identified in the cytosolic domains of 

eukaryotic membrane proteins, the diversity of which explains the ability of COPII to 

package a wide variety of cargos. Some consist of di-acidic motifs fitting the 

consensus [D/E]X[D/E], whereas others of di-hydrophobic (FF, YY, LL or FY) , 

triple arginine or aromatic motifs. The majority of ER-exported membrane proteins, 

however, carry no known export signal in their sequence. Thus, either new signals 

remain to be identified or something else drives their recruitment into COPII 

vesicles. Since many membrane proteins form oligomers prior to export from the ER, 

combinatorial signals (i.e. oligomeric signals composed from many weakly 

interacting sequences) have been postulated to link oligomerization to efficient 

export (Barlowe, 2003; Sato and Nakano, 2007; Springer et al., 2014). Indeed, 

oligomerization is required for the export from the ER of a yeast COPII-binding 

cargo receptor protein and its mammalian homologue (Sato and Nakano, 2003; 

Zheng et al., 2010). Very recently, Springer et al. showed in vitro that 

oligomerization strongly enhanced protein uptake in COPII vesicles, independently 

of cytosolic COPII-binding motifs. As a mechanism for the induction of ER export 

by oligomerization, they proposed that oligomerization can generate a local 

membrane curvature that promotes vesicle formation and thus the oligomeric form is 

preferentially packaged into transport vesicles without direct protein-protein binding 

interactions (Springer et al., 2014). 

After their exit from the ER, COPII vesicles move cargo proteins to the 

ERGIC, a network of membranes that constitutes the gateway to the Golgi complex. 

Despite the intense research that has been taken in the field, it is not clear whether 

the ERGIC is a stationary compartment or, conversely, a transient structure formed 

by the fusion of ER-derived vesicles, which works as a carrier itself. ER to ERGIC 

transport is microtubule-dependent. Thus, anterograde and retrograde transport 

between these compartments is dramatically reduced in the presence of inhibitors of 

microtubule polymerization (Tomás et al., 2010). From the ERGIC cargo proteins 

are eventually transferred to the Golgi via COPI transport vesicles.  
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1.6.4 Trafficking within the Golgi and targeting to the plasma membrane 

In many eukaryotic cells, the Golgi apparatus consists of several stacked, flattened 

membrane sacs called cisternae. In each Golgi stack, the cisternae are polarized 

between the cis side, receiving cargo from the endoplasmic reticulum (ER), and the 

trans side, sending cargo forward to post-Golgi organelles. Notably, in most 

ascomycetes, including S. cerevisiae and A. nidulans, Golgi is not stacked, but is 

instead organized as a network of tubules and fenestrated cisternae, denoted Golgi 

equivalents (Breakspear et al., 2007; Pantazopoulou and Peñalva, 2009). 

There are two widely accepted models of how cargo proteins are transported 

through the Golgi stack: the vesicular transport (stable compartments) model and the 

cisternal maturation model. In the vesicular transport model, each stack is static with 

its own defined structure and a characteristic set of resident proteins. Cargo proteins 

are supposed to travel from one cisterna to the next in anterograde vesicles, whereas 

Golgi-resident enzymes are to be excluded from the vesicles and retained in the 

cisternae. Next, the cargo is sorted out of the stack into a vesicle that in turn fuses to 

the subsequent stack. Thus, cargo that enters on one face of the Golgi is transported 

in a series of vesicular transport steps to the other end.  

In the cisternal maturation model, on the other hand, Golgi cisternae are 

considered to be transient structures, since the stacks themselves move from the cis 

side to the trans side of the apparatus. As they move, processing enzymes are sorted 

out into vesicles that then fuse with a younger stack. Thus, cargo proteins can be 

transported through the Golgi without exiting the cisternae (Simon, 2008; Ito et al., 

2012). While there are many experimental results consistent with either one or the 

other model, there are an equally large number of experiments demonstrating that 

neither model, on its own, sufficiently explains all of the results.  

In 2008, Patterson et al. presented evidence for a third model of intra-Golgi 

transport, in which the Golgi stacks are a continuous structure and transmembrane 

cargos differentially partition between two different membrane environments: 

processing domains enriched in Golgi enzymes and export domains capable of 

budding transport intermediates. In particular, the stack-like organization of the 

Golgi, combined with the requirement of vesicular or tubule cargo transport across it 

and with the partitioning of lipids between two domains allows molecules in the 

system to sort spatially (Patterson et al., 2008; Simon, 2008).  
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The trans-most face of the Golgi, the trans-Golgi network (TGN), is the 

penultimate compartment along the secretory pathway. Thus, membrane traffic from 

the TGN is the last and, potentially, rate-limiting step in the secretion. In TGN, 

proteins destined for secretion or to be presented on the PM are packed into secretory 

vesicles that subsequently fuse with the PM, either directly or via the endosomes, 

while other protein cargos are sorted to the endosomes and the lysosomes, or back to 

the ER. As described for upstream vesicular transport events of the secretory 

pathway, the selective packaging of cargos into transport vesicles in the TGN is also 

facilitated by specialized proteins and requires recognition of specific sorting signals 

within the cargo (Ponnambalam and Baldwin, 2003; Starr et al., 2012).  

Sorting between the TGN, endosomes and lysosomes is usually induced by 

tyrosine-based or di-leucine-based sorting signals and is mediated by clathrin, the 

adaptor protein complexes (APs), Golgi-localized gamma ear-containing ARF-

binding proteins (GGAs) and epsin-related proteins. There are four AP complexes in 

mammalian cells and three in S. cerevisiae and A. nidulans. The AP-1 complex 

mediates trafficking between the TGN and endosomes, the AP-2 mediates 

endocytosis, the AP-3 directs proteins toward lysosomes in mammalian cells and the 

vacuole in yeast and the AP-4 may be involved in lysosomal and/or basolateral 

protein sorting and in the selective transport of cargo from the TGN to the 

endosomes (Robinson, 2004; Traub, 2009; Sotiris Amillis and George Diallinas, 

unpublished results). The existence of a fifth AP complex, AP-5, was recently 

reported in late endosomal compartment in HeLa cells (Hirst et al., 2011). 

Protein transport from the TGN to the PM is mediated by a less well-

understood process, as there are limited examples of cytosolic signals within cargos 

recognized by coat protein complexes. In some cases export signals may not exist 

and TGN-to-PM traffic may be governed by the length of the transmembrane span 

and in turn be dictated by differences in the lipid composition of the TGN and the 

PM. In other cases, however, signals are necessary for efficient TGN-to-PM 

transport, such as a di-acidic motif at the N-tail of chitin synthase III (Chs3), an 

integral yeast membrane protein that is transported to the PM through the exomer 

pathway. Proteins found to be implicated in TGN-to-PM traffic are the dynamin-2 

GTPase, heterotrimeric G-proteins and proteins belonging to the Rab family 

GTPases and the AGC serine/threonine protein kinase family (Ponnambalam and 

Baldwin, 2003; Starr et al., 2012). 
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1.6.5 Endocytic internalization of membrane proteins 

The accurate distribution and recycling of transmembrane proteins is vital to ensure 

correct functioning of the cell. Membrane proteins are upregulated or downregulated 

in response to environmental and developmental signals, not only at the level of 

secretion towards the PM, but also via direct vacuolar sorting or endocytosis. 

Endocytosis is the process by which eukaryotic cells internalize PM lipids and 

associated proteins in vesicles that fuse with the endosomal system. Subsequent 

segregation into different endosomal domains determines whether a given cargo 

recycles to the PM, traffics to the TGN or follows the endocytic pathway to the 

vacuole/lysosome, thus undergoing degradation (Peñalva, 2010).  

Endocytosis occurs by a variety of mechanisms, among which clathrin-

mediated pathway is the one that has been most extensively studied and is well-

understood (Figure 1.25). During this highly coordinated process, clathrin is the most 

abundant protein in the coat of the endocytic vesicles and it provides the scaffold that 

orchestrates protein sorting, membrane deformation and budding. Sorting into 

clathrin-coated pits and formation of clathrin-coated vesicles are mediated by adaptor 

proteins. The variety of transmembrane cargos concentrated into clathrin-coated 

vesicles at the PM requires the use of diverse sorting signals, and diverse adaptors to 

recognize them. This variety prevents competition for entry and allows plasticity in 

the selection of cargo for internalization (Kirchhausen, 2000; Reider and Wendland, 

2011). 

Endocytic adaptors are divided into two main groups: multimeric adaptor 

proteins, such as the tetrameric AP-2 complex, and non-classic adaptor proteins, such 

as the clathrin-associated sorting proteins (CLASPs). AP-2 accumulates at newly 

forming pits in parallel with clathrin and binds to certain sorting motifs in the 

cytoplasmic tails of the cargo proteins. AP-2 is also responsible for the recruitment 

of clathrin to the membrane and thus for the initiation of coat formation. CLASP 

adaptors are mono- or dimeric and vary in structure and binding properties. These 

include ubiquitin-binding adaptor proteins, such as epsin 1 (EPN1/Ent1), epsin 2 

(EPN2/Ent2) and the epidermal growth factor receptor pathway substrate 15 

(EPS15), the arrestin adaptor family (see also 1.6.7) and the newly discovered 

muniscin family of endocytic adaptors. Endocytic adaptors vary greatly in size 

(~300-3000 amino acids) and structure, but possess similar properties. In addition,  
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Figure 1.25. Diagram of clathrin-dependent endocytosis. Clathrin-dependent endocytosis begins when 

adaptor and clathrin complexes associate with cognate cargo, thus initiating the formation of a coated 

pit. As the pit matures, additional adaptor and scaffold proteins join the pit, providing a structural 

platform that helps regulate and synchronize interactions between the adaptors and the other endocytic 

proteins. Increasing membrane deformation attributed to BAR-domain-containing proteins (such as 

the muniscins) as well as from forces generated by polymerization of cytoskeletal elements, 

eventually leads to vesicle scission, which liberates a clathrin-coated vesicle into the cytoplasm. 

Examples of different cargos are given in different colors. Blue and purple cargos contain sorting 

motifs that bind to clathrin-associated adaptors. This type of cargo can therefore be incorporated into 

the forming clathrin-coated pit. Yellow cargo, by contrast, is internalized through an alternative 

clathrin-independent pathway that might involve a select subset of CLASP adaptors (retrieved from 

Reider and Wendland, 2011). 

some of the endocytic adaptors described do not bind clathrin and are possibly 

mediating other non-clathrin based routes, such as caveolin-mediated internalization. 

Most of the clathrin adaptor proteins contain regions that interact with some or all of 

four types of binding partners: lipids, cargo, clathrin and accessory proteins (Figure 

1.26). Cooperation between these interactions is required for efficient recruitment of 

adaptors to the PM and is crucial for progression of the internalization process 

(Kirchhausen, 2000; Reider and Wendland, 2011). 

The large GTPase dynamin plays a dual role in clathrin-mediated endocytosis, 

functioning at early stages as a fidelity monitor to regulate clathrin-coated pit 

maturation and at later stages to directly catalyze membrane fission and clathrin-

coated vesicle formation (Mettlen et al., 2009). Vesicle release is followed by 

transient actin polymerization, which is thought to drive vesicles away from the 

surface. Additionally, actin is implicated at other stages of endocytosis, including 

organization of sites of coated pit formation, coated pit assembly and constriction 
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or/and scission of clathrin-coated vesicles. The central role of actin cytoskeleton in 

endocytosis is evident in S. cerevisiae, where treatment with actin polymerization 

inhibitors dramatically blocks internalization. In addition, many factors required for 

proper cortical actin organization in yeast are also important for endocytosis. These 

include the epsins Ent1 and Ent2, the EH domain proteins End3 and Eps15-related 

Pan1, amphiphysins Rvs161 and Rvs167, the intersectin-like Sla1, the Hip1/R 

homologue Sla2, the actin regulatory protein Arp2/3, the actin-binding protein Abp1, 

as well as kinases such as Ypk1/2, which is related to protein kinase B (PKB) and 

serum- and glucocorticoid-induced protein kinase (SGK), and actin-regulating 

kinases Ark1 and Prk1 (Newpher et al., 2005). 

 

 

Figure 1.26. Schematic representations of different classes of adaptor proteins and their association 

with respective binding partners. A. AP-2 and CLASP (full adaptor) proteins bind to lipids, cargo, 

accessory proteins and clathrin. B. By contrast, other CLASP proteins are known to bind only some of 

these four partners. For example, some may not bind cargo, whereas others may not bind directly to 

clathrin. C. The recently described muniscin adaptors bind cargo, as well as lipids and accessory 

proteins. Another, new class of adaptors that selects cargo for internalization through non-clathrin 

pathways has been discovered recently. These non-clathrin adaptors bind to cargo and lipids, and 

some may also associate with currently unknown coat and accessory proteins. PIP2, PtdIns (4,5)P2 

(retrieved from Reider and Wendland, 2011). 
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Most of the proteins known to be involved in endocytic internalization localize 

in punctuate cortical structures that often partially or fully co-localize with cortical 

actin patches, which are believed to form at sites of endocytosis. Real-time 

microscopy of fluorescently labelled endocytic patch proteins has provided insight 

into the dynamics of these factors during endocytosis in yeast. Initially Sla1, Sla2, 

Pan1, and Las17 are recruited to cortical sites. This is followed by the assembly of 

actin, Arp2/3 complexes, and Abp1. As vesicles appear to pinch off, the early patch 

proteins are released and actin/Abp1 patches move rapidly away from the cortex 

(Kaksonen et al., 2003; Newpher et al., 2005).  

In contrast, the subcellular localization of endocytic factors in A. nidulans 

hyphae is significantly different. Hyphal cells of filamentous fungi represent an 

extreme example of polarized growth. After a period of isotropic expansion, the 

germinating fungal spore establishes a polarity axis, which leads to the emergence of 

a germ tube that grows by apical extension, resulting in the characteristic tubular 

morphology of the hyphal cell. Given that hyphal extension involves the continuous 

delivery of secretory vesicles to the apex, there should be a mechanism of continuous 

membrane recycling through an endosomal compartment, ensuring that excess 

membrane and vesicle fusion machinery proteins are efficiently redistributed 

(Araujo-Bazán et al., 2008). A similar model has been proposed for the 

basidiomycete Ustilago maydis, in which endocytosis predominates in the apical 

regions of hyphae, where an endosomal compartment is involved in hyphal growth 

by mediating apical membrane/protein recycling (Steinberg, 2007). In agreement to 

that, fluorescence microscopy showed that AbpA, SlaB and AmpA, the A. nidulans 

orthologues of Abp1, Sla2 and Rvs167, as well as actin patches, are strongly 

polarized and form an ‘endocytic ring’ that embraces the hyphal tip, leaving an area 

of exclusion at the apex. This indicated that endocytosis is particularly active in these 

regions. The importance of endocytosis in the polarized hyphal extension of A. 

nidulans is supported by the fact that deletion of slaB is lethal, while slaBΔ conidia 

rescued from heterokaryons are able to establish polarity but arrest in apical 

extension shortly after germ-tube emergence, which would be consistent with a 

defect in polarity maintenance (Araujo-Bazán et al., 2008). 
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1.6.6 Traffic across the degradation pathway 

Once released from the PM, endocytic vesicles reach an endosome, where cargo-

specific sorting takes place. Cargo can be routed to the TGN, to recycling endosomal 

carriers that bring the cargo back to the PM or to the endocytic pathway toward the 

degradation organelles (metazoan lysosomes and fungal vacuoles). Vesicle 

attachment and fusion to the endosomal membrane are mediated by intracellular 

vesicle trafficking proteins that fall into four major categories: (i) vesicle-anchored 

(v-) and target-membrane–anchored (t-) soluble N-ethylmaleimide–sensitive factor 

(NSF) attachment protein receptors (SNAREs), which bring the two membranes 

together and catalyze fusion by assembling into tight SNARE complexes through α-

helical sequences called SNARE motifs, (ii) NSF and NSF attachment proteins 

(SNAPs), which disassemble SNARE complexes to recycle the SNAREs for another 

round of fusion, (iii) Rab GTPases and multi-component vesicle tethering 

complexes, which coordinate vesicle attachment and the subsequent assembly of 

cognate v-SNARE and t-SNARE complexes and (iv) Sec1/Munc18 (SM) proteins, 

which are soluble factors that may act with the SNARE proteins before and after 

vesicle attachment (Carr and Rizo, 2010).  

The endosomal compartments involved in the degradation pathway are the 

early endosomes (EE), the late endosomes (LE), the multivesicular bodies (MVBs) 

and the lysosome/vacuole. Rather than being vesicle mediated, traffic between EE 

and LE occurs by maturation (Figure 1.27). During this process, EE, which receive 

biosynthetic traffic from the Golgi, progressively undergo changes in lumenal pH 

and composition as they fuse homotypically to give rise to gradually larger 

organelles. Simultaneously, portions of endosomal membranes bud inward, thereby 

delivering lipids and their associated proteins into the lumen of the organelle. Thus, 

maturation results in organelles that are larger than EE and display a characteristic 

multivesicular appearance. These multivesicular “late” endosomes undergo further 

fusion between themselves and with the vacuoles/lysosomes, thus making their cargo 

accessible to digestion by the vacuolar/lysosomal hydrolases (Abenza et al., 2012).  

The maturation of early into late endosomes is mediated by the class C core 

vacuole/endosome tethering complex (CORVET). Progressive acidification of 

endosomal compartments is accomplished by V-ATPase, a highly complex, multi-

subunit proton pump, whereas the formation of intra-lumenal vesicles is performed 

by the endosomal sorting complex required for transport (ESCRT) machinery. Once 
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endosomes reach a certain maturation stage, CORVET is substituted by the 

homotypic fusion and vacuole protein sorting (HOPS) complex, and LE become 

competent to undergo fusion with lysosomes/vacuoles. A hallmark of early-to-late 

endosome maturation is Rab conversion, in which Rab5 present on EE is replaced by 

the late endosomal Rab7. A. nidulans has two Rab5 paralogues, the RabA and RabB. 

RabA localizing to EE plays a minor role in the endocytic downregulation of PM 

cargo. RabB, on the other hand, is the sole recruiter to endosomes of the prototypical 

Rab5 effectors AnVps19, AnVps45 and AnVps34, coordinates acquisition of 

degradative identity in EE with incoming Golgi traffic, mediates EE movement and 

is the major promoter of homotypic EE fusion, thus playing a pivotal role in the 

early-to-late endosome transition (Figure 1.27; Abenza et al., 2010; Solinger and 

Spang, 2013).  

 

 

Figure 1.27. A model for endosomal maturation in A. nidulans. Endocytosis predominates in the tip. 

Endocytic vesicles reach a hypothetical endosomal compartment that would act as a sorting 

endosome, organized as a mosaic of domains (magenta). This mosaic possibly includes domains from 

which membrane and cargo can recycle to the PM, segregating from other domains in which the two 

Rab5s—RabA and RabB—determine «degradative early endosome (EE) identity» (i.e. the identity of 

membranes destined to the vacuole). Degradative EE become loaded on dynein and undergo Rab5-

dependent movement on microtubules (MT). RabB is the major player in establishing this degradative 

identity, as it is required for EE movement and mediates recruitment of Vps45 and Vps34 to 

endosomes (not depicted). Vps45 enables endosomes to accept Golgi traffic required for maturation, 

whereas Vps34 synthesizes phosphatidyl inositol-3-phosphate, the landmark of degradative endosome 

identity, initiating the MVB pathway at the stage of EEs. RabB and, less efficiently, RabA recruit 

CORVET, mediating homotypic fusion between EEs. As endosomes increase their size, they decrease 

their motility and acquire their final composition, thus becoming late endosomes (LEs). Then 

RabSRab7 substitutes Rab5s. Finally, LEs undergo further fusion between them and with vacuoles in a 

HOPS-dependent manner. The negative feedback loop that may help to release Rab5s from 

endosomes is depicted (retrieved from Abenza et al., 2012). 
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1.6.7 Regulation of transporter endocytosis 

Ubiquitin as an endocytic signal 

Transmembrane transport proteins play a crucial role in all cells by conferring to 

plasma and internal membranes selective permeability to a wide range of ions and 

small molecules. These transport proteins are very often subject to tight regulation 

allowing cells to adapt to different nutrient needs or stress conditions and protecting 

cells from self-poisoning, a particular problem with compounds such as heavy 

metals, which are essential for cell physiology but toxic in excess. Such a control 

occurs at the level of protein trafficking, including secretion towards the PM, direct 

vacuolar sorting, endocytosis, endosomal recycling and turnover in the 

vacuole/lysosome. The major regulatory mechanism of endocytic trafficking is 

ubiquitination, an evolutionarily conserved process from fungi to mammals (Dupré et 

al., 2004; Miranda and Sorkin, 2007; Lauwers et al., 2010). Ubiquitination is the 

only characterized signal promoting the internalization of yeast transporters from the 

PM, although the existence of an ubiquitin-independent mechanism has also been 

documented (Strochlic et al., 2008). In mammalian cells, only some of the several 

internalization pathways that exist are regulated by ubiquitin (Traub, 2009). 

Protein ubiquitination is a post-translational conjugation of ubiquitin to a target 

protein by the formation of an isopeptide bond between the C-terminal glycine of 

ubiquitin and the amino group of a lysine residue in the target protein. Ubiquitin is a 

76-amino acid protein, highly conserved throughout evolution and found in all 

eukaryotic organisms and cell types. It is conjugated to the protein substrate via the 

sequential activity of three enzymes. First, a ubiquitin-activating enzyme, E1, 

activates ubiquitin in an ATP-dependent reaction. Ubiquitin is then transferred to a 

ubiquitin-conjugating enzyme (E2) and finally to a ubiquitin-protein ligase (E3) of 

the HECT family, which catalyzes the transfer of ubiquitin to the substrate. 

Alternatively, ubiquitin can be directly transferred from E2 to the substrate with the 

help of an E3 enzyme of the RING family, acting as a platform for substrate 

recognition (Dupré et al., 2004; Lauwers et al., 2010; see also Figure 1.29A). In 

several cases it has been demonstrated that ubiquitination of a given substrate 

involves several E3s. For example, ubiquitination and downregulation of the EGFR 

(epidermal growth factor receptor) appear, in some cases, dependent on both the 

HECT ligase AIP4 and the RING finger protein Cbl3, which are described to interact 
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(Courbard et al., 2002). E3 enzymes account for the high specificity of the 

ubiquitination reaction, which is also evident by the fact that the yeast genome 

encodes a single E1, eleven E2 and 54 E3 enzymes (Lauwers et al., 2010). 

Target proteins can be modified with a single ubiquitin molecule on one 

(mono-ubiquitination) or several lysines (multi-mono-ubiquitination). Alternatively, 

given the fact that ubiquitin itself carries conserved lysine residues, ubiquitin 

molecules can be ligated to one another to form ubiquitin chains (poly-

ubiquitination; Figure 1.28). All seven lysine residues (K6, K11, K27, K29, K33, 

K48, K63) are capable of conjugating ubiquitin, but Lys48- and Lys63-linked chains 

are the most abundant. K48-linked poly-ubiquitin chains adopt a close conformation 

and target proteins for degradation by the 26S proteasome, whereas K63-linked poly-

ubiquitin chains are more elongated and are involved in various cellular processes 

including DNA repair, stress responses and endocytic trafficking of PM proteins.  

 

Figure 1.28. Types of ubiquitin conjugation. Gly76 of ubiquitin is covalently attached to the ε-amino 

group of lysines in the substrate. Substrates can be modified with a single ubiquitin molecule at a 

single (mono-ubiquitination) or multiple (multi-mono-ubiquitination) lysine residues. Further 

ubiquitin conjugation to the lysine residues of ubiquitin results in di- or poly-ubiquitination. Shown 

are the most frequently detected ubiquitin chains linked through Lys63 or Lys48 of ubiquitin. Lys48- 

or Lys63-linked chains have closed and extended conformation, respectively, resulting in different 

mechanisms of recognition by ubiquitin binding domains (retrieved from Miranda and Sorkin, 2007). 
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The ubiquitination of a given protein mostly affects its interaction network, 

either by preventing pre-existing interactions through steric obstruction or by 

providing a new interface for interaction via the ubiquitin moieties. Indeed, ubiquitin 

is recognized by ubiquitin-binding proteins possessing one or several ubiquitin-

binding domains (UBD), such as the epsin/ Eps15-like adaptors in yeast. Ubiquitin-

binding proteins interact non-covalently with ubiquitin and mediate the sorting of 

PM cargos into invaginating endocytic vesicles. Although mono-ubiquitination on a 

single lysine is often a sufficient signal for transporter internalization, the presence of 

several ubiquitin moieties accelerates this process, possibly by mediating higher 

affinity interaction with the endocytic ubiquitin-binding receptors (Miranda and 

Sorkin, 2007; Léon and Haguenauer-Tsapis, 2009; Lauwers et al., 2010). For 

example, the internalization efficiency of the uracil permease (Fur4) and the general 

amino acid permease (Gap1) of S. cerevisiae are proportional to the number of 

ubiquitin monomers linked to these cargos (Springael et al., 1999; Blondel et al., 

2004). 

Ubiquitination serves as a signal not only for internalization from the PM, but 

also for sorting of cargos into the MVB pathway. This is mediated by the ESCRT 

machinery, comprising of five multi-subunit complexes (ESCRT-0,-I,-II,-III and 

Vps4-Vta1). At least one component of each of the ESCRT-0,-I and -II possesses a 

UBD, which interacts with the conjugated ubiquitin. Recent studies have 

demonstrated that K63-linked ubiquitin chains are required for this late step of 

endocytosis (Lauwers et al., 2010). Gap1 for example, when modified with a single 

ubiquitin moiety is internalized at a normal rate, while the apparent internalization 

defect seen when K63-linked ubiquitination is defective is due to recycling of the 

endocytosed permease to the cell surface (Springael et al., 1999). Another example is 

Jen1, one of the two monocarboxylate-proton symporters of S. cerevisiae. In fact, 

Jen1 is one of the few examples for which K63-linked ubiquitin chains were shown 

to be required for correct trafficking at two stages of endocytosis: endocytic 

internalization and sorting to MVBs (Paiva et al., 2009). 

Finally, ubiquitination is a reversible modification and ubiquitin molecules are 

recycled after cleavage of the isopeptide bond by specific proteases named 

deubiquitinating enzymes (DUBs). Doa4 ubiquitin isopeptidase is required for the 

recycling of ubiquitin from ubiquitinated substrates in S. cerevisiae. In a doa4Δ 

mutant, ubiquitin is strongly depleted and this phenotype can be partially suppressed 
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by inactivation of vacuolar proteolysis or endocytosis (Swaminathan et al., 1999). 

CreB is another enzyme with deubiquitinating activity, found in A. nidulans, which is 

also involved in carbon catabolite repression (Lockington and Kelly, 2002). 

Rsp5 ubiquitin ligase 

The link between ubiquitin and endocytosis in yeast was first discovered by Kölling 

and Hollenberg (1994), while working with Ste6, the ATP-binding cassette (ABC) 

transporter for secretion of the pheromone a-factor. Using a mutant with impaired 

endocytic internalization, they observed that it accumulated ubiquitinated forms of 

the transporter in the PM fraction. Soon after that, two other groups supported the 

existence of ubiquitin-dependent endocytosis by two different approaches. Hicke and 

Riezman (1996) discovered that the endocytic signal identified in a C-terminally 

truncated form of Ste2, the receptor for α-factor, was in fact a ubiquitination signal, 

while Hein et al. (1995) cloned the gene NPI1, responsible for the downregulation of 

Fur4 and Gap1 and found out that it encoded the ubiquitin ligase Rsp5.  

In S. cerevisiae the ubiquitination of transporters is exclusively carried out by 

the HECT (homologous to E6-AP carboxyl-terminus) ubiquitin ligase Rsp5, which is 

the only member of the Nedd (neural precursor cell expressed developmentally 

downregulated) 4/ Nedd4-like family of ubiquitin ligases in yeast. In humans there 

are nine members of this family, whereas plants have no Nedd4-like genes 

whatsoever. The C-terminal half of Rsp5 contains a HECT domain that catalytically 

ligates ubiquitin to proteins and functionally classifies Rsp5 as an E3 ubiquitin-

protein ligase. The N-terminal half consists of four domains: a C2 domain, which 

binds membrane phospholipids and is presumed to act as membrane localization 

module, and three WW domains. The WW domains, named after two conserved 

tryptophan residues spaced 20–22 amino acids apart, are small protein interaction 

modules composed of 40 amino acids that fold into three-stranded, anti-parallel β-

sheets. These constitute hydrophobic pockets that interact with proline-rich regions 

forming a [P/L]PXY (PY) motif. Whereas these domains allow direct binding of 

Rsp5 to some of its substrates, the transporters under Rsp5 control do not possess any 

PY motifs. Rsp5 in fact binds via its WW domains to PY sequences displayed by 

accessory proteins acting as specific adaptors for cargo ubiquitination (Chang et al., 

2000; Sullivan et al., 2007; Lauwers et al., 2010; Becuwe, Herrador, et al., 2012). 
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Chromosomal deletion of NPI1/RSP5 has shown that this gene is essential for 

cell viability. For this reason a viable npi1/rsp5 strain with reduced expression of 

NPI1/RSP5 is being used to study Rsp5 (Hein et al., 1995). A. nidulans has a single 

orthologue of Rsp5, called HulA (HECT ubiquitin ligase). Deletion of the C2 domain 

of HulA results in a viable strain that grows and conidiates very poorly and has a 

trafficking defect (Boase and Kelly, 2004; Gournas et al., 2010). 

Adaptor proteins of Rsp5 ubiquitin ligase 

Transporter ubiquitination and endocytosis must occur rapidly after an extracellular 

event (e.g. rapid change in substrate availability), implying that all the components of 

the endocytic machinery are present and functional at any given time. On the other 

hand, this pulse of endocytosis must be very transient. A way of reconciling these 

two requirements and finely tuning the endocytic fate of transporters is the tight 

regulation of specific cargo availability toward the ubiquitin ligase in charge of its 

ubiquitination. Recent studies illustrate that such regulation is obtained by the 

combinatorial use of various adaptor proteins and post-translational modifications 

(Figure 1.29B-E). Besides mediating the physical interaction of ubiquitin ligases 

with their substrates, adaptors have also been reported to affect the localization or the 

catalytic activity of their cognate ligases, while they often are themselves subject to a 

complex regulation. Therefore, ubiquitin ligase adaptor proteins represent an 

additional layer of specificity in the ubiquitination cascade (Léon and Haguenauer-

Tsapis, 2009). 

To date, Rsp5-dependent ubiquitination of transporters has only been described 

to occur via adaptor proteins containing PY motifs that interact with the WW 

domains of the enzyme. Among the adaptors of Rsp5, some act mainly at the level of 

endosomes and/or the Golgi (see later Table 1.2) and generally include one or several 

transmembrane domains (Merhi and André, 2012). The adaptor protein Bsd2 was 

initially observed as essential for the MVB sorting of the metal transporter Smf1 (Liu 

et al., 1997; Hettema et al., 2004). Two other redundant PY-motif-containing 

proteins, named Tre1/Tre2, assist Bsd2 in bringing Rsp5 in close proximity to Smf1 

(Stimpson et al., 2006). Therefore, two sets of adaptors are required for Smf1 

ubiquitination. Another set of endosomal adaptors, the pair of homologous proteins 

Ear1/Ssh4, are required for proper Golgi-to-vacuole sorting of the Gap1 and the 

siderophore transporter Sit1. Also, the absence of Ear1/Ssh4 does not influence the 
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rate of internalization of Fur4 from the PM, but prevents its proper MVB sorting. 

This suggests that successive ubiquitination reactions occur on a cargo along the 

endocytic pathway but, at least for some transporters, with the use of different 

adaptors (Léon et al., 2008). 

 

 

Figure 1.29. Models of the regulation of ubiquitin ligase (E3) function by adaptor proteins. A. Direct 

recognition of the substrate by the E3. (1) RING E3s (e.g. c-Cbl) act as scaffolds between the 

substrate and the activity-bearing E2. (2) HECT E3s (e.g. Nedd4) interact with the substrate and 

perform the ubiquitination reaction. B. Role of adaptor proteins (Ad) in mediating the interaction of 

E3s with substrates. The adaptor can also be a membrane protein. In some cases, cargo ubiquitination 

is contingent upon its prior phosphorylation (see panel E(3)). C. Role of adaptor proteins in the 

activation of E3. D. Role of adaptor proteins in the regulation of E3 localization. (1) Recruitment in 

the vicinity of the substrate (e.g. Bsd2, Tre1/Tre2). (2) Adaptors can also regulate E3 availability by 

keeping the E3 away from the substrate. E. Post-translational modifications of adaptor proteins. (1) 

Most adaptor proteins are ubiquitinated by the E3, which may influence its localization or affect its 

stability (e.g. PY-containing adaptors). (2) Ubiquitination of adaptors is required for their function. 

The E3 in charge of adaptor ubiquitination (i) or cargo ubiquitination (ii) can be the same (e.g. yeast 

arrestins/Rsp5) or different. (3) Adaptor modification, such as phosphorylation, can be required for E3 

recruitment (retrieved from Léon and Haguenauer-Tsapis, 2009). 
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Arrestin-related proteins (also coined α-arrestins) are globally hydrophilic Rsp5 

adaptors promoting ubiquitination at the PM and, as the name implies, they are 

similar to β-arrestins. β-arrestins, which were first described as proteins binding to 

G-protein coupled receptors (GPCRs) and arresting signaling by blocking receptor 

interactions with cognate G-proteins, are now known to participate in endocytosis 

and signaling of seven-transmembrane receptors (7TMR) by linking them to the 

endocytic internalization machinery (Shenoy and Lefkowitz, 2005; Merhi and André, 

2012). On the basis of phylogenetic and structural analyses, both ancestral α-arrestins 

and more recently evolved β-arrestins constitute sub-classes of the arrestin family of 

proteins, but they have one important difference: β-arrestins contain tail domains 

with conserved clathrin-interacting motifs, whereas α-arrestins contain tail domains 

with PY motifs.  

The α-arrestins are expressed in all eukaryotes except plants, which 

interestingly do not harbor Nedd4-like genes either. Six members of α-arrestins have 

been identified in humans, the arrestin-domain-containing 1-5 (ARRDC1–5) and the 

thioredoxin-interacting protein (TXNIP). In yeast, despite the presence of GPCRs, no 

gene encoding β-arrestins can be found. Instead, the S. cerevisiae genome encodes 

ten arrestin-related trafficking adaptor proteins (ARTs; Art1-10) and two distant 

homologues, the Bul1 and Bul2 (Nikko and Pelham, 2009; Reider and Wendland, 

2011; Becuwe, Herrador, et al., 2012). Notably, Bul1 and Bul2 were found to be 

functionally redundant with some of the ART proteins (Nikko and Pelham, 2009). 

Arrestin-related proteins were initially identified in A. nidulans and named 

CreD, ApyA (Boase and Kelly, 2004) and PalF (Herranz et al., 2005). In all cases, a 

connection with the ubiquitin pathway was established; CreD and ApyA were shown 

to interact physically with HulA, the Nedd4 homologue in A. nidulans, whereas PalF 

was found to be ubiquitinated in vivo. CreD is highly similar to yeast adaptors 

Art4/Rod1 and Art7/Rog3. The creD gene was genetically defined by a mutation 

(creD34) that suppresses the phenotypic effects of mutations in creC and creB, two 

genes encoding a de-ubiquitinating enzyme and a WD40-motif-containing protein, 

respectively, which form a complex essential for carbon catabolite repression. ApyA 

was identified as a homologue of CreD, sharing high amino acid identity (Boase and 

Kelly, 2004). PalF, homologue of the yeast Art9/Rim8, was shown to bind to the 

seven-transmembrane and putative pH sensor, PalH, which points out the similarity 

of PalF with mammalian β1.6.7-arrestins. Interestingly, unlike other fungal arrestins 
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mediating endocytic downregulation of PM transporters, PalF plays a positive role in 

ambient pH signaling. Activation of PalH by alkaline pH leads to PalF 

ubiquitination, which has been proposed to be the sole molecular trigger required for 

transmitting the alkaline pH signal to the downstream elements of the pathway 

(Hervás-Aguilar et al., 2010; Becuwe, Herrador, et al., 2012). 

The family of arrestin-related trafficking adaptors (ARTs) was first defined in 

yeast by Lin et al. (2008), as a family of adaptor proteins that mediate endocytic 

downregulation by recruiting Rsp5 to specific PM cargos. They share a central 

arrestin core with sometimes long extensions on either side, increasing their size up 

to about 1100 amino acids for the longest members (Aubry and Klein, 2013). ARTs 

have been studied systematically in respect to their role on the ubiquitination and 

endocytosis of several transporters (Table 1.2) and the general model emerging is 

that different arrestin-like proteins recognize different transporters, or the same 

transporter in response to different stimuli, thus adding another layer of complexity 

to the system.  

For example, Art1/Ldb19/Cvs7 is required for lysine-induced endocytosis of 

the lysine permease Lyp1, while Art2/Ecm21 is required for cycloheximide-induced 

endocytosis of the same transporter. Thus, Lyp1 internalization can be triggered by 

two different stimuli, and these two distinct pathways require different ARTs for 

endocytosis (Lin et al., 2008). On the other hand, Fur4 and tryptophan transporter 

Tat2 are able to use the same arrestins (Art2/Ecm21 and Art8/Csr2) for both stress- 

and substrate-induced turnover (Nikko and Pelham, 2009). Art3/Aly2 and to a lesser 

extend Art6/Aly1 mediate substrate-induced endocytosis of the aspartic 

acid/glutamic acid transporter Dip5 (Hatakeyama et al., 2010); strikingly, however, 

the same adaptors do not influence Gap1 endocytosis, but promote its recycling from 

endosomes to the TGN and/or PM (O’Donnell et al., 2010). As in A. nidulans, the 

yeast PalF homologue Art9/Rim8, which lacks canonical PPXY elements, has a 

unique role in pH regulation (Peñalva et al., 2008), whereas Art5 was shown to 

mediate the substrate-induced endocytosis of the inositol transporter Itr1 (Nikko and 

Pelham, 2009). Recently, Art4/Rod1 was identified as an essential component of the 

glucose-induced endocytosis of the lactate transporter Jen1 (Becuwe, Vieira, et al., 

2012). Finally, possible functions of Art7/Rog3 and Art10 remain to be revealed. 
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Table 1.2. Examples of Rsp5 adaptors of yeast transporters (adapted from Lauwers et al., 2010). 

Transporter 

(substrate) 

Conditions of 

vacuolar targeting 
Adaptors 

Can1 (arginine) Cycloheximide Art1
a
 

Ctr1 (copper) Substrate excess Bul1
a
, Bul2

a
 

Dip5 

(glutamate/aspartate) 
Substrate excess Art3

a
, Art6

a
 

Fur4 (uracil) 
Cycloheximide Bul1

a
, Bul2

a
, Art1

a
, Art2

a
, Art8

a
, Bsd2

b
, Ear1

b
, Ssh4

b
 

Substrate excess Bul1
a
, Bul2

a
, Art1

a
, Art2

a
, Art8

a
, Bsd2

b
 

Gap1 (amino acids) 
Ammonium or 

substrate excess 
Bul1

a,b
, Bul2

a,b
, Ear1

b
, Ssh4

b
, Art3

b
, Art6

b
 

Hxt6 (hexoses) 
Cycloheximide Art8

a
 

Substrate excess Art4
a
 

Itr1 (inositol) Substrate excess Art5
a
, Bsd2

b
 

JenI (lactate) Glucose Art4
a
 

Lyp1 (lysine) 
Cycloheximide Art2

a
 

Substrate excess Art1
a
 

Mup1 (methionine) Substrate excess Art1
a
 

Sit1 (ferroxiamines) Absence of substrate Ssh4
b
, Ear1

b
, Tre1

b
, Tre2

b
 

Smf1 (manganese) 
Substrate excess Bsd2

b
, Tre1

b
, Tre2

b
 

Stresses Bsd2
b
 Art2

a
, Art8

a
, Bsd2

b
, Tre1

b
, Tre2

b
 Ear1

b
, Ssh4

b
 

Tat2 (tryptophan) 
Cycloheximide Bul1

a,b
, Bul2

a,b
, Art2

a
, Art8

a
, Bsd2

b
 

Substrate excess Bul1
a,b

, Bul2
a,b

, Art1
a
, Art2

a
, Art8

a
, Bsd2

b
 

aAdaptors acting at the plasma membrane; badaptors acting at the Golgi-endosome 

Notably, addition of PY motifs to the tail of the arginine permease Can1 is 

sufficient for its internalization, bypassing the need for Art1. This indicated that Art1 

is not needed for interactions with other endocytic proteins; it only functions as 

ubiquitin adaptor and not as true endocytic adaptor that links cargo to clathrin (Lin et 

al., 2008). On the other hand, the closely related Art3 and Art6, were shown to 

directly interact with clathrin and clathrin adaptor protein (AP) complexes, 

suggesting that, like their β-arrestin relatives, α-arrestins possibly promote cargo 

incorporation into clathrin-coated vesicles (O’Donnell et al., 2010). 
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Regulation of arrestin-like Rsp5 adaptors 

The interaction of Rsp5 adaptors with their cognate cargos is regulated in a timely 

manner with respect to the presence of extracellular signals. Three reports have 

recently provided the first molecular insights into the nutrient-induced activation of 

arrestin-related proteins, through a switch in post-translational modifications 

(MacGurn et al., 2011; Becuwe, Vieira, et al., 2012; Merhi and André, 2012). In the 

absence of preferred carbon or nitrogen sources, arrestin-like proteins Art1, Art4 or 

Bul1/2, controlling the ubiquitination and turnover of Gap1, Jen1 or Can1, 

respectively, are phosphorylated and remain inactive (Figure 1.30). In the case of 

Art4 or Bul1/2, it was shown that under such poor nutrient conditions, the relevant 

arrestin-like proteins bind to 14-3-3 proteins, a family of conserved eukaryotic 

proteins involved in diverse cellular functions, including signaling, which interact 

with many other proteins when these are phosphorylated. Binding to 14-3-3 proteins 

inhibits Art4 and Bul1/2 capacity to elicit Jen1 or Gap1 downregulation (Becuwe, 

Vieira, et al., 2012; Merhi and André, 2012). 

 

 

Figure 1.30. Model for the regulation of transporter endocytosis by intracellular signaling through 

arrestin-related protein activation. When yeast cells are grown in lactate medium, Snf1, the yeast 

AMPK homologue, is active and phosphorylates Art4 to inactivate it (red arrows). Glucose addition 

triggers Jen1 endocytosis, which depends on Art4 activation through its PP1-mediated de- 

phosphorylation and subsequent Rsp5-mediated ubiquitination, which are coordinated by 14-3-3 

proteins (green arrows). The subcellular compartment at which Art4 acts on Jen1 endocytosis may be 

the PM, or internal compartments (dashed lines). Noteworthy, the Snf1/PP1 pathway also controls the 

transcriptional reprogramming of cells in response to glucose fluctuation, including the expression of 

the JEN1 gene, illustrating a robust physiological regulation in which transcriptional and post-

translational events are coordinated (retrieved from Becuwe, Vieira, et al., 2012). 
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Upon shift to rich carbon or nitrogen sources, Art1, Art4 or Bul1/2 are de-

phosphorylated, probably released from 14-3-3 proteins and recruited for catalyzing 

the ubiquitination of their cognate cargos (Figure 1.30). In the case of the Art1 and 

Bul1/2, their phosphorylation involves the Npr1 kinase, which is itself negatively 

regulated by the target of rapamycin complex 1 (TORC1) pathway. The TORC1 is a 

highly conserved multi-protein kinase complex that senses various cellular and 

environmental cues including nutrient availability, energy status, and growth signals 

and responds by coordinating activities associated with cell growth and proliferation 

(MacGurn et al., 2011; Merhi and André, 2012). On the other hand, phosphorylation 

of the Art4 seems to be mediated by Snf1, the yeast homologue of AMP-activated 

kinase (AMPK). De-phosphorylation of Bul1/2 and Art4 was shown to be dependent 

on the Sit4 phosphatase and the protein phosphatase 1 (PP1) Glc7/Reg1, respectively 

(Becuwe, Vieira, et al., 2012; Merhi and André, 2012).  

One more arrestin-like protein, the Art3, was found to be phosphorylated, but 

the physiological role of this modification remains unknown (O’Donnell et al., 2010; 

Hatakeyama et al., 2010). In addition, its closely related arrestin-like protein Art6 

was very recently found to be de-phosphorylated by the Ca
2+

- and calmodulin-

dependent phosphoprotein phosphatase calcineurin/PP2B. De-phosphorylation of 

Art6 by calcineurin is required for Art6-mediated trafficking of Dip5 to the vacuole, 

but it does not alter Rsp5 binding, ubiquitination or stability of the adaptor and it 

does not regulate the ability of Art6 to promote the intracellular sorting of Gap1. 

These results suggest that de-phosphorylation of Art6 serves as a regulatory switch to 

promote Art6-mediated trafficking to the vacuole (O’Donnell et al., 2013). 

Another aspect of the emerging mechanism underlying the control of arrestin-

like protein action is their ubiquitination. In all cases tested (Art1, Art2, Art3, Art4, 

Art8, Art9, Bul1 and Bul2), adaptor ubiquitination is Rsp5-dependent and essential 

for their function (Kee et al., 2006; Lin et al., 2008; Herrador et al., 2010; 

Hatakeyama et al., 2010; Becuwe, Vieira, et al., 2012; Merhi and André, 2012). 

Therefore, arrestin-like proteins are adaptors as well as targets of the same ubiquitin 

ligase. Studies on Art1, Art4 and Bul1/2 revealed that this ubiquitination is required 

for proper permease downregulation (Figure 1.30) and that there seems to be a cross-

talk between the phosphorylation/de-phosphorylation status and the ubiquitination 

levels of arrestin-like proteins. Interestingly, Art1 ubiquitination appears to be 

constitutive in the conditions tested (Lin et al., 2008), whereas Art4 or Bul1/2 
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ubiquitination is induced by glucose or ammonium and may therefore provide an 

additional step for its regulation (Becuwe, Vieira, et al., 2012; Merhi and André, 

2012). The signal-dependent ubiquitination of arrestin-related proteins has been also 

described in filamentous fungi (see also earlier in 1.6.7; Herranz et al., 2005; Hervás-

Aguilar et al., 2010) and is reminiscent of β-arrestin ubiquitination in mammalian 

cells in response to agonist treatment; however, the precise mechanism by which this 

occurs is still unknown (Becuwe, Vieira, et al., 2012). 

Apart from the regulation of adaptor activity by post-translational 

modifications, an additional regulatory mechanism that has been proposed is the 

physiological control of the location of Rsp5 adaptors, that is, a change in their 

intracellular localization in response to environmental changes and their recruitment 

to the compartments at which they perform their function. To date, such a 

mechanism has only been reported for Art1 (Lin et al., 2008). Under non-stress 

conditions, Art1-GFP localized mainly to the late Golgi and to the cytoplasm, while 

PM signal was weak but still detectable. Interestingly, when cells were stressed by 

cycloheximide, an enrichment of Art1-GFP at the PM was observed, which is 

consistent with stress-induced, Art1-mediated internalization of Can1. A striking 

redistribution of Art1-GFP to the PM was also observed upon shift to a rich medium. 

In addition, the subcellular localization of another three adaptors has been 

observed microscopically, but without any evidence for signal-specific 

relocation/recruitment. Art9-GFP appeared in cortical punctate structures and this 

localization was strictly dependent on the interaction of the adaptor with the ESCRT-

I subunit Vps23 (Herrador et al., 2010). Art3-GFP and Art6-GFP exhibited both 

diffuse cytoplasmic fluorescence and localized to multiple intracellular foci. In 

particular, a significant portion of the adaptors localized to endosomes. They also 

partially co-localized with t-SNAREs that mediate fusion of vesicles trafficking 

between early endosomes and the TGN, with a component of the ESCRT III 

complex (present at the MVBs) and with clathrin-coated vesicles (O’Donnell et al., 

2010). 



 
85 Membrane protein interactions 

1.7 Membrane protein interactions 

1.7.1 General aspects of protein-protein interactions 

Protein-protein interactions (PPIs) are physical contacts with molecular docking 

between proteins that occur in a cell or in a living organism in vivo. They are 

involved in the regulation and execution of all biochemical pathways within a cell, in 

bacteria, fungi, plants, and mammals. Because of their essential role in cellular 

regulation, impairment of PPIs is associated with a large number of human diseases, 

including cancer, neurodegenerative diseases, and various metabolic diseases. Not all 

possible interactions will occur in any cell at any time. Instead, interactions depend 

on cell type, cell cycle phase and state, developmental stage and environmental 

conditions, and they are efficiently regulated by post-translational modifications, 

presence of co-factors or presence of other binding partners. Through these 

interactions, macromolecular complexes are formed that function in the correct place 

and time (Park et al., 2008; De Las Rivas and Fontanillo, 2010).  

There are several advantages of multi-subunit complexes in comparison to a 

single large protein with multiple sites. First, it is more convenient to have one gene 

encoding a protein with different interacting partners, such as some of the eukaryotic 

RNA polymerase subunits, rather than having the gene for that subunit reiterated for 

each different polymerase. Second, translation of large proteins can cause a 

significant increase in errors; if such errors occur, they are more economically 

eliminated by preventing assembly of that subunit into the complex than by 

eliminating the whole protein. Third, multi-subunit assemblies allow synthesis at one 

locale, followed by diffusion and assembly at another; this results in both faster 

diffusion, since the monomers are smaller, and compartmentalization of activity (if 

assembly is required for activity). Fourth, homo-oligomeric proteins that have an 

advantage over monomers are easily selected in evolution, if the oligomers interact in 

an anti-parallel fashion; in this case, a single-amino-acid change that increases 

interaction potential has effects at two such sites. Finally, another advantage of 

multi-subunit complexes is the ability to use different combinations of subunits to 

alter the magnitude or type of response (Phizicky and Fields, 1995). 

Proteins bind to each other through a combination of non-covalent forces, such 

as hydrogen bonding, ionic interactions, van der Waals forces and hydrophobic 

packing. The fact that PPIs imply physical contact between proteins does not mean 
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that such contacts are static or permanent. The cell machinery undergoes continuous 

turnover and reassembly. Protein interactions are fundamentally characterized as 

stable or transient, and both types of interactions can be either strong or weak. Stable 

interactions are those associated with proteins that are purified as multi-subunit 

complexes, and the subunits of these complexes can be identical or different. 

Hemoglobin and core RNA polymerase are examples of multi-subunit interactions 

that form stable complexes. Because these complexes are much easier to study, most 

of the available experimental data (such as crystal structures) have been obtained 

from stable complexes. However, transient interactions are equally important; they 

play major roles in signal transduction, electron cascades, protein modification, 

transport, folding, trafficking and other essential cellular processes. Transient 

interactions can be strong or weak, and fast or slow. As the name implies, transient 

interactions are temporary in nature and typically require a set of conditions to 

promote them, such as post-translational modifications, conformational changes or 

localization to discrete areas of the cell (Phizicky and Fields, 1995; Szilágyi et al., 

2005; De Las Rivas and Fontanillo, 2010). 

Protein-protein interactions can have a number of different measurable effects. 

First, they can alter the kinetic properties of proteins. This can be reflected in altered 

binding of substrates, altered catalysis, or altered allosteric properties of the complex. 

Second, PPIs are a common mechanism to allow substrate channeling, by moving the 

substrate between domains or subunits, resulting in the intended final product, 

without having been released into solution. Third, they can result in the formation of 

a new binding site or they can change the specificity of a protein for its substrate, 

through the interaction with different binding partners. In addition, PPIs serve a 

regulatory role by either activating or inactivating a protein or by controlling its 

trafficking and dynamic subcellular localization. Transporter internalization due to 

ubiquitination by ubiquitin ligase and the oligomerization of some transporters prior 

to their export from the ER are both fine examples of cellular mechanisms where 

PPIs are indispensable. Finally, aberrant interactions can contribute to pathogenesis, 

as in the case of HIV interactions with the endocytic machinery (Pawson and Gish, 

2005). 
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1.7.2 Challenges of studying membrane protein interactions  

Understanding how proteins enter and leave countless associations in the cell is a 

hard task, since the biological network is enormously complex and the association 

between proteins is often extremely transitory. Things get worse when it comes to 

the analysis of interactions between membrane proteins. Because of the hydrophobic 

nature of these proteins, conventional biochemical and genetic assays are often of 

limited use.  

The two-hybrid system, for example, has limitations in respect to identifying 

partners for membrane proteins. Because the PPI that leads to the reconstitution of an 

active transcription factor must occur on the promoter of the reporter gene, the 

interacting proteins have to be located in the nucleus. However, transmembrane 

proteins tend to be insoluble and form aggregates if not present within membranes. 

Therefore, although certain membrane protein interactions have been detected 

successfully with the two-hybrid assay (Bourette et al., 1997; Hellyer et al., 1998), 

the identification of integral membrane protein interactions with cytoplasmic or other 

membrane proteins is best carried out using other methodologies. Furthermore, 

atomic-resolution structures have been determined for only a small number of 

integral membrane proteins. These proteins are difficult to crystallize for X-ray 

analysis for two main reasons; first, the hydrophobic nature of membrane proteins, 

which makes them very difficult to handle and very sensitive to aggregation, and 

second, their lack of natural abundance. 

In order to overcome these limitations, novel methodologies for the 

identification and analysis of membrane protein interactions have been introduced, as 

well as alterations to previously existing methods, including various biochemical 

techniques for examining interactions in vitro and fluorescence complementation-

based methodologies for monitoring interactions in vivo. For example, the limitation 

of the low abundance of membrane proteins is addressed by enhancing the 

expression of the protein of interest with the use of strong promoters and/or by using 

a heterologous expression system, such as E.coli, S. cerevisiae or Pichia pastoris 

(Midgett and Madden, 2007). Further adjustments include the use of mutant proteins 

with increased stability, protease deficient cell lines and GFP-tagged proteins that 

will allow rapid assessment of the expression levels by simple fluorescence 

measurements (Leung et al., 2010; Alguel et al., 2010). A major advance in terms of 

expression has been the development of cell-free expression systems for the 
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production of membrane proteins (Liguori et al., 2007; Schwarz et al., 2008). This 

type of approach involves the in vitro production of proteins from a DNA or mRNA 

template. By its very nature, the system removes the problem of cytotoxicity and also 

simplifies protein isolation as the number of contaminant proteins is markedly 

reduced. Besides that, the expressed membrane proteins are maintained in a soluble 

state in detergent micelles post-translationally, since there is no native membrane 

environment for insertion. 

In addition, taking into account the hydrophobic nature of the transmembrane 

domains of integral membrane proteins, and in order to solubilize and eventually 

purify them, a vast excess of detergents must be added. Detergents are amphiphilic 

molecules that form micelles above their critical micellar concentration. The 

detergent micelles take up the membrane proteins and cover their hydrophobic 

surface with their alkyl chains in a belt-like manner, whereas detergent polar head 

groups face the aqueous environment (Figure 1.31). Thus, detergents serve as mimics 

of lipid bilayers because of their self-assembling properties (Ostermeier and Michel, 

1997). The major bottleneck to obtain well-ordered crystals for crystallization is to 

select the appropriate detergent. Mild detergents are widely used for membrane 

protein manipulation, but many membrane proteins tend to denature and aggregate 

when solubilized with these agents, making it difficult to conduct functional studies, 

spectroscopic analysis or crystallization. Moreover, some detergents may interfere 

with protein interactions. To address that, new classes of amphiphiles with properties  

 

 

Figure 1.31. Detergent micelles take up the membrane proteins and help their solubilization by 

covering their hydrophobic surface (green), while leaving the hydrophilic parts (red) exposed (adapted 

from http://www.chemie.uni-hamburg.de/bc/betzel/Mesters_SPC1_3.pdf). 

detergent 

+ detergent 

lipids 
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tailored for membrane proteins are being developed (Privé, 2007; Chae et al., 2010). 

Cao et al. (2011) recently presented the crystal structure of ChbC from Bacillus 

cereus that transports diacetylchitobiose. ChbC was shown to be a homodimer, with 

an expansive interface formed between the amino-terminal halves of the two 

protomers. 

1.7.3 Methods for the identification of membrane protein interactions 

Multiple and diverse methods have been developed for the identification of 

membrane protein interactions and a combination of these techniques is usually 

being employed to validate and eventually characterize them. Physical methods have 

been extensively used and are considered very accurate. Crystallography can give a 

clear image of the structure of a protein complex, although the procedure of getting a 

crystal is quite laborious.  

Affinity-based methods, such as protein affinity chromatography, affinity 

blotting and coimmunoprecipitation (CoIP), take advantage of the fact that when a 

cell is lysed under non-denaturing conditions, many of the PPIs that exist within the 

intact cell are conserved. These methods can be also used for detecting PPIs that can 

be reproduced in vitro. They are considered very sensitive but, like crystallography, 

they require the putative interacting proteins to be purified and dissolved in a 

solution. In general, stable PPIs are easier to isolate by affinity-based methods, 

because the protein complex does not disassemble over time. Weak or transient 

interactions can also be identified provided they have first been stabilized by 

chemical cross-linking, which promotes their survival during the procedures of the 

analysis (Phizicky and Fields, 1995; Vitale, 2002; Sudakin, 2005). Examples of 

affinity-based methods being used for the study of membrane protein interactions 

include the oligomerization of the human serotonin transporter (SERT) and the 

human dopamine transporter (DAT), which were demonstrated by CoIP (Kilic and 

Rudnick, 2000) and a pull down assay (Torres et al., 2003), respectively. 

Other methods focus on monitoring and characterizing specific biochemical 

and physicochemical properties of a protein complex. Isothermal titration 

calorimetry is a milder technique that allows the accurate determination of the 

binding affinity between a protein and its binding partner, as well as the changes in 

enthalpy (ΔH) and entropy (ΔS). Thus in a single experiment, a complete 

thermodynamic profile of the molecular interaction can be determined (Trankle and 
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Herrmann, 2005). Native electrophoresis, the electrophoretic analysis of intact 

protein complexes under non-denaturing conditions, is a fast, low-cost, but not very 

sensitive approach for the isolation and analysis of membrane protein complexes. 

One limitation of this method is that, like other biochemical methods, it is more 

efficient for the detection of stable protein complexes and can only be used for 

dynamic interactions after in vivo cross-linking of the interacting proteins (Wittig and 

Schägger, 2009). Recently, new methods have been developed to analyze protein 

interactions at a single molecule level. Atomic force microscopy (AFM) is a 

powerful tool allowing a variety of surfaces to be imaged and characterized at the 

atomic level. Thus, information concerning the state of oligomerization (dimer, 

higher order oligomer) can be obtained. The native arrangement of rhodopsin, which 

was shown to form paracrystalline arrays of dimers in mouse rod disc membranes, 

was revealed with the use of this technology (Figure 1.32; Fotiadis et al., 2003). 

 

 

Figure 1.32. A. Schematic representation of AFM setup (retrieved from http://goo.gl/H1Ncug). AFM 

operates by rastering a sharp tip that is attached to a low spring constant cantilever across the sample. 

An extremely low force is maintained on the cantilever, thereby pushing the tip against the sample as 

it rasters. A laser beam aimed at the back of the cantilever–tip assembly reflects off the cantilever 

surface to a split photodiode, which detects the small cantilever deflections and converts them into an 

analogue image of the sample surface (Blanchard, 1996). B. Topograph obtained using AFM, showing 

the paracrystalline arrangement of rhodopsin dimers in the native mouse disc membrane. Scale bar: 

50nm (adapted from Fotiadis et al., 2003). C. Magnification of a region of the topograph in (B), 

showing rows of rhodopsin dimers, as well as individual dimers (inside dashed ellipse), presumably 

broken away from one of the rows, and occasional rhodopsin monomers (arrowheads). Scale bar: 

15nm (adapted from Fotiadis et al., 2003). 



 
91 Membrane protein interactions 

Over the past years, researchers have developed alternative yeast-based 

systems that retain the advantages of the original yeast two-hybrid system, but are 

also capable of detecting interactions involving membrane proteins. The reverse Ras 

recruitment system is based on the PPI-dependent PM localization of Ras, which is 

required for downstream signaling events of the Ras pathway in yeast that ultimately 

lead to cell growth (Broder et al., 1998). The G-protein fusion technology is another 

yeast-based interaction approach appropriate for detecting membrane protein 

interactions, in which inactivation of a G-protein signaling pathway serves as the 

reporter readout (Ehrhard et al., 2000). In the split-ubiquitin system, ubiquitin is split 

into two parts and each of them is fused to the putative interacting proteins. A 

reporter protein is also fused to one of the ubiquitin halves. Interaction of the proteins 

leads to ubiquitin reconstitution, resulting in the release of the reporter protein by the 

ubiquitin-specific proteases (Stagljar and Fields, 2002). Synthetic genetic approaches 

can also be used for high throughput screenings and can reveal a perplexing array of 

potential interacting partners for any target protein. It is now known, however, that 

this type of anonymous screening approach can yield high levels of false-positive or 

false-negative results and, therefore, interactions must also be confirmed by 

independent methods. 

A breakthrough in the methods analyzing membrane protein interactions was 

the development of fluorescence complementation-based techniques. These methods 

enabled the detection of PPIs in vivo, but also the identification of the subcellular 

localization of the protein complexes. A robust technique in this respect is 

fluorescence resonance energy transfer (FRET), a dipole-dipole coupling process, 

through which energy is transferred from a donor fluorophore (CFP) to an acceptor 

fluorophore (YFP) in a distance-dependent manner. Thus, excitation of the donor 

produces a sensitized emission from the acceptor, while simultaneously quenching 

the fluorescence of the donor (Verveer et al., 2005). FRET has been used for the 

validation of human dopamine transporter (DAT) oligomerization (Sorkina et al., 

2003). A variety of FRET detection methods exist, including donor fluorescence 

recovery after acceptor photobleaching (DFRAP) and fluorescence life-time 

measurements (FLIMs), whereas a variation using a luminescent donor protein has 

also been developed (bioluminescence resonance energy transfer–BRET). Moreover, 

bimolecular fluorescence complementation (BiFC) has proved very efficient and 
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precise, provided the appropriate controls are used, in order to eliminate the chance 

for false-positive results (see later). 

For organisms for which powerful genetic analysis methods exist, classical 

genetic approaches can be used to indirectly access interactions. For example, 

identification of extragenic suppressors that restore the activity of a mutant gene 

often reveals mutations in genes whose products physically interact with the protein 

containing the original defect. Suppressors may either restore the original contact or 

may create a novel interaction compensating for the primary mutation in an indirect 

way. Synthetic lethal screens yield mutations that, in combination with another pre-

existing non-lethal mutation, result in the inability of the organism to grow; this 

phenotype is commonly due to alterations in interacting proteins. Overproduction of 

certain proteins can lead to the suppression of mutations in interacting proteins. In 

other cases, overproduction disrupts a cellular process by altering the balance of the 

different components of a complex structure, or the overproduced protein is non-

functional and acts in a dominant-negative manner. The existence of such dominant-

negative phenotypes can lead not only to the detection of an oligomeric interaction, 

but also to the determination of the interaction domain of a protein (Guarente, 1993; 

Phizicky and Fields, 1995). Genetic approaches have been fruitful in several cases, 

such as the DAT transporter (Torres et al., 2003).  

Computational and conservation analyses are useful tools for the prediction of 

membrane protein interactions and/or their interaction interfaces. Close homologues 

almost always interact in the same way and PPIs place certain evolutionary 

constraints on protein sequence and structural divergence. Many interactions are 

conserved (interologs) even between remotely related species, such as yeast and 

worm. Data related to protein interactions are stored in protein-interaction or 

domain-interaction databases and can be used for the prediction of putative partners 

or interaction domains of a given protein of interest. Also, interaction networks are 

constructed and the interaction maps obtained for one species can be used to predict 

interaction networks in other species, to identify functions of unknown proteins, and 

to get insight into the evolution of protein interaction patterns (Shoemaker and 

Panchenko, 2007). Therefore, computational and conservation analyses, combined 

with experimental data, allow us to obtain a more complete picture of the membrane 

protein interactome. 
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Among the aforementioned methods for the identification and analysis of 

membrane protein interactions, affinity chromatography and BiFC were extensively 

used in this study and are described below in detail. 

Column affinity chromatography 

Affinity chromatography is a standard method of separating biochemical mixtures 

passing through a chromatographic column, based on a highly specific interaction. 

The stationary phase of the column is typically a gel matrix, often of sepharose resin. 

First, an already purified protein is covalently coupled to the resin, while passing 

through the column. The protein extract of potentially interacting proteins is 

subsequently loaded to the column. Most proteins pass through the column or are 

readily washed off under low-salt conditions; proteins that are retained can then be 

eluted by high-salt solutions, cofactors, chaotropic solvents, or sodium dodecyl 

sulfate (SDS). If the extract is labelled in vivo before the experiment, labelled 

proteins can be detected with high sensitivity, while unlabeled polypeptides derived 

from the covalently bound protein can be ignored (Phizicky and Fields, 1995; 

Sudakin, 2005). 

A variation of this method that was used in this study is the immobilized metal 

ion affinity chromatography. This technique is based on the specific covalent bond of 

histidine to metals. It works by allowing proteins with an affinity for metal ions to be 

retained in a column containing immobilized metal ions, such as cobalt, nickel or 

copper. Since, many naturally occurring proteins do not have an affinity for metal 

ions, a poly-histidine tag can be introduced into the relevant gene. Therefore, when a 

crude protein extract is loaded on the column, only the His-tagged proteins along 

with their interacting partners will be retained on the matrix. His-tagged proteins are 

then eluted by adding a competitive molecule, such as imidazole, and the interacting 

proteins that were pulled down together with the former are subsequently identified. 

This procedure is also referred to as a pull-down assay. 

There are four distinct advantages of protein affinity chromatography as a 

technique for detecting PPIs. First, and most important, protein affinity 

chromatography is very sensitive. With appropriate use, it can detect interactions 

within range of the weakest interaction likely to be physiologically relevant. Second, 

this technique tests all proteins in an extract equally; thus, extract proteins that are 

detected have successfully competed with the rest of the population of proteins. 
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Third, it is easy to examine both the domains of a protein and the critical residues 

within them that are responsible for a specific interaction, by preparing mutant 

derivatives. Fourth, interactions that depend on a multi-subunit tethered protein can 

be detected, unlike the case with protein affinity blotting. One potential problem 

derives from the very sensitivity of the technique. Since it detects interactions that 

are so weak, independent criteria must be used to establish that the interaction is 

physiologically relevant. Detection of a false-positive signal can arise for a number 

of reasons. For example, a protein of the extract may bind to the matrix non-

specifically; for this reason, it is desirable to make a control experiment, with a 

protein extract devoid of a His-tagged protein. Also, the proteins may interact with 

high specificity even though they never encounter one another in the cell. The most 

famous example of this type is the high affinity of actin for DNase I (Phizicky and 

Fields, 1995). 

Bimolecular fluorescence complementation  

BiFC is a standard technique that enables direct visualization of protein interactions 

in living cells. It is based on the generation of fluorescent signal from two non-

fluorescent fragments of a fluorescent protein (FP; Figure 1.33). Yellow fluorescent 

protein (YFP) is widely used for this purpose (also called split-YFP assay), but other 

variations exist. The two YFP halves are genetically fused to the proteins under study 

and if an interaction between these proteins occurs, the YFP protein is reconstituted 

and emits fluorescence. 

 

 

Figure 1.33. Bimolecular fluorescence complementation (BiFC). The fluorescent protein YFP is split 

into two parts, YFPN and YFPC (red and blue interlocking shapes). Two potentially interacting 

proteins (cylinders) are fused to YFPN and YFPC, respectively. The association of protein A and B 

brings YFPN and YFPC into proximity, allowing the refolding of a functional YFP. The fluorescence 

intensity of the refolded YFP reflects the interaction of A and B (adapted from Haider et al., 2011). 

One of the big advantages of this method is that it allows the detection of PPIs 

in vivo and even the visualization of the subcellular localization of the protein 

A A B B 
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complex under different conditions, without the need for staining. BiFC can be 

considered a sensitive technique since the complementation process produces a new 

fluorescent signal, whereas resonance energy transfer variations produce changes in 

fluorescence that already exists. Additionally, there is the possibility to generate 

complemented FPs by the association of fragments coming from different FPs. These 

new complemented FPs possess distinct spectral properties when compared to the 

native ones. This principle, called multi-color BiFC, can in theory allow the 

stoichiometry calculation of a multi-protein interaction (Kerppola, 2006; Ciruela, 

2008). On the other hand, some limitations of this method are the inherent 

irreversible association of the fluorescent-protein fragments that has been observed 

in several cases and the intrinsic ability of the fluorescent-protein halves to 

spontaneously associate under certain circumstances (Magliery et al., 2005; Ciruela, 

2008).  

In spite of its limitations, there is no doubt that this straightforward 

fluorescence-based method is a powerful tool for the study of PPIs in living cells. It 

has already been used for the visualization of interactions between many different 

proteins in a wide variety of cell types and organisms. One example is the use of 

split-YFP in live cells for the demonstration of the homodimerization of zinc 

transporters (Lasry et al., 2014). Split-YFP has also been used for the detection of 

interactions between two proteins involved in the initiation and maintenance of 

polarized growth in A. nidulans (Takeshita et al., 2008). 

1.7.4 Understanding the biological role of membrane protein interactions 

The verification of its existence is the first step on the road to understanding the 

biological significance of an interaction. Further questions of interest remain to be 

answered, such as where, how, under which conditions do these proteins interact in 

vivo and what are the functional implications of these interactions. In particular, it is 

well established that many proteins migrate between different cellular compartments, 

in response to internal or external stimuli (e.g. changes in cellular environment). 

Therefore, it is important to understand how the pattern of interactions changes in 

different physiological conditions. In addition, the subcellular localization where the 

interaction occurs is of great significance; usually, it is determined with the use of 

fluorescence complementation-based analyses and/or cell fractionation biochemical 

assays (Pugacheva and Golemis, 2005).  



 
General Introduction 96 

Another issue to be addressed is the identification of the specific binding 

domain(s) on each protein that mediate the interaction. These domains can be small 

binding clefts or large surfaces and can be just a few peptides long or span hundreds 

of amino acids; the size of the binding domain influences the strength of the binding. 

To establish the sequences of the interacting partners that contribute energy to the 

interaction, structure-function analyses are carried out by assessing the interactions 

between truncated and mutated forms of the proteins, guided by predictions of 

critical domains that sequence analysis has revealed. These studies can also reveal 

the possible effect of the interaction on the activity of each partner, as well as the role 

of the interaction for the development and the function of the cell or the organism 

(Pawson and Gish, 2005; Pugacheva and Golemis, 2005). 

PPIs within the membrane milieu are mainly mediated through transmembrane 

domains. Non-covalent association of transmembrane domains is mediated by 

several motifs including: (i) a GXXXG motif, which is the most common motif for 

interaction of two transmembrane helices and was first found in the glycophorin A 

transmembrane domain (Lemmon et al., 1994; Russ and Engelman, 2000); (ii) a 

polar-XX-polar motif, in which polar amino acids include Ser, Thr, Glu, Gln, Asp, 

and Asn, through the formation of hydrogen bonds; (iii) an aromatic-XX-aromatic 

motif, in which Trp gives the best dimerization; (iv) a Gly zipper (GXXXGXXXG) 

motif, found as the primary interaction interface for the homodimers of myelin 

protein zero, which is the major integral membrane protein of peripheral nerve 

myelin in higher vertebrates (Plotkowski et al., 2007); (v) Ser/Thr rich sequences, 

which were initially identified by a randomized library of transmembrane interfaces 

(Dawson et al., 2002) and  (vi) a Leu zipper, an interaction motif in which there is a 

cyclical occurrence of leucine residues every seventh residue over short stretches of a 

protein in α-helix. These leucine residues project into an adjacent leucine zipper 

repeat by interdigitating into the adjacent helix, forming a stable coiled-coil. Because 

of the tight molecular packing, leucine zippers provide stable binding between 

transmembrane helices (Oates et al., 2010). In addition, the leucine zipper may have 

functional roles, such as to transmit signals by altering binding properties (Phizicky 

and Fields, 1995; Fink et al., 2012). 
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1.7.5 Oligomerization of transmembrane transporters 

Accumulating evidence suggests that transporter oligomerization constitutes an 

evolutionary conserved mechanism for the fine regulation of transporter function 

and/or intracellular trafficking. Many transport proteins are now considered to exist 

and function as oligomers. In addition to those transport complexes made up of 

subunits with four or six transmembrane domains (Takahashi et al., 1985; Saier, 

1994; Yerushalmi et al., 1996; Schroers et al., 1998), larger proteins, such as 

glutamate (Haugeto et al., 1996) and glucose transporters (Hebert and Carruthers, 

1991), as well as most of the studied members of the Neurotransmitter:Sodium 

Symporter (NSS) Family have been inferred to be oligomeric (Korkhov et al., 2004). 

Examples of the latter are the serotonin transporter (SERT; Kilic and Rudnick, 2000; 

Schmid et al., 2001), the γ-aminobutyric acid (GABA) transporter 1 (GAT-1; 

Schmid et al., 2001; Korkhov et al., 2004), the norepinephrine transporter (NET; 

Kocabas et al., 2003) and the dopamine transporter (DAT; Milner et al., 1994; 

Berger et al., 1994; Hastrup et al., 2001; Torres et al., 2003; Sorkina et al., 2003; 

Chen and Reith, 2008; Li et al., 2010). Among them, DAT is the most extensively 

studied in respect to its oligomerization. 

Early radiation inactivation studies indicated the existence of DAT assemblies 

containing at least two protomers (Milner et al., 1994; Berger et al., 1994). More 

direct evidence for a quaternary organization of DAT has been obtained with cross- 

linking techniques (Hastrup et al., 2001; Hastrup et al., 2003; Chen and Reith, 2008), 

co-purification experiments with differentially tagged DATs (Torres et al., 2003; 

Chen and Reith, 2008), as well as FRET microscopy and CoIP (Sorkina et al., 2003). 

In particular, it has been proposed that DAT forms dimers of dimers with two distinct 

symmetrical interfaces in transmembrane domains 4 and 6 (Hastrup et al., 2001; 

Hastrup et al., 2003), although evidence from other studies points to TMS2 (Torres 

et al., 2003). On the other hand, SERT was shown to appear in a variety of 

oligomerization states, revealing molecular associations larger than dimers and 

demonstrating the coexistence of different degrees of oligomerization in a single cell. 

Notably, the oligomeric state of SERT complexes is stably determined before being 

integrated into the PM (Anderluh et al., 2014). 

DAT and GAT-1 form oligomers already in the ER (Scholze et al., 2002; 

Sorkina et al., 2003). This is a prerequisite for newly formed transporters to pass the 

stringent quality control mechanisms of the ER, while this quaternary structure is 
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also the preferred state for transporters in the PM. Only properly assembled 

transporters are able to recruit the coat proteins needed for ER-to-Golgi trafficking 

and this is probably because oligomerization results either in the complementation of 

an ER export signal or in the masking of an ER retention signal (Farhan et al., 2006). 

As expected, mutations that disrupt oligomer formation result in ER retention of 

transporters (Scholze et al., 2002; Torres et al., 2003). In addition, experiments with 

dominant-negative mutants of DAT revealed a reduction in DAT activity as a result 

of the formation of non-functional oligomeric complexes at the cell surface (Torres 

et al., 2003). 

In a FRET study, exposure to phorbol 12-myristate 13-acetate (PMA) or 

amphetamine caused DAT to accumulate in vesicular structures. Positive FRET 

signals were detected within these vesicular structures, suggesting that endocytosed 

DAT exists in oligomerized form. The vesicular structures carrying positive FRET 

signals were limited in amphetamine-treated cells compared with those in PMA-

treated cells, suggesting a differential role of oligomerization in PMA- and 

amphetamine-induced DAT endocytosis (Sorkina et al., 2003). In contrast, in two 

recent reports dopamine and amphetamine appeared to dissociate DAT oligomers, 

shifting the distribution of surface DAT towards a smaller ratio of oligomers to 

monomers, as seen with both CoIP and cross-linking experiments (Chen and Reith, 

2008; Li et al., 2010). 

1.8 Principal aims 

The main target of this dissertation is to study the regulatory mechanisms of 

intracellular trafficking of purine transmembrane eukaryotic transporters. Gaining 

insight into the regulation of expression of fungal nucleobase transporters and 

understanding the conditions of maximal expression in the PM, apart from satisfying 

basic scientific curiosity, might also provide ideas and contribute to the development 

of targeted pharmacological therapies against pathogenic fungi. In addition, it was 

recently demonstrated in a bacterial species that an endocytosis-like process occurs 

(Lonhienne et al., 2010). Given the homology between fungal and bacterial 

nucleobase transporters, knowledge obtained from fungal proteins could possibly 

enable the use of existing or novel purine analogues also as antibacterial drugs.  

A. nidulans, which grows exclusively by apical extension, provides an 

excellent system for the study of intracellular trafficking. One of the advantages of 
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using this organism for studying endocytic mechanisms is that A. nidulans early 

endosomes, unlike those of S. cerevisiae, display characteristic long-distance 

bidirectional motility and thus are readily distinguished from static late endosomes 

and Golgi cisternae (Taheri-Talesh et al., 2008; Abenza et al., 2009; Gournas et al., 

2010). Particularly for the study of purine transport and metabolism, A. nidulans 

provides unique advantages related to growth phenotypes, genetic screens and 

already available strains. Moreover, the major uric acid-xanthine symporter of A. 

nidulans, UapA, has been extensively studied at the molecular, cellular and 

biochemical level (see 1.5.6) and a plethora of characterized mutations exist. These, 

along with other advantages analysed herein (see 1.2.2), prompted us to select A. 

nidulans as a model organism for our study and UapA as the model cargo. 

The experimental work of this dissertation consists of three independent parts, 

the prevalent aim of which was to elucidate the mechanisms regulating the endocytic 

and exocytic pathways of membrane purine transporters. The aims of each individual 

part are analyzed in the corresponding chapters of this manuscript (sections 3.2, 4.2 

and 5.2). Briefly, the first part (Chapter 3) focuses on the phenomenon of the 

appearance of UapA in cortical patches upon hypertonic treatment and the effect of 

hypertonicity on fungal physiology and UapA endocytic internalization. The second 

part (Chapter 4) aims at the elucidation of the mechanisms regulating UapA 

endocytosis and vacuolar degradation and specifically on the identification of the 

ubiquitin ligase adaptor that is responsible for UapA ubiquitination and turnover, and 

the unraveling of its mode of function. The last part (Chapter 5) is dedicated to the 

demonstration of UapA homo-oligomerization and the study of its possible roles in 

the sorting to the PM and the endocytosis of the transporter. 
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2 Materials & Methods 

2.1 Strains, culture media, growth and storage conditions 

2.1.1 Strains used in this study 

Table 2.1. List of strains used in chapter 3 

Strain Genotype References 

Aspergillus nidulans  

uapA-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 

(Pantazopoulou et al., 
2007) 

alcAp-uapA-GFP uapA∆ uapC∆:: pyrG Af azgA∆ pabaA1 (Gournas et al., 2010) 

uapA-mrfp azgA-gfp uapA∆ uapC∆:: pyrG Af azgA∆ pabaA1 this study 

azgA-gfp uapA∆ uapC∆:: pyrG Af azgA∆ pabaA1 
(Pantazopoulou et al., 
2007) 

prn397::prnB-gfp-trpCC-term prnC pabaA1 argB2 yA2 (Tavoularis et al., 2001) 

furD-GFP uapA∆ uapC∆:: pyrG Af azgA∆ furD∆::riboB cntA∆:riboB nkuA∆::argB pantoB100 pantoB 
Borbolis and Diallinas, 

unpublished 

argB2::argBBglII gpdAp-gfp-(PHdomainPLC∆1)2 pabaA1 yA2 
(Pantazopoulou and 
Peñalva, 2009) 

ssoA::[ssoAp-gfp-ssoA]-pyrG
Af

 nkuA∆::bar pyroA4  (Taheri-Talesh et al., 2008) 

slaB-gfp-pyrG Af
 argB2 nkuA∆::argB pyroA4 (Araujo-Bazán et al., 2008) 

slaB-gfp-pyrG
Af

 uapA-mrfp nkuA∆::argB pabaA1 this study 

abpA-mrfp-pyrG
 Af

 pabaA1 yA2 (Araujo-Bazán et al., 2008) 

alcAp-K572R-gfp uapA∆ uapC∆:: pyrG Af azgA∆ pabaA1 (Gournas et al., 2010) 

yA:: pyro
Af

 tpmAp-gfp-tpmA pyrG
Af -mcherry-synA nku∆::argB nicA2 fwA1 (Taheri-Talesh et al., 2008) 

Saccharomyces cerevisiae 

BY4742 MATa his3∆1 leu2∆0 lys∆0 ura3∆0 / URA3 GAL-FUR4-GFP 
(Dupré and Haguenauer-
Tsapis, 2003) 

MATa ura3-52 JEN1-GFP (Paiva et al., 2009) 
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Table 2.2. List of strains used in chapter 4 

Strain Genotype References 

pabaA1 wild-type reference strain 

TNO2A7: nkuA∆::argB pyrG89 pyroA4 riboB2 (Nayak et al., 2006) 

uapA∆ uapC∆::pyrG
 Af azgA∆ argB2 pabaA1 (Pantazopoulou et al., 2007) 

uapA∆::uapA-gfp uapC∆:: pyrG
 Af azgA∆ pabaA1 riboB2 this study 

alcAp-uapA-gfp uapA∆ uapC∆:: pyrG
 Af pabaA1 (Gournas et al., 2010) 

alcAp-uapA-gfp uapA∆ uapC∆:: pyrG
 Af

 pabaA1 riboB2 this study 

prnB-gfp argB2 pabaA1 yA2 (Tavoularis et al., 2001) 

agtA-gfp:: pyrG
 Af pyroA4 (Apostolaki et al., 2009) 

azgA-gfp uapA∆ uapC∆:: pyrG
 Af azgA∆ pabaA1 this study 

artA∆:: riboB
Af

 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

artΒ∆:: pyrG
 Af

 nkuA∆::argB riboB2 pyroA4 pyrG89 this study 

artC∆:: riboB
Af nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

artD∆:: riboB
Af nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

artE∆:: riboB
Af

 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

artF∆:: riboB
Af

 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

artG∆:: riboB
Af

 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

apyA∆:: riboB
Af

 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

creD34 riboB2 (Boase and Kelly, 2004) 

creD∆:: pyrG
 Af

 nkuA∆::argB pyrG89 pyroA4 this study 

palF∆:: pyroA
Af

 inoB2 (pyroA4?) 
Munera-Huertas T., Tilburn 
J., Arst, H., unpublished 

sagA∆:: riboB
Af

 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

sagA∆:: riboB
Af

 uapA∆ uapC∆:: pyrG
 Af nkuA∆::argB (pyrG89?) (riboB2?) pabaA1 this study 

prnB∆::prnB-gfp artA∆:: riboB
Af

 nkuA∆::argB pabaA1 (pyrG89?) (riboB2?) (argB2?) yA2 this study 

agtA∆::agtA-gfp:: pyrG
 Af artA∆:: riboB

Af
 (pyrG89?) (riboB2?) pabaA1 yA2 this study 

azgA-gfp uapA∆ uapC∆:: pyrG
 Af azgA∆ pabaA1 this study 

azgA-gfp artA∆:: riboB
Af uapC∆:: pyrG

 Af azgA∆ (pyrG89?) (riboB2?) pabaA1 this study 

azgA-gfp artA∆:: riboB
Af

 uapA∆ uapC∆:: pyrG
 Af azgA∆ (pyrG89?) (riboB2?) pabaA1 this study 

azgA
uapA-tail

-gfp::argB argB2 uapA∆ uapC∆:: pyrG
 Af azgA∆ pabaA1 this study 

azgA
uapA-tail

-gfp::argB artA∆:: riboB
Af (pyrG89?) (riboB2?) (argB2?) pabaA1 this study 

uapA∆::uapA-gfp artA∆:: riboB
Af

 uapC∆:: pyrG
 Af

 nkuA∆::argB (pyrG89?) (riboB2?) pabaA1 this study 

uapA∆::uapA-gfp artΒ∆:: pyrG
Af

 uapC∆:: pyrG
 Af nkuA∆::argB (pyrG89?) pabaA1 this study 

uapA∆::uapA-gfp artC∆:: riboB
Af

 uapC∆:: pyrG
 Af

 (pyrG89?) (riboB2?) pabaA1 this study 

uapA∆::uapA-gfp artD∆:: riboB
Af

 uapC∆:: pyrG
 Af

 (pyrG89?) (riboB2?) nkuA∆ this study 

uapA∆::uapA-gfp artE∆:: riboB
Af

 uapC∆:: pyrG
 Af

 nkuA∆::argB (pyrG89?) (riboB2?) nkuA∆ this study 

uapA∆::uapA-gfp artF∆:: riboB
Af

 uapC∆:: pyrG
 Af

 (pyrG89?) (riboB2?) pabaA1  nkuA∆ this study 

uapA∆::uapA-gfp artG∆:: riboB
Af

 uapC∆:: pyrG
 Af

 nkuA∆::argB (pyrG89?) (riboB2?) nkuA∆ this study 

uapA∆::uapA-gfp apyA∆:: riboB
Af uapC∆:: pyrG

 Af
 (pyrG89?) (riboB2?) pabaA1 this study 

uapA∆::uapA-gfp creD34 uapC∆:: pyrG
 Af

 riboB2 pabaA1 this study 

uapA∆::uapA-gfp palF∆:: pyroA
Af

 uapC∆:: pyrG
 Af

 (pyroA4?) this study 

alcAp-uapA-gfp artA∆:: riboB
Af

 uapA∆ uapC∆:: pyrG
 Af nkuA∆::argB (pyrG89?) (riboB2?) pabaA1 this study 

alcAp-uapA-gfp sagA∆:: riboB
Af

 uapA∆ uapC∆:: pyrG Af
 nkuA∆::argB (pyrG89?) (riboB2?) pabaA1 this study 

sagA∆::gpdAp
mini

:sagA-gfp:: pyrG Af
 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

sagA∆::sagA-gfp:: pyrG Af nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

alcAp-uapA-gfp nkuA∆::argB ArtA∆:: riboB
Af

 nkuA∆::argB pyrG89 pyroA4 riboB2 this study 

alcAp-uapA-gfp nkuA∆::argB ArtA∆::ArtA-P435A/V436A/Y437A::pyrG89 nkuA∆::argB pyroA4 riboB2 this study 

alcAp-uapA-gfp nkuA∆::argB ArtA∆::ArtA-P445A/G446A/Y447A::pyrG89 nkuA∆::argB  pyroA4 riboB2 this study 

alcAp-uapA-gfp nkuA∆::argB ArtA∆::ArtA-P435A/V436A/Y437A/P445A/G446A/Y447A::pyrG89 nkuA∆::argB 

pyroA4 riboB2 
this study 

alcAp-uapA-gfp nkuA∆::argB ArtA∆::ArtA-K343R::pyrG89 nkuA∆::argB pyroA4 riboB2 this study 

uapA-K572R-gfp::argB uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 (Gournas et al., 2010) 

uapA-∆547-571-gfp uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 this study 
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Strain Genotype References 

uapA-∆564-571-gfp uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 this study 

uapA-E545A/V546A/E547A-gfp uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 this study 

alcAp-uapA-E545A/V546A/E547A-gfp uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 this study 

uapA-artAPY-gfp uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 this study 

uapA-artA-P435A/V436A/Y437A/P445A/G446A/Y447A-gfp uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 this study 

uapA-artAPY-gfp hulA::pyr4-hulA∆C2 uapA∆ azgA∆ uapC∆:: pyrG Af argB2 pyroA4 this study 

hulA::pyr4-hulA∆C2 uapA∆ uapC∆:: pyrG Af azgA∆ pyroA4 argB2 (Gournas et al., 2010) 

Table 2.3. List of strains used in chapter 5 

Strain Genotype References 

pabaA1 wild-type reference strain 

uapA-K572R-gfp::argB uapA∆ azgA∆ uapC∆:: pyrG Af pabaA1 (Gournas et al., 2010) 

uapA100 pabaA1 pyroA4 (Ravagnani et al., 1997) 

uapA∆ azgA∆ uapC∆:: pyrG Af
 pantoB100 

C. Gournas & G. Diallinas, 
unpublished 

uapA100 uapC∆? azgA∆ pyroA4 this study 

uapA-K572R-gfp uapA100 uapC∆? azgA∆ this study 

alcAp-uapA-His uapA∆ uapC∆:: pyrG Af azgA∆ pabaA1 (Lemuh et al., 2009) 

alcAp-uapA-GFP uapA∆ uapC∆:: pyrG Af azgA∆ pabaA1 (Gournas et al., 2010) 

alcAp-uapA-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ pantoB100 this study 

alcAp-uapA-His alcAp-uapA-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆  this study 

uapA∆ uapC∆:: pyrG Af
 azgA∆ argB2 pabaA1 (Pantazopoulou et al., 2007) 

uapA-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 this study 

uapA-yfpC uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 this study 

uapA-yfpC uapA-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 this study 

uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 (Pantazopoulou et al., 2007) 

alcAp-uapA-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 this study 

alcAp-uapA-yfpC alcA-uapA-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

uapA-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 (Pantazopoulou et al., 2007) 

uapA∆::uapA-GFP uapC∆:: pyrG Af
 pabaA1 pantoB100 

C. Gournas & G. Diallinas 
unpublished 

uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 argB2 riboB2 (Pantazopoulou et al., 2007) 

uapA∆::uapA-GFP uapC∆:: pyrG Af
 azgA∆ pabaA1 argB2 pantoB100 this study 

uapA∆::uapA-GFP alcAp-uapAN409D uapC∆:: pyrG Af
 azgA∆ pabaA1 pantoB100 this study 

uapA-D44A/Y45A/D46A/Y47A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 

Amillis & Diallinas, 

unpublished 

alcAp-uapA-D44A/Y45A/D46A/Y47A-yfpC alcA-uapA-D44A/Y45A/D46A/Y47A-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-D44A/Y45A/D46A/Y47A-yfpC alcA-uapA-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

uapA-I74D-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 (Amillis et al., 2011) 

alcAp-uapA-I74D-yfpC alcA-uapA-I74D-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-I74D-yfpC alcA-uapA-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

uapA-TMS14∆-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 (Vlanti et al., 2006) 

alcAp-uapA-TMS14∆-yfpC alcA-uapA-I74D-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-TMS14∆-yfpC alcA-uapA-yfpN uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-D44A/Y45A/D46A/Y47A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-D44A/Y45A/D46A/Y47A-His alcAp-uapA-D44A/Y45A/D46A/Y47A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-His alcAp-uapA-D44A/Y45A/D46A/Y47A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

uapA-G301A/G305A/G313A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ pabaA1 

V. Yalelis, S. Amillis & G. 

Diallinas, unpublished 

alcAp-uapA-G301A/G305A/G313A-His alcAp-uapA-G301A/G305A/G313A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-His alcAp-uapA-G301A/G305A/G313A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-D44A/Y45A/D46A/Y47A-His alcAp-uapA-G301A/G305A/G313A-GFP uapA∆ uapC∆:: pyrG Af
 azgA∆ this study 

alcAp-uapA-G301A/G305A/G313A-His alcAp-uapA-D44A/Y45A/D46A/Y47A-GFP uapA∆ uapC∆:: pyrG Af azgA∆ this study 
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2.1.2 Culture media and growth conditions 

Two different types of media were used for the growth of fungal cultures, the 

complete medium and the minimal medium. The complete medium was enriched to 

contain all the elements required for fungal growth, thus enabling all strains to grow 

normally, independently of their auxotrophies. Minimal medium contained the 

minimum nutrients possible for fungal growth. As a result, it was always combined 

with the appropriate nutritional supplements, according to the auxotrophic 

requirements of each strain, and a nitrogen source, according to the desired 

conditions. Supplements and nitrogen sources were used at 1:100 or 1:10 dilutions of 

the stock solution. Growth media were used in liquid or solid form, according to the 

purpose of the culture. For a solid growth medium, 1-2% agar was added to the 

liquid medium, before autoclaving. Media and chemical reagents were obtained from 

Sigma-Aldrich, BD, Oxoid or AppliChem. 

Aspergillus nidulans 

Table 2.4. Culture media for the growth of A. nidulans 

 
Complete medium  

(CM) 

Minimal medium 

(MM) 

Sucrose medium 

(SM) 

Salt solution 20 mL 20 mL 20 mL 

Vitamin solution 10 mL −  

D-Glucose 10 g 10 g 10 g 

Casamino acids 1 g − − 

Bactopeptone 2 g − − 

Yeast extract 1 g − − 

Sucrose − − 342,4 g 

H2Odist up to 1 L up to 1 L up to 1 L 

Table 2.5. Solutions used in A. nidulans culture media 

Salt solution Vitamin solution Trace Elements in 1 L H2O 

KCl 26 g p-aminobenzoic acid 20 mg Να2Β4Ο7 x 10 H20 40 mg 

MgSO4 7H2O 26 g D-pantothenic acid 50 mg CuSO4 x 5 H20 400 mg 

KH2PO4 76 g pyridoxine 50 mg FeO4P x 4 H20 714 mg 

Trace elements 50 mL riboflavin 50 mg MnSO4 x 1 H20 728 mg 

Chloroform 2 mL biotine 1 mg Na2MoO4 x 2 H20 800 mg 

H2Odist up to 1 L H2Odist up to 1 L ZnSO4 x 7 H20 8 mg 
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The pH was adjusted to 6.8 with the use of NaOH 3N. Nitrogen sources were 

used at the final concentrations: urea 5 mM, NaNO3 10 mM, Ammonium L-(+)-

tartrate 10 mM. Purines were used at 0.1 mg/mL. Amino acids were used at 5 mM. 

8-Aza-guanine was used at 0.2-0.4 mM in the presence of NaNO3 as sole nitrogen 

source. Allopurinol was used at 1-3 µΜ with hypoxanthine as sole nitrogen source. 

Acryflavine was used in CM at 0.0005-0.001% (w/v). Neomycin sulfate was used at 

2 mg/mL. Uracil and uridine were used at 5 mM and 10 mM respectively. 

A. nidulans cultures were inoculated with conidiospores harvested from 

sporulating culture plates with the use of sterile toothpicks or an inoculation loop. 

Solid cultures were incubated in 37°C or 25°C for 2-5 days and liquid cultures were 

incubated at 37°C or 25°C, 150 rpm. The duration of the incubation varied with the 

purpose of the culture. Derepression of proteins expressed under the control of the 

strong ethanol-inducible, glucose-repressible alcohol dehydrogenase (alcA) promoter 

was achieved with the use of 0.1% (w/v) fructose as a sole carbon source, while their 

induction was achieved by addition of 0.4% (v/v) ethanol in derepressing media (see 

also 2.3.1 and 2.9.1). 

Saccharomyces cerevisiae 

Table 2.6. Culture media for the growth of S. cerevisiae 

 
Complete medium 

(YPG) 

Minimal media 

(MM) 

D-Glucose 2 g 2 g 

Bactopeptone 2 g − 

Yeast extract 1 g − 

H2Odist up to 100 mL up to 100 mL 

Table 2.7. Stock solutions of the supplements used for S. cerevisiae mutant strains. 

Supplement / 

Nitrogen source 

Stock solution 

(in 50mL H2O) 
Dilution used 

YNB w/o amino acids & NH4
+
 0.85 g 1:10 

YNB w/o amino acids 3.35 g 1:10 

Histidine 100 mg 1:100 

Leucine 300 mg 1:100 

Lysine 250 mg 1:100 

Uracil 112 mg 1:100 

Urea  1.5 g 1:100 
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Yeast minimal media were supplemented with yeast nitrogen base (YNB). 

Nitrogen source was either included in YNB (NH4
+
) or added separately (urea).Solid 

cultures were usually inoculated with cells harvested from culture plates with the use 

of an inoculation loop. The cells were streaked on the appropriate solid medium and 

the cultures were incubated for 2-3 days at 30°C. In the case of liquid cultures, an 

aliquot of saturated liquid culture or cells harvested from a single colony of a culture 

plate were mixed in a test tube with 5 mL of the appropriate liquid medium. Liquid 

cultures were incubated at 30°C, 220 rpm. The duration of the incubation varied with 

the purpose of the culture. 

Escherichia coli 

For the growth of bacterial cultures (strain DH5a) Luria-Bertani (LB) medium (Bacto 

Tryptone 10 g, NaCl 10 g, BactoYeast Extract 5 g for 1L) was used. The pH was 

adjusted to 7.0 with the use of NaOH 3N. For the selection of transformed colonies, 

ampicillin was added in 100 µg/mL concentration. Bacterial cultures were incubated 

overnight at 37 °C. Liquid cultures were additionally agitated at 200 rpm. 

2.1.3 Storage conditions 

Agar plates were stored at 4°C, where fungi could be preserved, without a serious 

loss of viability, for some weeks. For long-term storage, glycerol stocks were 

prepared. A. nidulans conidiospores from a fresh CM plate were harvested in 500µL 

PBS buffer (NaCl 8 g, KCl 0,2 g, Na2PO4 1,44 g, KH2PO4 0,24 g, pH 7.4 with 1 N 

HCl) in a sterile eppendorf tube and 500 µl of glycerol was added. For S. cerevisiae, 

an aliquot (950 µL) of a fresh liquid culture was transferred in sterile eppendorf tubes 

and mixed with 400 µL of 100% glycerol. For E.coli, an aliquot (500 µL) of a fresh 

liquid culture was transferred in sterile eppendorf tubes and mixed with 500 µL of 

100% glycerol. In all cases, the eppendorf tubes were mixed well and stored for long 

periods at -80°C. 

For reviving stored cultures, an aliquot of the stock was streaked on appropriate 

media. A single colony was selected and was analyzed with growth tests (see 2.2), to 

verify that it carried the auxotrophies described in the genotype and no 

contamination had occurred. 
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2.2 Genetic crosses and progeny analysis 

Meiotic crossing is used for the construction of multiple mutant strains for genetic 

analysis (Todd et al., 2007). A. nidulans is homothallic, meaning that it is self-fertile, 

but crosses can be initiated by hyphal fusions between homokaryons with genetically 

different nuclei. The resulting heterokaryons are not stable, but can be forced to 

maintain a balanced ratio of the component nuclei by including complementing 

auxotrophic mutations in the parental nuclei and forcing growth without the 

corresponding supplements (Casselton and Zolan, 2002). The result of a karyogamic 

event is the formation of cleistothecia. In order to obtain strains on a desired genetic 

background, the following experimental procedure was performed. 

2.2.1 Preparation of a genetic cross 

Petri dishes containing minimal media with the appropriate supplements were 

inoculated with spores from two different parental strains, in pairs, with a distance of 

0.5, 1.5 and 2.5 cm between them. The cultures were incubated for 2 days at 37°C. 

Small parts of media in the contact area of the mycelia of the two strains were 

removed with a sterile scalpel and transferred in small Petri dishes, containing 

minimal media with nitrate, as nitrogen source, and only the supplements required 

from both parental strains. Therefore, only heterokaryons were able to produce the 

missing supplements and grow on the plates. The plates were incubated for 1-2 days 

at 37°C and were subsequently sealed with adhesive tape and incubated for further 

14-20 days at 37°C. After that time, cleistothecia usually appeared. 

2.2.2 Selection of cleistothecia 

The plates were unsealed and single cleistothecia (usually 4) were selected with a 

sterile needle. Surrounding cells were removed by rolling the cleistothecia on an agar 

plate. Finally, each cleistothecium was burst open by mechanical forces and the 

ascospores were released in an eppendorf tube containing 1 mL of sterile H2Odist. An 

aliquot (~10µL) of each ascospore suspension was plated on minimal media selecting 

against both parental types and was incubated for two days at 37°C, so that only 

recombinant progeny would grow. Different dilutions of the suspension from one 

recombinant cleistothecium were plated in order to obtain single colonies. Single 

colonies were, then, selected and analyzed for their genetic background. 
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2.2.3 Progeny analysis 

Growth tests in A. nidulans genetics are performed in order to characterize unknown 

strains, by comparing their growth with that of well-studied control strains, under 

different conditions (temperature, pH, nitrogen or carbon sources, supplements, toxic 

analogues and antibiotics). Replica plates with the appropriate media were used in 

the pursuit of distinct phenotypes. When analyzing the nutritional profile of the 

progeny, the so-called dropout plates contained minimal medium with all the 

auxotrophies supplemented except one. In other cases, replica plates contained 

minimal medium with all the auxotrophies supplemented but with a different 

nitrogen source or toxic analogue in the medium of each plate. Growth tests gave 

some evidence on the genotype of the studied strains, but further genetic analysis 

was, usually, required for their complete genetic characterization. For example, the 

presence of UapA transporter in the genetic background of a newly constructed strain 

could be determined by its growth on uric acid as a sole nitrogen source. However, 

the distinction between a wild-type UapA and a UapA-GFP strain required the use of 

fluorescence microscopy (see 2.3), while the detection of the presence or the absence 

of UapC transporter required the use of polymerase chain reaction (see 2.5.1). 

2.3 Fluorescence microscopy 

2.3.1 Sample preparation 

Samples for fluorescence microscopy of A. nidulans strains were prepared as 

follows. Sterile cover slips (22 mm) were placed in small Petri dishes (35 mm) and 2 

mL of minimal media 0.1% glucose pH 4.6, containing the appropriate supplements 

and urea or NaNO3 as a nitrogen source, were added on top of them. Conidiospore 

solutions were prepared and an aliquot of 10 µL was pipetted in the middle of each 

cover slip and mixed well with the minimal media. The culture was then incubated at 

25°C, for 12-17 h, protected from light, and when needed shifted to various 

conditions for 2–4 h. For the observation of proteins expressed under the control of 

the alcAp promoter mycelia were grown for 14-16 h in derepressing media (minimal 

media supplemented with urea or NaNO3 and 0.1% (w/v) fructose as a sole carbon 

source; see also 2.1.2). Repression of expression was achieved in minimal media 

supplemented with urea or NaNO3 and 1% (w/v) glucose. Induction of expression 

was achieved by addition of 0.4 % (v/v) ethanol in derepressing media, either for 2 h 
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or overnight. The cover slip with the mycelia was removed from the Petri dish with 

the use of a toothpick and was placed upside down on a microscope slide. Excess 

medium outside the cover slip was removed with filter paper. 

In yeast, Jen1p-GFP expression was induced by 4 h growth in minimal media 

supplemented with 0.5% lactate and its endocytosis was elicited by 20-60 min 

incubation with 1% glucose (Paiva et al., 2009). Fur4p-GFP expression was induced 

by 16 h growth in minimal media with 2% galactose  (Leung et al., 2010) and its 

endocytosis was induced by incubating with 40 µg/mL uracil for 2 h. Both strains 

were incubated protected from light, at 30°C, 220 rpm. Samples were then 10-fold 

concentrated (OD600 ~3-6) and 7 µL of each were mixed with an equal volume of 

Low Melting Agarose 1.2% on the surface of a glass slide and covered with a cover 

slip. 

Staining with FM4-64 was according to Peñalva (2005). In particular, cover 

slips with germinated conidia were placed on top of plastic covers, covered with 0.1 

mL of 10 mM FM4-64 in minimal media, incubated on ice for 15 min, washed with 

2-3 mL minimal media, and transferred to fresh 2-3 mL medium for 0–30 min chase 

time. Staining with CMAC (7-amino-4-chloromethyl coumarin; Molecular Probes, 

Inc, USA) was according to Pantazopoulou et al. (2007). Cover slips with 

germinated conidia were placed on top of plastic covers, covered with 0.1 mL of 

1/1000 dilution of CMAC (5 mg/ml stock solution), incubated at 25°C for 20 min, 

washed with 2-3 mL minimal media, and transferred to fresh 2-33 mL medium for 20 

min. Staining with filipin was performed by addition of 0.1 mL minimal media 

supplemented with 25 mg/mL filipin on cover slips with germinated conidia, on top 

of plastic covers, 15 min prior to observation. Calcofluor white staining, used for 

detecting the presence and deposition of polysaccharides (chitin and b-1,3-glucan) in 

the cell walls of yeast and mycelial fungi, was performed according to Slaninová et 

al. (2000). Cells were stained for 5 min on coverslips with a solution of Calcofluor 

(0.001% (w/v) in relevant growth medium), washed and immediately observed in the 

fluorescence microscope. Lat-B was used as described in Taheri-Talesh et al. (2008), 

at a final concentration of 20-40 mg/mL (50-100 mM). The drug was added from a 

10 mM stock in DMSO. For endocytosis, uric acid (0.1 mg/mL), NH4Cl (10–50 mM) 

or ammonium L-(+)-tartrate (10-20 mM) were added for 1-4 h before observation. 

For hypertonic treatment, sucrose, NaCl or other agents were added as indicated in 

the relevant figures. 
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2.3.2 Microscopic observation and image processing 

Samples were then observed on an Axioplan Zeiss phase-contrast epifluorescence 

microscope with appropriate filters and the resulting images were acquired with a 

Zeiss-MRC5 digital camera using the AxioVs40 V4.40.0 software. At CIB-CSIC 

(Madrid), an inverted Leica DMI6000B microscope with motorized z-focus and a 

Leica EL6000 external light source was used for epifluorescence excitation. The 

microscope was driven by Metamorph (Invitrogen, Carlsbad, CA, USA) software 

using a DMI6000-specific driver. Images were acquired using HCX _63 1.4 

numerical aperture (NA) or _100 1.4 NA objectives and a Hamamatsu ORCA ER-II 

cooled-charge coupled device camera (Hamamatsu Photonics, Massy, France). The 

microscope was equipped with Semrock Brightline GFP-3035B and TXRED-4040B 

filter sets (Semrock, Rochester, NY, USA). Maximal intensity projections were 

obtained from z-stacks using the Metamorph 3D plugin. For Laser Confocal 

Microscopy at the Medical School of Universidade do Minho, an inverted 

FLUOVIEW confocal laser scanning microscope, version FV1000 Viewer 

(Ver.2.0b) was used (http://www.olympusfluoview.com/). A confocal laser DMR 

upright microscope and a wide-field time-lapse Olympus IX-81 Cell-R imaging 

system for Live Cell Imaging System were also used (http://www.pasteur.gr). The 

Confocal system operates with the Image acquisition and analysis Leica Confocal 

Software LCS. 

Image processing, contrast adjustment and color combining were made using 

the Adobe Photoshop CS4 Extended version 11.0.2 software or the ImageJ software. 

Images were converted to 8-bit grayscale or RGB and annotated using Photoshop 

CS4 before being saved to TIFF. When indicated, images were deconvoluted using 

the blind deconvolution algorithms of ImageJ 1.37 (http://rsb.info.nih.gov/ij). 

2.4 DNA manipulations 

2.4.1 Preparation of genomic DNA from A. nidulans 

CM culture plates were incubated for 4 days in 37°C. Conidiospores from 1/4 of a 

plate were harvested in 25 mL of minimal media containing NH4
+
 as a nitrogen 

source and any supplements required (depending on the auxotrophies carried by the 

strains used). Liquid cultures were incubated overnight at 37°C, 150 rpm. The next 

day the culture was filtered through blutex, squeezed between two papers to remove 
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excessive liquid and immediately frozen in liquid nitrogen. The mycelia were 

pulverized in a mortar with a pestle in the presence of liquid nitrogen and ~200 mg of 

the fine powder were transferred in a 2mL eppendorf tube. The mycelia powder was 

resuspended in 800 µL of DNA extraction buffer (Tris-HCl 0.2 M pH 8.0, Sodium 

Dodecyl Sulfate (SDS) 1%, Ethylenediaminetetraacetic acid (EDTA) 1mM pH 8) 

mixed by vortexing and incubated on ice for 5-20 min. 800µL of pure phenol were 

added and the mixture was shaken vigorously at room temperature (RT). The tube 

was then centrifuged for 5 min at 12000 rpm, RT and the upper phase, containing the 

DNA, was transferred to a new eppendorf tube. Equal volume of chloroform was 

added and the tube was shaken vigorously and centrifuged for 5 min at 12000 rpm, 

RT. The upper phase was recovered and transferred to a new 1.5 mL tube. The DNA 

was then precipitated by adding equal volume of isopropanol and 1/10 volume of 3 

M sodium acetate (pH 5.3). The mixture was gently mixed (by inverting the tube 

several times) and was then centrifuged for 10 min at 12000 rpm, RT. The pellet was 

washed with 200 µL of 70% EtOH, without mixing. The EtOH was removed with a 

pipette, after spinning for 2 min. The pellet was dried for 5 min at 50°C and was 

finally dissolved in 100µl of sterile distilled water, containing 0.2 mg/mL RNaseA 

and incubated at 37°C for 30 min. Agarose gel electrophoresis was performed to an 

aliquot (2-3 µL) of the DNA solution, in order to analyse the quantity and quality of 

the extracted DNA. 

2.4.2 Restriction Endonuclease Digestion 

Restriction endonucleases bind and cleave DNA at specific target sequences. DNA 

was digested with restriction endonucleases to yield DNA fragments of convenient 

sizes for downstream manipulations. In particular, the appropriate amount of DNA 

was incubated with 1 u restriction enzyme, 1x restriction enzyme buffer and distilled 

water to a final volume of 20 µL at the enzyme’s optimal temperature and for the 

time period specified by the manufacturer (TaKaRa, Fermentas, NEB). Digested 

DNA was then analysed by agarose gel electrophoresis. 

2.4.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used for the analysis of the size and conformation of 

DNA in a sample, quantification of DNA, and the separation and extraction of DNA 

fragments. 1% agarose was dissolved in 1x TAE buffer (Table 2.8) by warming up 
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the solution in the microwave. After cooling down to 70°C, 0.5 mg/mL ethidium 

bromide (EtBr) were added and the solution was poured into a casting tray and left to 

harden. DNA samples were mixed with loading buffer and were loaded in the gel. To 

determine the size of the fragments, a molecular weight marker was loaded along 

with the samples. Gels were run at 55-100V, depending on downstream applications. 

When adequate migration had occurred, the gel was exposed to UV light with a UV 

transilluminator and DNA bands were visualized and photographed due to the 

intercalating fluorescent dye (EtBr).  

2.4.4 Southern Blot 

Southern blot is used to detect specific sequences in a DNA sample. It combines 

agarose gel electrophoresis for size separation of DNA and transfer to a 

nitrocellulose membrane by capillary action for subsequent detection by probe 

hybridization. In this work, Southern blot was mainly performed to analyze A. 

nidulans transformants (see 2.7) in respect to the type of plasmid integration and the 

number of integrated copies. The method used is an adapted version of the one 

described in Sambrook and Russel (2001). 

DNA digestion and gel preparation 

Genomic DNA was isolated from A. nidulans transformants and 4-6 µg  DNA of 

each were used to prepare a DNA digestion reaction in 50 µL total volume (for 

hybridization with 2 probes). To ensure complete digestion of DNA samples, the 

restriction enzyme was added in two steps; that is, overnight incubation with half the 

amount of enzyme, followed by addition of the other half and another 2 hours of 

incubation. DNA fragments were separated in 0.8% agarose gels (one for each 

probe) running at 55 V for 5-6 h in freshly made 1x TAE buffer (Table 2.8). A 

picture of the gels was captured with a ruler standing beside the marker, and the 

bottom right corner of the gels was cut off in a different fashion to mark them. The 

gels were exposed to UV radiation for 5 minutes to reduce the size of larger DNA 

fragments in order to facilitate their transfer at the nitrocellulose membrane, since 

fragments longer than 10 kb do not transfer efficiently. The DNA was denatured by 

submerging the gels in denaturation solution (Table 2.8) for 30 min with gentle 

shaking at RT. Gels were then submerged in neutralization solution (Table 2.8) and 

incubated for another 30 min with gentle shaking at RT. 
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Table 2.8. Solutions used in Southern blot analysis 

Solutions Composition for 1 L 

ΤΑΕ (50x) 242 g Tris Base, 57.1 mL glacial CH3COOH, 100 mL 0.5 M EDTA pH 8.0 

Denaturation  1.5 Μ NaCl, 0.5 Μ NaOH 

Neutralization  1.5 Μ NaCl, 1 Μ Tris-HCl pH 8.0 

20x SSC 3 Μ NaCl, 0.3 Μ Να3C6Η5Ο7, pH 7.0 with NaOH 

Church buffer 0.5 Μ Νa2ΗPΟ4 / ΝaΗ2PΟ4 pΗ 7.0, 1% BSA,7% SDS, 1 mM EDTA 

Blotting 

The gel was placed on two sheets of filter paper (Whatman), the ends of which were 

dipped in a bath of 20x SSC solutions (Table 2.8). A sheet of Amersham Hybond-N
+
 

nitrocellulose membrane (Amersham Biosciences) was placed on top of the gel, 

followed by two sheets of filter paper and a stack of paper towels. Around the 

membrane and before placing the filter papers, some plastic foil was placed, in order 

to keep the transfer of the buffer within the limits of the membrane. Pressure was 

applied evenly by adding a weight on top of the paper towels and the blot was left 

overnight at RT. Transfer efficiency was improved by removing the wet paper towels 

and replacing them with dry ones at least once during the transfer.  

The next day, the membrane was peeled off the gel and was exposed to UV 

radiation (upside down) for 5 min, to permanently and covalently crosslink the DNA 

to the membrane. When not required for use immediately, the blots were covered in 

plastic wrap and stored at 4°C.  

Radioactive probe labelling 

Probe labelling was done by random priming, according to the BRL Multiprime 

DNA Labelling Kit. In particular, the desired sequence was amplified by PCR (see 

2.5.1) and 250 ng of the gel extracted (see 2.6.1) PCR product were adjusted with 

H2Odist to a final volume of 21 µL. The DNA was denatured by boiling for 2 min and 

was immediately put on ice. The rest of the components (Table 2.9) were added to 

the solution along with H2Odist to a final volume of 50 µL. The reaction was 

incubated at 37°C for 1 h and was then purified by passing through a column 

(Pharmacia) to remove unincorporated nucleotides. The resulting probe solution was 

boiled for 2 min and immediately added in prehybridization Church buffer. After 

hybridization, the radioactive probe could be stored at -20°C and used again after 

boiling for 10 min and cooling down for 2 min. 
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Table 2.9. Composition of random priming reaction for probe labelling 

Components Final concentration 

DNA probe 250 ng 

Random hexamers (Sigma) 10 ng 

dATP (BRL) 10 µM 

dGTP (BRL) 10 µM 

dTTP (BRL) 10 µM 
32

P-[
a
dCTP] 0.05 mCi 

Klenow DNA polymerase 5 u 

10x Klenow buffer 5 µL 

H2Odist up to 50 µL 

Hybridization and developing 

The membrane was incubated in Church buffer (Table 2.8) for 2 h at 65°C. The pre-

hybridization Church buffer was replaced by Church buffer with the labelled probe 

and the membrane was incubated overnight (15-18 h) at 65°C. After hybridization, 

the membranes were washed with 2x SSC, 0.1% SDS at 65°C  for 30 min and the 

liquid was discarded. This washing step was repeated 2 times. The final washing step 

was done with 0.2x SSC, 0.1% SDS at 65°C for 30 min. The probed membranes 

were finally covered with plastic foil and were placed in an autoradiographic cassette 

along with an X-ray film (Kodak X-omat). The cassette was kept at -80°C for ~2 h, 

and then kept at RT to defreeze. The film was developed in a dark room with Kodak 

developing reagents. 

2.5 Polymerase Chain Reaction (PCR) 

2.5.1 Standard PCR reactions 

Conventional PCR reactions were performed using KAPATaq DNA polymerase 

(Kapa Biosystems). Provided that the amplified fragment would be used for cloning 

or transformation, a DNA polymerase with proofreading activity was used in order to 

lower error frequency. High fidelity PCR reactions were carried out using the 

Phusion® Flash High-Fidelity PCR Master Mix (New England Biolabs GmbH, 

Frankfurt, Germany) or the KAPA HiFi HotStart ReadyMix (Kapa Biosystems), 

according to manufacturer's instructions. Components and conditions of these PCR 

reactions are described in the tables below. 
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Table 2.10. Composition of conventional, high fidelity and site-directed mutagenesis PCR reactions 

Components 
Final concentration 

Conventional High fidelity Mutagenesis 

10x Polymerase buffer  

(with 1.5 mM MgCl2) 
1x - 1x 

dNTPs 200 µΜ of each - 200 µΜ from each 

2x Polymerase Ready Mix - 1x - 

Forward primer 0.4 µM 0.3 µM 0.4 µM 

Reverse primer 0.4 µM 0.3 µM 0.4 µM 

DNA Polymerase KapaTaq 1 u - Pfu 1.25 u 

DNA template 10-20 ng 10 ng 10 ng 

H2Odist up to 25 µL up to 25 µL up to 50 µL 

Table 2.11. Conditions used for conventional, high fidelity and site-directed mutagenesis PCR  

Steps 
Conventional High fidelity Mutagenesis 

°C Duration °C Duration °C Duration 

1 95 5 min 95 3 min 95 3 min 

2 95 30 sec 98 20 sec 95 30 sec 

3 Tm-5 30 sec 60-75 15 sec Tm-5 30 sec 

4 72 1 min/kb 72 15 sec/kb 72 2 min/kb 

5 steps 2-4 x25 cycles steps 2-4 x25 cycles steps 2-4 x25 cycles 

6 72 10 min 72 1 min/kb 72 10 min 

7 12 ∞ 12 ∞ 12 ∞ 

2.5.2 In vitro site-directed mutagenesis 

Mutations were constructed by site-directed mutagenesis according to the 

instructions accompanying the QuikChange® Site-Directed Mutagenesis Kit 

(Agilent Technologies, Stratagene). In particular, a pair of complimentary primers 

was designed for each mutation. Primers intended for mutagenesis were long (35-40 

amino acids), with >50% GC-content and the mutation was located in the middle of 

the sequence, so that annealing to the complementary sequence of the template DNA 

would not be severely affected by the mismatch. Taking advantage of the redundancy 

of the genetic code, codon substitutions were designed in a way that the least 

possible number of mismatches would occur, while resulting codons would be 

frequently encountered in A. nidulans genome. Moreover, designed mutations 

preferably led to the introduction of a restriction site that would enable diagnostic 

digestion after mutagenesis (see later on). High fidelity PCR reactions for in vitro 



 
Materials & Methods 116 

site-directed mutagenesis were carried out using the Pfu DNA Polymerase (Thermo 

Scientific). Components and conditions used for this type of PCR are described in 

tables above. The following formula was used for estimating the Tm of the primers: 

Tm=69,3+0,41(%GC)-650/L-(%mismatch). 

After amplification the PCR product was incubated at 37°C
 
for 2 h with 10 u (1 

µL) of the restriction enzyme DpnI (TaKaRa), which cleaves methylated (GA
m

 | TC) 

DNA strands, so that parental non-mutated plasmids were fragmented. The resulting 

solution was used to transform E. coli competent cells. Plasmid DNA from 

ampicillin-resistant colonies was prepared, digested with the appropriate restriction 

enzyme and/or sequenced. Plasmids with the desired mutation were finally 

transformed in A. nidulans (for more details see also sections 2.6 and 2.7). 

2.6 Molecular cloning 

This experimental procedure includes the cleavage of circular plasmid DNA with one 

or more restriction enzymes, its ligation in vitro to foreign DNA bearing compatible 

termini, transformation of E. coli with the products of the ligation reaction and 

screening of the transformed colonies for those carrying the desired DNA sequences. 

This method takes advantage of the fact that a single bacterial cell can be induced to 

take up and replicate a single recombinant DNA molecule (Sambrook and Russel, 

2001). 

2.6.1 Preparation of cloning vector and insert 

The first step towards the generation of a recombinant DNA molecule was the 

preparation of the cloning vector and the DNA fragment of interest (hereafter 

referred to as “insert”). In particular, the insert was amplified by PCR using primers 

that add the desired restriction sites to its termini and was subsequently digested with 

the corresponding restriction endonucleases. A cloning vector that contains 

recognition sequences for the same restriction enzymes in its multiple cloning site 

was selected and subjected to digestion in order to generate sticky ends 

complementary to those of the digested insert (Sambrook and Russel, 2001). The 

digested vector and insert were purified from an agarose gel after migrating for an 

adequate amount of time using the Nucleospin Extract II kit (Macherey-Nagel). The 

corresponding DNA bands were quickly excised from the gel under low-strength UV 
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light exposure to limit DNA damage, transferred into an eppendorf tube and 

processed as described in the manufacturer’s instructions. 

In cases where the termini of the resulting linearized plasmid were 

complementary (e.g. when cloning with one restriction enzyme), the digested vector 

was treated with 30 u (1 µL) of calf intestine alkaline phosphatase (TaKaRa) for 5 

min at 37
 ο

C, before being loaded to the agarose gel. Removal of the 5’-terminal 

phosphate groups suppressed self-ligation of the linearized vector and improved 

ligation efficiency by diminishing the background of transformed bacterial colonies 

that carry “empty” vectors (Sambrook and Russel, 2001). 

2.6.2 Generation of recombinant DNA 

Generation of recombinant DNA was mediated by DNA ligase, an enzyme that 

covalently links the complementary sticky ends together. The purified vector and 

insert were mixed at a 1:3 concentration ratio and an aliquot of the mixture was used 

to prepare a ligation reaction along with 175 u (0.5 µL) of T4 DNA ligase (TaKaRa) 

and 1x ligase buffer in 10 µL total volume. The reaction was incubated at 25°C for 

1.5 h and was then used to transform competent E.coli cells. A control ligation 

without an insert was also performed in parallel.  

2.6.3 Introduction of recombinant DNA into E. coli 

Preparation of competent cells 

A trace of DH5a E. coli cells from the glycerol stock was streaked on an LB agar 

plate and was incubated at 37°C overnight. 5 mL LB medium were inoculated with a 

single colony from the plate and were incubated for 16 h at 37°C, 220 rpm. An 

aliquot of 0.5 mL of the saturated overnight culture was used to inoculate 400 mL 

LB medium in a 1 L flask and was incubated at 37°C, 260 rpm until an OD600 of 

0.45-0.55 had been reached. The culture was then centrifuged at low speed (4.500 g), 

4°C for 5 min and the supernatant was discarded. The cell pellet was gently 

resuspended in 0.4x original volume of ice-cold transformation buffer 1 (30 mM 

CH3COOK, 10 mM CaCl2, 50 mM MnCl2,100 mM RbCl2, 15% glycerol, pH 5,8 

with 1 M CH3COOH) and incubated on ice for an additional 5 min. The cells were 

collected by centrifugation at 4500 g for 5 min at 4°C, and were resuspended 

carefully in 1/25 original volume of ice-cold transformation buffer 2 (10 mM MOPS 

pH 6.5, 75 mM CaCl2, 10 mM RBCl2, 15% glycerol, pH 6.5 with 1 Μ ΚΟΗ). The 
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cells were again incubated on ice for 15-60 min and aliquots of 200 µL were 

distributed in sterile eppendorf tubes and frozen in liquid nitrogen. The competent 

cells were then stored at -80°C. 

E. coli transformation 

About 0.01-0.5 µg of plasmid DNA was added in 200 µL of defrosted competent E. 

coli cells, mixed and incubated on ice for 20-45 min. The cells were subjected to heat 

shock by incubating the tube in a heat block at 42°C for 90 sec and moving the tube 

immediately on ice for 2 min. To allow expression of the ampicillin resistance gene 

of the plasmid, 1 ml of LB medium was added and the cells were incubated at 37°C 

for 45-60 min. The cells were harvested by centrifugation at 8000 rpm for 2 min. 

They were then resuspended in ~100 µL of LB medium and spread on LB agar plates 

containing ampicillin at a final concentration of 100 µg/mL. The plate was incubated 

overnight at 37°C. To check the transformation efficiency, competent cells were 

transformed with 1 ng of a control plasmid containing the ampicillin resistance gene 

and were plated on an LB ampicillin agar plate. The transformation efficiency could 

be estimated by comparing the number of colonies obtained with the control plasmid 

to the number obtained with the plasmid of interest (Positive control). A negative 

control to check antibiotic activity was performed by transforming competent cells 

with 2 µL of sterile water and plating them on an LB ampicillin agar plate. An 

absence of colonies on the plate indicated good antibiotic activity  (Sambrook and 

Russel, 2001). 

2.6.4 Preparation of Plasmid DNA from E. coli 

For high purity plasmid DNA preparation the Macherey-Nagel Nucleospin Plasmid 

kit was used. For downstream applications that did not require high purity, an 

adaptation of the protocol described in Sambrook and Russel (2001) was used. In 

particular, 5 mL of LB medium with ampicillin were inoculated with a single 

bacterial colony carrying the desired plasmid and were incubated overnight at 37°C, 

200 rpm.1-1.5 ml of the bacterial culture was centrifuged at 12000 rpm for 1 min and 

the pellet was resuspended in 200 µL of cell suspension buffer (50 mM Tris-HCl pH 

8.0, 10 mM EDTA) by vortexing for about 1 min. 200 µL of cell lysis solution (200 

mM NaOH, 1% SDS) were then added and mixed by inverting the tube, followed by 

200 µL of neutralization buffer (3 M CH3COONa pH 5.5). The cell suspension was 
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centrifuged at 12000 rpm for 5 min and the supernatant was collected in a new 

eppendorf tube. 500 µL of isopropanol were added and the content of the eppendorf 

was mixed and centrifuged at 12000 rpm for 5 minutes to precipitate the DNA. The 

DNA was washed with 70% (v/v) ethanol to remove co-precipitated salt and to 

replace the isopropanol with the more volatile ethanol, thus making the DNA easier 

to redissolve. The pellet was dried for 5 min at 50°C and was resuspended in 100 µL 

of sterile distilled water with 0.2 mg/mL RNase. An aliquot was used for diagnostic 

digestions or PCR that would confirm the successful cloning of the desired DNA 

sequence, as well as the orientation of insertion. 

2.7 Aspergillus nidulans DNA Transformation 

A. nidulans DNA Transformation was performed as described in Koukaki et al. 

(2003). In particular, conidiospores were harvested from a full CM culture plate and 

filtered through blutex. 200 mL minimal media (in a 1 L flask) with urea and 

appropriate supplements were inoculated with the spore solution and were incubated 

at 37°C for 4-4.5 h, 150 rpm. After 3.5 h of incubation an aliquot of the culture was 

regularly observed under the microscope for the appearance of germ tubes. Once the 

conidia were at the germinative phase, incubation was stopped and the culture was 

transferred into sterile falcons and centrifuged at 4000 rpm for 10 min. The pellet 

was resuspended in 20 mL of Solution I (Table 2.12) and was poured into a sterile 

250 mL flask. About 200 mg of the lytic enzyme glucanex, together with a few 

crystals of Bovine Serum Albumin (BSA) were then added for the disruption of the 

cell wall and release of the protoplasts. The spore suspension was incubated for 5 

min on ice, and then for 1.5-2 h at 30°C, 60 rpm. Protoplasts were concentrated by 

centrifugation at 4000 rpm for 10 min and washed with 10 mL of solution II (Table 

2.12). The pellet (protoplasts) was resuspended in solution II, at a volume depending 

on the number of transformations desired. Protoplasts were distributed in eppendorf 

tubes and plasmid DNA was added (1.5-2 µg) followed by 1/4 of the total volume 

Solution III (Table 2.12). A control tube without plasmid DNA was included in order 

to evaluate whether the protoplasts and the solutions used were free of 

contaminations. Tubes were incubated on ice for 15 min, after which 500 µL of 

Solution III were added, mixed and incubated for another 15 min at RT. The tubes 

were then centrifuged at 6000 rpm for 10 min and protoplasts were washed with 1 

mL of solution II and resuspended in 200 µL of the latter. Protoplasts were 
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transferred into falcons containing 4 mL of melted Top SM (sucrose minimal media, 

0.35% agar; see Table 2.4), carefully mixed and quickly used to inoculate previously 

prepared SM plates (sucrose minimal media, 1% agar; see Table 2.4). Plates were 

incubated at 37°C for 4-5 days and transformants were isolated by streaking on 

minimal media and analyzed by growth tests. 

Table 2.12. Solutions used for A. nidulans DNA transformation 

Solutions Composition in H2Odist 

Solution I 1.2 M MgSO4, 10 mM orthophosphate pH 5.8 

Solution II 1 M Sorbitol, 10 mM Tris-HCl pH 7.5, 10 mM CaCl2 

Solution III 60% (w/v) PEG6000, 10 mM Tris-HCl pH 7.5, 10 mM CaCl2 

Newly made null mutant strains and in locus gene tagging were constructed by 

transformation in an nkuA DNA helicase deficient strain (TNO2A7; Nayak et al., 

2006), allowing only homologous recombination events, based on the A. fumigatus 

markers orotidine-5′-phosphate-decarboxylase (pyrG
Af

, Afu2g0836) or GTP-

cyclohydrolase II (riboB
Af

, Afu1g13300), resulting in complementation of 

auxotrophies for uracil/uridine (pyrG89) or riboflavin (riboB2), respectively. 

Mutants of uapA-gfp,  uapA-YFP and uapA-His were constructed by transformation 

of a strain lacking all major purine transporters uapA, uapC and azgA (∆ACZ) based 

on the A. nidulans markers ornithine-carbamoyltransferase (ANID_04409.3) and 

para-aminobenzoic acid synthase (ANID_06550), complementing the arginine 

auxotrophic mutation argB2 and paba auxotrophic mutation pabaA1, respectively. 

2.8 Kinetic analysis of transporters 

Kinetic analysis of UapA activity was measured by estimating uptake rates of [
3
H]-

xanthine uptake, as previously described in Koukaki et al. (2005) and Papageorgiou 

et al. (2008). Briefly, conidiospores from a fresh CM plate were harvested in 25 mL 

of minimal media containing urea and any supplements necessary, filtered with 

blutex and incubated at 37°C, 150 rpm.  

[
3
H]-xanthine uptake was assayed at 37°C in germinating conidiospores of A. 

nidulans, just prior of germ tube emergence (4 h) or in germlings (6 h). The culture 

was centrifuged for 5 min, 6000 rpm and conidiospores were concentrated at 10
7
 

conidiospores/100 µL. The resulting spore suspension was distributed in eppendorf 

tubes (75 µL in each tube) and these were equilibrated for 10 min at 37°C. Initial 
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velocities were measured at 1 min of incubation with 25 µL (0.2 µM) of radioactive 

substrate. Reactions were terminated by adding excess (1000-fold) of ice-cold non-

radiolabelled substrate. To remove non-incorporated radioactivity the spore 

suspension was washed twice with ice cold minimal media (6000rpm, 5 min). The 

supernatant was removed by sunction and the pellet was finally resuspended in 1 mL 

of scintillation solution (666 ml toluol, 2.66 g PPO, 0.066 g POPOP, 333 ml Τriton-

Χ-100. The eppendorf tubes were inserted in scintillation vials and radioactivity was 

measured in a scintillation counter.  

Initial velocities were corrected by subtracting background uptake values 

obtained in the simultaneous presence of 1000-fold excess of non-radiolabelled 

substrate. The background uptake level did not exceed 15-20% of the total counts 

obtained in wild-type strains. The Km (concentration for obtaining Vm/2) of UapA for 

xanthine was obtained directly by performing and analyzing (Prism3) uptakes at 

various concentrations. All experiments were carried out in triplicates. Radiolabelled 

xanthine (33.4 Ci/mmol) was purchased from Moravek Biochemicals (Brea, CA, 

USA).  

2.9 Protein manipulations 

2.9.1 Protein extraction from A. nidulans 

CM culture plates were incubated for 4 days in 37°C. Conidiospores from a full plate 

were harvested in 100 mL of minimal media containing NaNO3 as a nitrogen source 

and any supplements required (depending on the auxotrophies carried by the strains 

used). Liquid cultures were incubated for 14-16 h at 25°C, 150 rpm. In the case of 

proteins expressed under the control of the strong ethanol-inducible, glucose-

repressible alcAp promoter, mycelia were then filtered through a sterile blutex, 

washed with sterile washing buffer (1x salt solution, pH 6.8) and shifted in inducing 

minimal media for 2-6 h (see also 2.1.2). When repression of expression was 

required, mycelia were washed again with sterile washing buffer and shifted back in 

standard minimal media for 0.5-2 h. Endocytosis was elicited by adding NH4
+
 

tartrate or uric acid for 2-4 h. After incubation was finished, the culture was filtered 

through blutex, squeezed between two papers to remove excessive liquid and 

immediately frozen in liquid nitrogen. The mycelia were pulverized 5 times in a 
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mortar with a pestle in the presence of liquid nitrogen and ~400 mg of the fine 

powder were transferred in a 2 mL eppendorf tube.  

Total protein extraction 

The mycelia powder was resuspended in 1 mL of ice cold precipitation buffer (see 

table below), mixed by vortexing and incubated on ice for 10-30 min. The sample 

was then centrifuged for 10 min, at 13000 rpm, 4°C. The pellet was resuspended 

twice in ice cold acetone and the sample was centrifuged for 5 min at 13000 rpm, 

4°C. The supernatant was discarded and the pellet was incubated at 60°C in a heat 

block until cracks appeared. The pellet was then resuspended in 500-600 µL of 

protein extraction buffer I and the sample was centrifuged for 10-15 min at 13000 

rpm, 4°C. The supernatant was transferred in a pre-frozen eppendorf tube and was 

stored at -80°C for further use. Before loading in a gel for electrophoresis (see 2.9.5), 

protein levels of the samples were quantified and normalized (see 2.9.2). The 

samples were then incubated with 4x sample loading buffer for 10-20 min at 37°C 

(membrane proteins), or 5 min at 95°C (soluble proteins). 

Table 2.13. Solutions used for total protein extraction 

Solutions Composition in H2Odist 

Precipitation Buffer 
50 mM Tris-HCl pH 8.0, 50 mM NaCl, 12.5% (v/v) trichloroacetic 

acid (TCA), 1 mM PMSF, 1 x Protease Inhibitors Cocktail (PIC) 

Extraction  Buffer I 
100 mM Tris-HCl pH 8.0, 50 mM NaCl, 1% (v/v) SDS,1 mM 

EDTA, 1 mM PMSF, 1 x PIC  

4x sample loading buffer 
40% (v/v) glycerol, 250 mM Tris-HCl pH 6.8, 0.02% (w/v) 

bromophonol blue, 8% (v/v) SDS, 20% (v/v) β-mercaptoethanol 

Membrane enriched extraction for ubiquitination 

For the detection of ubiquitinated forms of UapA, protein extraction was performed 

as in Galan et al. (1994). The mycelia powder was resuspended in 2 mL of ice cold 

extraction buffer III (see Table 2.14) with N-ethylmaleimide (NEM) 25 mM, mixed 

by vortexing and incubated on ice for 10 min. The sample was then centrifuged for 3 

min, at 3000 rpm, 4°C to remove cell debris and the supernatant was transferred in a 

pre-frozen eppendorf tube. Membrane proteins were then precipitated by 

centrifuging the sample for 45 min at 13000 rpm, 4°C. The pellet was resuspended in 

400 µL of extraction buffer III with 5 M Urea (freshly added). After 30 min 

incubation on ice, the sample was centrifuged for another 45 min at 13000 rpm, 4°C 
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and the pellet was resuspended in 320 µL extraction buffer III with NEM 25 mM and 

80 µL TCA 50% (v/v). The sample was incubated on ice for 30 min and was then 

centrifuged for 30 min at 13000 rpm, 4°C. The pellet was washed by pipetting in and 

out (without resuspending) 400 µL of Tris Base 1 M, for the acidic pH of TCA. The 

pellet was finally resuspended in 100 µL 1 x ubiquitination sample buffer. Usually, 

5-20 µL of the protein samples were used for electrophoresis, after 20 min incubation 

at 37°C. 

Table 2.14. Solutions used for the extraction of ubiquitinated forms of UapA 

Solutions Composition in H2Odist 

Extraction Buffer III 
100 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA pH 8.0,  

1 mM PMSF, 1 x PIC 

1 x ubiquitination 

sample buffer 

250 mM Tris, 50 mM Tris-HCl pH 6.8, 50 mM NaCl, 2% (v/v) SDS, 

10% (v/v) glycerol, 2 mM EDTA, 0.005% (w/v) bromophenol blue, 

2% (v/v) β-mercaptoethanol 

Membrane enriched extraction for purification 

The membrane-enriched extraction protocol (adapted from Pantazopoulou et al., 

2007) was mainly used prior to membrane protein purification by affinity 

chromatography. To increase protein yield, the extraction procedure was performed 

in 6-10 eppendorf tubes, containing mycelia of the same strain. The mycelia powder 

was resuspended in 2 mL of ice cold extraction buffer II (see table below), mixed by 

vortexing and incubated on ice for 20-30 min. The samples were then centrifuged for 

3 min, at 3000 rpm, 4°C to remove cell debris and the supernatants were transferred 

in pre-frozen eppendorf tubes. Membrane proteins were then precipitated by 

centrifuging the samples for 1 h at 13000 rpm, 4°C. The pellets were resuspended in 

80-100 µL of ice cold solubilisation buffer. The suspensions were collected in one 

eppendorf tube and solubilised, as described in section below2.9.3.  

Table 2.15. Solutions used for membrane-enriched protein extraction prior to purification 

Solutions Composition in H2Odist 

Extraction  Buffer II 
10 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM MgCl2, 0.3 M 

Sorbitol, 1 mM PMSF, 1 x PIC 

Solubilisation Buffer 
50 mM NaH2PO4 pH 8.0, 150 mM NaCl, 1% (w/v) dodecyl-β-D-

maltoside (DDM), 1 mM PMSF, 1 x PIC  
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2.9.2 Protein quantification 

The determination of protein concentration in the total membrane protein extract was 

done using the method of Bradford (Bradford, 1976). The protein-dye complex 

causes a shift in the dye absorption maximum from 465 nm to 595 nm. The amount 

of absorption produced is proportional to the protein concentration. 2 mL Bradford 

Reagent (100 mg Coomassie Brilliant Blue G-250, 50 mL 100% EtOH, 100 mL 

H3PO4, 850 mL H2O) were transferred in a cuvette and 2 µL of the protein extract 

were added and vortexed briefly. Prior to reading the absorbance, 2 mL of this 

reagent were used as a blank to calibrate the spectrophotometer. The optical density 

(OD) of the protein extract in this reagent was then read at 595 nm. Each sample was 

analyzed in duplicate. The protein concentrations were determined by comparing the 

obtained OD values against the BSA standard curve, generated by plotting the 

average absorbance versus various concentrations of BSA. In the case of the 

ubiquitination extraction protocol, where Bradford assay was not applicable, 

normalization of sample concentrations was performed by Coomassie staining. 

2.9.3 Purification of membrane proteins 

Membrane protein purification was performed by combining affinity 

chromatography of His-tagged recombinant proteins with gel filtration 

chromatography. The procedure followed is an adaptation of the method described in 

Lemuh et al. (2009). 

Detergent solubilisation of protein extracts 

Prior to chromatographic purification, membrane protein extracts are solubilised in 

the appropriate – for this particular protein – detergent; incorrect detergent usage 

results in protein aggregation or failure of protein solubilisation. For UapA 

purification, crude membrane protein extracts were solubilised by resuspending in 

solubilisation buffer containing 1% (w/v) DDM without glycerol (see Table 2.15). 

The sample was stirred gently for 30 min on ice and then centrifuged for 20 min at 

12000 g, 4°C, to separate the solubilised from the insoluble proteins. The supernatant 

(solubilised proteins) was then transferred to a pre-frozen eppendorf tube and 

glycerol was added to a final concentration of 20% (v/v) and gently mixed. The 

detergent-solubilised protein sample was stored at -80°C for further use or loaded 

directly onto a column for purification.  
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Affinity chromatography 

Affinity chromatography is based on selective non-covalent interactions between an 

analyte (the substance which is to be purified) and the stationary phase of a 

chromatographic column. It is very specific and is often used for the purification of 

fusion proteins labelled with appropriate epitope tags. His-tags, for example, have an 

affinity for nickel ions; this property allows His-tagged proteins to be retained in a 

column containing immobilized nickel ions. For elution, an excess amount of a 

compound able to act as a nickel ligand, such as imidazole, can be used. During the 

entire chromatography process the eluent is collected in a series of fractions. In this 

study, proteins of interest were genetically tagged with a sequence encoding for 10 

histidine residues and were purified using the Protino Ni-NTA Columns (Macherey-

Nagel GmbH). The mobile phase was delivered in a consistent flow rate of 1 mL/min 

via a pump. The column was first equilibrated with 10-20 column volumes of Ni-

column wash buffer (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 0.01 % (w/v) DDM, 1 

mM PMSF), containing 10 mM imidazole. A total of 1-4 mg of protein in 1 mL of 

detergent solubilisation buffer was applied to the column and 2.5 mL of the flow-

through were collected and put on ice (fraction f0). The column was washed 

abundantly (10-20 column volumes) with wash buffer containing 20 mM imidazole 

and subsequently with another containing 50 mM imidazole to remove unbound and 

loosely bound molecules. 2.5 mL of each eluent were collected and put on ice 

(fractions f20 and f50). Bound protein was eluted with increasing concentrations of 

imidazole in the column wash buffer (250 mM, 350 mM, 500mM) and 2.5 mL of 

each eluent were collected and put on ice (fractions f250, f350 and f500). The column 

was washed abundantly with the 500mM imidazole wash buffer and filled with 30% 

(v/v) EtOH before storing at 4°C. 

Desalting and concentration 

Removal of salts and exchange of buffer in protein samples can be easily achieved 

by gel filtration, a chromatographic method in which particles are separated based on 

their size. In this work, Sephadex G-25 columns were used. 2.5 mL of each fraction 

eluted from the Ni-NTA column were loaded onto the Sephadex column, which was 

previously washed abundantly with distilled water. After the sample volume had 

completely entered the column, 3.5 mL of sterile distilled water were added to the 

column and the protein was eluted and frozen at -80°C. The frozen protein samples 
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were then concentrated by overnight lyophilization. The freeze-dried samples were 

resuspended in a buffer containing 50 mM NaH2PO4, 10% glycerol, 0.1% (w/v) 

DDM, 1 mM PMSF, 1 x PIC, adjusted to pH 7.5 and analyzed electrophoretically 

and immunologically. 

2.9.4 Purification of soluble proteins 

Purification of soluble proteins was performed by immunoprecipitation. For 

immunoprecipitation under denaturing conditions, total protein extracts were 

resuspended in extraction buffer IV (see Table 2.16). Immunoprecipitation buffer 

(IP) was added and the lysates were incubated with 4 µg anti-GFP under gentle 

agitation at 4°C for 2 h. This step was followed by addition of A-Protein Sepharose 

CL-4B beads (Sigma-Aldrich) and incubation under gentle agitation at 4°C for 12 h. 

The beads were washed twice with IP buffer, once with wash buffer I, once with 

wash buffer II and once with wash buffer III and were finally boiled for 5 min at 

95°C in protein sample buffer. Immunoprecipitation of ArtA-GFP and ArtA-K343R-

GFPwas performed by S. Amillis. 

Table 2.16. Solutions used for immunoprecipitation under denaturing conditions 

Solutions Composition in H2Odist 

Extraction Buffer IV 
50 mM Tris-HCl, pH 7.5, 2 mM EDTA, 100 mM NaCl, 2% SDS, 

20 mM NEM, 1 x PIC  

Immunoprecipitation 

buffer (IP) 

50 mM Tris-HCl, pH 7.5, 2 mM EDTA, 150 mM NaCl, 1% Triton 

X-100, 0.5% sodium deoxycholate, 20 mM NEM, 1 x PIC  

Wash buffer I 
50 mM Tris-HCl, pH 7.5, 2 mM EDTA, 250 mM NaCl, 0.5% 

Triton X-100, 0.05% sodium deoxycholate, 20 mM NEM, 1 x PIC 

Wash buffer II 
50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 500 mM NaCl, 0.1% 

Triton X-100, 20 mM NEM, 1 x PIC 

Wash buffer III 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl, 1 x PIC 

2.9.5 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is used for 

separation of proteins based on their size. By subjecting the sample under denaturing 

and reducing conditions (SDS), proteins become unfolded and coated with SDS 

detergent molecules, acquiring a net negative charge that is proportional to the size 

of the polypeptide chain. When loaded into a gel and placed in an electric field, the 

negatively charged protein molecules migrate towards the positively charged 

electrode and are separated based on their molecular weight. Protein bands can then 
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be visualized by protein-specific staining of the gel or by immunoblotting (see 2.9.6 

and 2.9.7, respectively) and their size can be estimated by comparison of their 

migration distance with that of a marker of known molecular weight.  

Polyacrylamide gel preparation requires casting of two different layers of 

acrylamide; the lower layer (separating gel) is responsible for separating 

polypeptides by size, while the upper layer (stacking gel) is designed to stack the 

proteins into a thin layer before they enter in the separating gel. In particular, the 

solutions consisting the separating gel were mixed in a flask connected to a vacuum 

pump prior to addition of APS and TEMED and the mixture was degassed for 20-30 

min. APS and TEMED were added in the degassed mixture and the resulting solution 

was slowly poured into glass plates with spacers, assembled according to the 

manufacturer’s instructions (BIORAD). Above that, a thin layer of distilled water 

was added and the gel was allowed to polymerize at RT. The surface of the 

polymerized separating gel was washed with distilled water and dried with Whatman 

paper. The stacking gel was prepared and applied on top of the separating gel, along 

with a comb. After polymerization, the comb was removed, wells were washed and 

the gel was placed into an electrophoresis apparatus containing electrophoresis 

running buffer (25mM Tris, 192 mM Glycine, 0.1% SDS pH 8.3).  

Table 2.17. Composition of separating and stacking layers of polyacrylamide gels 

 
Separating gel 10% 

(11 mL) 

Stacking gel 4% 

(5 mL) 

H2Odist 4.5 mL 3.65 mL 

Acrylamide/Bisacrylamide 30 % 3.63 mL 0.667 mL 

Lower Tris (1,5 M Tris-HCl, pH 8,8) 2.75 mL − 

Upper Tris (0,5 M Tris-HCl, pH 6,8) − 0.625 mL 

20 % (w/v) SDS 50 µL 25 µL 

10 % (w/v) Ammonium persulfate (APS) 50 µL 25 µL 

TEMED 10 µL 10 µL 

The samples were prepared as described in each extraction method and were 

loaded into the wells. The gel was run at 80 V through the stacking gel and 100 V 

through the separating gel, until the dye of the loading buffer had reached the bottom 

of the gel. A protein ladder was also loaded and run in parallel to estimate protein 

size and to determine transfer efficiency during western blotting. In the case of the 

ubiquitination extraction protocol, the gel was run for ~6 h until the 75 kDa band of 

the ladder had reached the end of the gel. 
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2.9.6 Protein gel staining 

Protein bands on a gel can be visualized by incubating the gel with a staining 

solution. The most commonly used methods are Coomassie staining and silver 

staining.  

Coomassie staining 

Coomassie staining was mainly used for comparative quantification of different 

protein samples in a polyacrylamide gel. The gel was completely immersed in 

Coomassie staining solution (0.25% (w/v) Coomasie Brilliant Blue-R250, 45% 

methanol, 10% glacial acetic acid, filtered through Whatman paper) and incubated 

under gentle agitation for 0.5-1 h, at RT, until it was completely stained. The gel was 

rinsed with distilled water and washed with destaining solution (30% methanol, 10% 

glacial acetic acid) 2-3 x 30 min on a shaker, until the protein bands were clearly 

visible. 

Silver staining 

Silver staining is a highly sensitive staining method and was used to detect low 

protein levels, such as proteins purified by affinity chromatography (see 2.9.3). The 

gel was fixed for 30 min (or overnight) in fixing solution and then incubated for 30 

min in sensitizing solution. After being washed 3 x 5 min in distilled water, it was 

incubated in silver solution for 20 min in the dark, to avoid oxidation by light. After 

being rinsed twice with distilled water, it was incubated in developing solution, while 

observing the appearance of bands. Once the bands were clearly visible, the 

development was terminated by incubating the gel in freshly-made stop solution for 

10 min and rinsing with distilled water. Silver stained gels could be preserved for 

months in preserving solution. 

Table 2.18. Solutions used for silver staining polyacrylamide gels 

Solutions Composition in H2Odist 

Fixing 40% (v/v) EtOH, 10% (v/v)  glacial CH3COOH 

Sensitizing 
30% (v/v) EtOH, 6.8% (w/v) CH3COONa, 0.2% (w/v) Na2S2O3·5H2O,  

freshly added 0.125% (v/v) glutaraldehyde  

Silver 0.25% (w/v) AgNO3, freshly added 0.015% (v/v) formaldehyde 

Developing 2.5% (w/v) Na2CO3, freshly added 0.0074% (v/v) formaldehyde 

Stop 1.5%  (w/v) C10H14N2Na2O8·2H2O (Na2EDTA) 

Preserving 30% (v/v) EtOH, 4% glycerol 
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2.9.7 Western blot 

The western blot is used to detect specific proteins in a protein extract. Proteins are 

separated by size using gel electrophoresis before being transferred to a PVDF or 

nitrocellulose membrane. Once immobilized on the membrane, the proteins can be 

probed with specific antibodies (primary) against either the protein itself or an 

epitope with which the protein has been tagged. Highly specific and sensitive 

detection of a protein is enabled by the use of secondary Horse Radish Peroxidase 

(HRP)-linked antibodies against the primary that catalyze a chemiluminescent 

reaction.  

Table 2.19. Solutions used for western blot 

Buffers Composition in H2Odist 

Transfer Buffer 25mM Tris, 192 mM Glycine, 20% methanol 

TBS 20 mM Tris-HCl pH 7.5, 500 mM NaCl, 0.1% (v/v) Tween 20 

TBS-Tween 10 mM Tris-HCl pH 7.5, 150 mM NaCl 

TBS-Tween-Triton 
20 mM Tris-HCl pH 7.5, 500 mM NaCl, 0.05% (v/v) Tween 20, 

0.2% (v/v) Triton X-100 

Protein transfer on PVDF membrane 

After electrophoresis (see 2.9.5) the SDS gel was equilibrated in Transfer Buffer (see 

Table 2.19) for 30 min. In the meantime, the PVDF membrane (Macherey-Nagel 

GmbH) was activated by soaking in 100% methanol for 1 min and together with 

filter papers (Whatman) was immersed in transfer buffer. The gel was placed in a 

cassette on top of a sponge and a couple of filter papers, followed by the membrane, 

two more filter papers and another sponge. The cassette was inserted in a blotting 

apparatus, filled with ice-cold Transfer Buffer, and electric current was applied 

forcing proteins to migrate on the membrane. Transfer was usually performed at 

100V for 1.5-2 h. The membrane was immersed in TBS-Tween buffer (see Table 

2.19) and stored at 4°C for further use. 

Ponceau S staining 

Transfer efficiency can be tested by staining proteins on the PVDF membrane using 

Ponceau S reagent. Ponceau S specifically binds to protein bands giving them a 

characteristic red color. The membrane was immersed in Ponceau S solution, 

incubated with mild agitation for 2 min and washed with distilled water until bands 

were visible. The membranes were destained by washing in TBS-Tween. 
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Immunostaining and chemiluminescence 

After protein transfer from an SDS-PAGE gel to a membrane, the remaining protein-

free sites of the membrane must be blocked in order to prevent the primary or 

secondary antibody from binding non-specifically directly to the membrane that 

would result in high background signal. The choice of blocking solution, washing 

solutions as well as the downstream procedure followed, depended on the antibody 

used. 

In particular, when detecting the GFP epitope, blocking was performed by 

incubating the membrane in 2% (w/v) non fat dry milk in TBS-Tween for 1 h, at RT, 

under gentle agitation. A primary mouse anti-GFP monoclonal antibody (Roche 

Diagnostics) was diluted in an aliquot of the blocking solution (1:2000) and the 

membrane was soaked in the resulting solution and incubated for 2 h, at RT, under 

gentle agitation. After 2-3 x 10 min washing in TBS-Tween buffer with vigorous 

agitation to remove non-specifically bound antibody, the membrane was incubated 

for 1 h with a secondary goat anti-mouse IgG HRP-linked antibody (Cell Signaling 

Technology Inc.) diluted in blocking buffer (1:1000-1:3500), at RT, under gentle 

agitation. Once again, the membrane was washed with TBS-Tween 3-5 x 10 min 

with vigorous agitation to remove non-specifically bound antibody. 

In the case of actin detection, a primary mouse anti-actin monoclonal (C4) 

antibody (MP Biomedicals Europe) was used in 1:2500 dilution. The membrane was 

blocked with 3% (w/v) BSA in TBS-Tween and both primary and secondary 

antibodies were diluted in that blocking solution. The procedure was the same 

followed for anti-GFP. 

To detect ubiquitin, a mouse primary anti-ubiquitin (Ub-P4D1 HRP Conjugate, 

Santa Cruz Biotechnology) antibody was used in 1:200 dilution. The downstream 

procedure and blocking solution were the same as for anti-actin antibody. However, 

to improve the accessibility of the blotted protein to the antibody, the membrane was 

incubated in freshly-made denaturating buffer (6M guanidium chloride, 20 mM Tris-

HCl pH 7.5, 1mM PMSF, 5 mM β-mercaptoethanol) for 30 min at 4°C and washed 3 

x 10 min with TBS-Tween, prior to blocking. 

For 10 x His tag, immunodetection was performed using an anti-His (PentaHis HRP 

Conjugate, Qiagen) antibody. After washing twice in TBS buffer, the membrane was 

blocked in anti-His-HRP conjugate blocking buffer (supplied by the manufacturer) 

for 1 h, at RT, under gentle agitation. The membrane was washed 2 x 10 min with 
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TBS-Tween-Triton and 1 x 10 min with TBS and was then incubated for 1 h with the 

anti-His antibody 1:2000 diluted in blocking buffer, under gentle agitation. The 

membrane was washed again 2-3 x 10 min with TBS-Tween-Triton and 1-2 x 10 min 

with TBS. Anti-His-HRP conjugate, was chemically coupled to the HRP reporter 

molecule and did not require the use of a secondary antibody. 

After the last washing step, the membrane was subjected to chemiluminescence 

reaction using the LumiSensor Chemiluminescent HRP Substrate kit (GenScript 

USA Inc), according to the manufacturer’s instructions. Briefly, 1 mL of each of the 

solutions provided was transferred in an eppendorf tube and was left in the dark for 

20-30 min, to reach RT. The membrane was dried in filter paper and covered for 90 

sec with a 1:1 mixture of the two solutions. Excess substrate was removed by 

touching the side of the membrane on a filter paper. After being covered with plastic 

foil, the membrane was exposed to a film in an autoradiography cassette for 5 sec-20 

min and developed in a dark room with Kodak developing reagents. 

2.9.8 Determination of detergent resistance 

Detergent extractability assay was performed as described in Grossmann et al. 

(2008). In brief, aliquots corresponding to 50 mg of membrane protein in 100 µL of 

50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, were treated with increasing 

concentrations of Triton X-100 (0–0.8%) for 30 min, at RT. Non-solubilised material 

was pelleted by centrifugation (30 min, at 14000 rpm, 4°C) and washed with 100 µL 

of the corresponding buffers under the same conditions. The pellets were 

resuspended in 30 µL of sample buffer, dissociated at 37°C for 15 min and then 

resolved by SDS-PAGE. UapA-GFP was detected by a specific anti-GFP antibody 

on a Western blot. Extractability of UapA-GFP by Triton X-100 from PM was 

performed by C. Gournas. 

 

 

 

 





 

333   
3 Effects of Hypertonicity 

in Transporter Endocytosis & Fungal Physiology 

Adapted from Bitsikas V.*, Karachaliou M.*, 

Gournas C. & G. Diallinas (2011) Mol Membr Biol 28: 54-68 

*equal contribution 

3.1 State of the art 

Biological membranes were long considered to be a fluid mixture of lipids organized 

in a homogenous bilayer, which serves as a solvent for membrane proteins. In 

contrast, current models underscore the high lateral compartmentation of membranes, 

consisting of lipid microdomains, so-called rafts, which are enriched in sterols and 

sphingolipids, and in specific raft proteins. Owing to their insolubility in mild non-

ionic detergents at 4°C, these microdomains are defined as detergent-resistant 

membranes (DRMs; (Kubler et al., 1996; Simons and Ikonen, 1997; Brown and 

London, 1998; Wachtler et al., 2003).  

In S. cerevisiae, two different non-overlapping lateral PM compartments have 

been distinguished so far; the membrane compartment occupied by proton ATPase 

Pma1 (MCP) and the membrane compartment occupied by arginine transporter Can1 

(MCC), which is also accommodating permeases specific for tryptophan (Tat2) and 

uracil (Fur4), as well as Sur7, a protein presumably involved in endocytosis. In the 



 
Effects of Hypertonicity in Transporter Endocytosis & Fungal Physiology 134 

resolution of fluorescence microscopy, MCC and MCP together cover the whole PM 

surface. However, in contrast to mammalian cells, yeast membrane domains are 

sufficiently large and distant from each other to be resolved. MCC consists of 

isolated patches about 300 nm in diameter, whereas MCP exhibits a complementary, 

network-like pattern (Grossmann et al., 2007). Electron microscopy analysis 

suggested that MCC patches correspond to furrow-like invaginations in the PM of 

yeast (Strádalová et al., 2009). MCCs contain a distinct lipid composition enriched in 

ergosterol, as visualized by staining with filipin, a fluorescent marker binding this 

lipid (Malínská et al., 2003; Grossmann et al., 2007), but also as supported by 

transporter extractability assays from membranes using Triton-X 100 (Grossmann et 

al., 2007). The compartmentation of the PM into MCC and MCP is highly stable, but 

transporters dock within MCC patches in a reversible, membrane-potential 

dependent manner (Malinska et al., 2004; Grossmann et al., 2007).  

Based on a number of observations relating the rate of transporter endocytosis 

with localization in MCC patches, it has been proposed that the biological function 

of MCC is to protect therein embedded transporters and other proteins from 

internalization and turnover (Grossmann et al., 2008). This view contradicts other 

studies showing that MCC organization is, at least in part, mediated by large protein 

complexes called eisosomes, which were proposed to mark static sites of endocytosis 

(Walther et al., 2006). Eisosomes have also been observed in other fungi, Candida 

albicans, Schizosaccharomyces pombe, A. nidulans and Ashbya gossypii (Alvarez et 

al., 2008; Vangelatos et al., 2010; Seger et al., 2011; Kabeche et al., 2011). One 

possible function of MCC and eisosomes is to regulate protein and lipid abundance 

by sorting them into distinct, spatially separated pools where they are stabilized or 

from which they can be either endocytosed, or protected from internalization, 

selectively. 

3.2 Aim of study 

In A. nidulans, all characterized transporters, belonging to widely different families, 

show a continuous rather than punctuate pattern (Scazzocchio et al., 2011). However, 

in the course of previous work, we observed that some A. nidulans transporters 

tagged with GFP form fluorescent cortical patches, when the hyphae were washed in 

buffers containing relatively high salt concentrations (Andreas Pavlides and George 

Diallinas). This observation prompted us to investigate the conditions eliciting the 
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appearance of transporters in cortical patches and to examine the possibility of these 

patches corresponding to transporter-specific microdomains or membrane 

compartments similar to MCC. We also wanted to test the effect of hypertonic 

conditions on the physiology, the development and the endocytic mechanisms, of A. 

nidulans. Finally, we wished to explore whether this phenomenon is specific for our 

model organism or it can be reproduced in other fungal species. To this end, we 

examined the effect of hypertonic conditions in the model fungus S. cerevisiae, in 

respect to growth and transporter subcellular localization and endocytosis.  

3.3 Results & Discussion 

3.3.1 Hypertonic media elicit a cortical patchy appearance of transporters 

Using functional GFP-tagged versions of seven A. nidulans transporters belonging to 

four evolutionary distinct protein families (NAT/NCS2, NCS1, AzgA-like, APC; 

http://www.membranetransport.org/), we have found that after transcriptional 

activation of the corresponding genes during conidiospore germination, transporter 

polypeptides show a rather uniform distribution along the PM of germlings and 

developing mycelia. A similar picture of uniform PM distribution was also observed 

in other Aspergillus transporters studied using GFP (Forment et al., 2006; Apostolaki 

et al., 2009). This contrasts the case of several S. cerevisiae transporters that appear 

to form discrete cortical foci, corresponding to MCC or MCP (see 3.1). A 

representative picture of transporter cellular expression in A. nidulans is shown in the 

upper panel of Figure 3.1A and B. In this figure, UapA (Gorfinkiel et al., 1993) is a 

carrier specific for uric acid-xanthine (NAT family), AzgA (Cecchetto et al., 2004) is 

carrier specific for adenine-guanine-hypoxanthine (AzgA-like family), PrnB 

(Tazebay et al., 1997) is a proline permease (APC family) and FurD (Amillis et al., 

2007) is a uracil permease (NCS1 family). 

The cellular expression of the A. nidulans GFP-tagged transporters was also 

examined in samples treated for 1-5 min with NaCl or sucrose. Under these 

conditions, we observed the rapid appearance of cortical fluorescent patches, as those 

shown in the lower panels of Figure 3.1A and B. By using a strain simultaneously 

expressing two of these transporters, UapA and AzgA, tagged with mRFP and GFP 

respectively, we showed that at least these permeases co-localize in the same patches 

(Figure 3.1C). 
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Figure 3.1. A. Hypertonic media elicit a cortical patchy appearance of A. nidulans GFP-tagged 

transporters observed by epifluorescence microscopy. Upper panel: Control samples (−) were grown 

for 13 h in minimal media (urea 5 mM, glucose 1%) at 25° C, which permit the induction of 

transporters during conidiospore germination (Pantazopoulou and Diallinas, 2007). Lower panels: 

Samples grown similarly as control samples, but then transferred to the same media containing 0.8 M 

Sucrose (Suc) or 0.5 M NaCl. Here and in several subsequent figures, images were converted to 8-bit 

inverted grayscale. The microscopy for A was performed by V. Bitsikas B. Confocal laser scanning 

microscopy of UapA-GFP cellular expression in control media (−) or after 1 min exposure to 0.8 M 

Sucrose (Suc). C. Epifluorescence microscopy of a strain expressing simultaneously UapA-mRFP and 

AzgA-GFP in control (−) or hypertonic (Suc, NaCl) media. Notice the overlap of red and green 

fluorescence (merge). Scale bars shown here and in subsequent figures correspond to 5 µm unless 

otherwise stated. 
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The kinetics of appearance of patches and most subsequent work were 

performed using a fully functional UapA-GFP transporter expressed from a strong 

controllable promoter (alcAp) (Gournas et al., 2010). Patch appearance depended on 

the concentration of sucrose or NaCl (Figure 3.2). The minimum concentrations of 

sucrose or NaCl eliciting the appearance of patches were determined to be 400 mM 

and 200 mM, respectively, in agreement with the relative hypertonic strength of 

these two solutes. Patches formed by the two solutes looked identical and their 

number and size depended on tonicity strength. The hypertonic effect imposed on 

mycelia was more evident at higher concentrations where hyphae became thinner, 

apparently due to water loss. The size of patches ranged from 0.5 through 2.3 µm. 

 

 

Figure 3.2. Kinetics of appearance of cortical patches in a strain expressing UapA-GFP from the alcA 

promoter (alcAp-UapA-GFP) in hypertonic media (1min) in response to tonicity strength. Samples 

were grown for 14-15 h in derepressing minimal media (urea 5 mM, fructose 0.1%), at 25°C, which 

permits the induction of UapA-GFP from alcAp. 

Patches were shown to appear transiently, as they disappeared in overnight 

cultures in hypertonic media (Figure 3.3A). We estimated this recovery from the 

patchy appearance to take place after 4-8 h in sucrose (800 mM) or 2-4 h in NaCl 

(500 mM) (Figure 3.3A). Finally, patches disappeared rapidly (15 min) when sucrose 

or NaCl was washed-out (Figure 3.3B). 
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Figure 3.3. A. Disassembly of alcAp-UapA-GFP fluorescent patches after prolonged growth (4h or 

16h) in hypertonic media (Suc or NaCl). B. Wash-out of alcAp-UapA-GFP fluorescent patches (NaCl) 

after 10 min transfer to control (-) media. The figure shows epifluorescence microscopy images. The 

scale bar shown is 10 µΜ. 

Several other hypertonic media (LiCl, KCl, Na2PO4, NH4Cl, sorbitol or 

mannitol) led to patchy distribution of UapA, whereas other stress conditions such as 

the presence of most divalent ions or heavy metals, protein synthesis blockage 

(cycloheximide), the presence of proton gradient uncouplers or extreme pH, had no 

effect (Figure 3.4). 

 

 

Figure 3.4. Examination by epifluorescence microscopy of UapA-specific fluorescent cortical patches 

after treatment with various salts (0.5 M), sugars (0.8 M), cycloheximide (chx; 20 µg/ml, 15 min prior 

to examination), different pH or the proton gradient uncoupler CCCP (30 µΜ, 15 min prior to 

examination). UapA-GFP is expressed from the alcA promoter (alcAp-UapA-GFP) as described in 

Figure 3.3. Notice that only monovalent ions and sugars (mostly Sor) lead to fluorescent patches. The 

microscopy for this figure was performed by V. Bitsikas and the author. Sor: Sorbitol; Man: Mannitol. 
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3.3.2 Patches correspond to PM invaginations rather than transporter-specific 

microdomains 

Some patches, especially those produced under stronger tonicity, although clearly 

PM-associated, seem to extend beyond the membrane towards the cytoplasm. This 

was more clearly seen in deconvoluted Z-stack images, which strongly supported 

that patches correspond to membrane invaginations (Figure 3.5). This observation is 

in full agreement with two reports in S. cerevisiae (Slaninová et al., 2000) and 

Aspergillus repens (Kelavkar et al., 1993) directly showing, using transmission 

electron microscopy (TEM), that hypertonic media lead to PM invaginations, that 

can be extended deeply in the cytoplasm. 

 

 

Figure 3.5. Fluorescent, UapA-GFP specific (alcAp-UapA-GFP), patches correspond to PM 

invaginations (arrow heads) visible in deconvoluted images obtained with an inverted microscope. 

Maximal intensity projections obtained from z-stacks using the Metamorph 3D are shown. Two 

samples treated with sucrose (0.8 M) are shown compared with an untreated control. Microscopy and 

deconvolution for this figure was performed by A. Pantazopoulou and G. Diallinas. 

We obtained independent evidence that fluorescent patches, initially observed 

using GFP-tagged transporters, are PM invaginations rather than specific transporter 

microdomains. This evidence is based on the following observations. First, similar 

patches were observed using two other PM-associated polypeptides. These are the 

pleckstrin homology (PH) domain of PLC-δ1, specifically recognizing the PM 

PI(4,5)P2 lipids (Pantazopoulou and Peñalva, 2009) and the SsoA t-Snare, a protein 

that serves as a membrane-specific tag in the docking of transport vesicles to the PM 

(Taheri-Talesh et al., 2008; Figure 3.6A). Second, similar patches were also 

observed in hypertonic conditions, using the lipophilic markers FM4-64 (Peñalva, 

2005) or Filipin (Takeshita et al., 2008; Figure 3.6B). Thirdly, since known PM 

microdomains have a distinct raft-like lipid composition, we tested the extractability 

of UapA by Triton X-100 from membranes. This biochemical approach is a standard 
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Figure 3.6. A. Fluorescent patches detected with membrane-associated molecular markers other than 

transporters in hypertonic conditions. ‘PH domain’ is a GFP-tagged duplication of the PLC-δ1 PH 

domain which acts as an exclusive marker for the PM through its high affinity binding of PI(4,5)P2 

lipids. SsoA is a GFP-tagged t-Snare exocytic protein that attaches to the inner leaflet of the PM. B. 

Filipin and FM4-64 are fluorescent lipophilic markers labelling the PM under specific conditions. 

Microscopy for Filipin and FM4-64 were performed by C. Gournas and V. Bitsikas, respectively. 

assay used to detect partitioning of transporters in detergent resistant membranes 

(DRMs), which seems to be the biochemical equivalent of lipid-raft microdomains 

(Grossmann et al., 2007). Figure 3.7C shows that UapA extractability was identical 

in standard and hypertonic media. Fourthly, direct transport measurements of 

radiolabelled 
3
H-xanthine performed under hypertonic conditions showed that UapA-

GFP remains fully functional, showing a Km value (8 µΜ) and transport capacity 

nearly identical to the one obtained in standard media (Figure 3.7A).  

Finally, using Calcofluor staining, a marker of cell wall material such as chitin 

or β-1,3-glucan, we showed that control samples exhibited a uniform fluorescence on 

their surfaces, whereas cells shifted to hyperosmotic medium showed cortical 

fluorescent patches. Several Calcofluor patches overlapped with UapA-GFP patches 

(Figure 3.7B). The intensity of Calcofluor or UapA-GFP fluorescence intensified 

with increased time of exposure to hyperosmotic conditions (not shown). These 

results strongly suggest that invaginated areas of the PM are rapidly filled with cell 

wall material, either through de novo synthesis or reorganization of pre-existing 

periplasmic material. Similar observations were reported in yeast (Slaninová et al., 

2000) and plants (Komis et al., 2002). The simplest explanation of all the above 
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results is that fluorescent patches obtained with different markers represent PM 

invaginations, rather than specific microdomains with distinct lipid composition. 

 

 

Figure 3.7. A. UapA-mediated (alcAp-UapA-GFP) 
3
H-xanthine transport capacity after exposure to 

hypertonic treatment (0.8 M sucrose or 0.5 NaCl, 10 min; performed by V. Bitsikas). The Km value of 

UapA-GFP for xanthine, established in hypertonic media, is also shown (8 µΜ)..B. Calcofluor 

staining showing overlap of UapA-GFP patches with deposition of cell wall material (0.8 M sucrose). 

C. Extractability of UapA-GFP by Triton X-100 from PMs is identical in standard media before and 

after exposure to hypertonic treatment (0.8 M sucrose, 10 min; performed by C. Gournas)  

3.3.3 Hypertonic media elicit transient blockage of endocytosis and growth arrest 

Sucrose has been reported to be a specific clathrin-dependent inhibitor of receptor 

and transporter endocytosis in mammalian cells (Heuser and Anderson, 1989). This 

observation prompted us to investigate whether sucrose or other hypertonic media 

have an effect on endocytosis of UapA-GFP either in response to the presence of 

NH4
+ 

ions or substrates (uric acid or xanthine). We observed that the addition of 

sucrose (0.8 M) or NaCl (0.5 M) prior to NH4
+
 or uric acid abolished the endocytosis 

and turnover of UapA-GFP (Figure 3.8A and B). 

As expected, we also observed that in the presence of sucrose or NaCl, UapA-

GFP molecules appeared in the PM patches described earlier. The block in 

transporter endocytosis and turnover was confirmed by western blot analysis, which 

showed the absence of free GFP in samples grown for the last hour in the presence of 

NH4
+
 or uric acid under hypertonic treatment (Figure 3.8C). The appearance of free 

GFP is a well-established marker of endocytosis and vacuolar turnover of UapA-GFP 
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and other GFP-tagged transporters (Gournas et al., 2010). The blockage of UapA-

GFP endocytosis was transient, as its internalization recovered with kinetics 

practically identical to those of patch disassembly after longer exposures to 

hypertonic media (Figure 3.8D). In addition, the minimal concentration of hypertonic 

solutes blocking UapA-GFP endocytosis was practically identical to that leading to 

plasmolysis (~0.45 sucrose, ≥ 0.2 M NaCl). 

 

 

Figure 3.8. A. Hypertonic media elicit a blockage of UapA-GFP endocytosis. In control samples 

UapA-GFP (alcAp-UapA-GFP) endocytosis is elicited upon transfer for 1h to standard media with 

either 1 mM uric acid (UA) or 20 mM ammonium ions (NH4
+
). Under these conditions UapA-GFP is 

internalized and degraded in the vacuoles (appearing as prominent fluorescent granules in the 

cytoplasm) through sorting in the MBV pathway. Here and in all subsequent figures, unless otherwise 

stated, hypertonic conditions are imposed by transfer to standard media with 0.8 M sucrose or 0.5 M 

NaCl. Notice that after hypertonic treatment there are UapA-GFP cortical fluorescent patches but no 

vacuoles visible in conditions that normally lead to UapA-GFP turnover. Microscopy was performed 

V. Bitsikas. B. UapA-GFP (alcAp-UapA-GFP) endocytosis by NH4
+
 in a control sample and blockage 

of UapA-GFP endocytosis by NH4
+
 after hypertonic treatment, as seen with inverted confocal laser 

microscopy in a single hypha. C. Western blot analysis of membrane protein fractions corresponding 

to 2 h addition of uric acid (UA) or NH4
+

 and controls (-), probed with anti-GFP. The low mobility 

band corresponds to intact UapA-GFP (alcAp-UapA-GFP) and the high mobility band to free GFP 

produced through vacuolar degradation of UapA. The western blot was performed by C. Gournas. D. 

Recovery of NH4
+
-elicited endocytosis of UapA-GFP (alcAp-UapA-GFP) after prolonged growth (16 

h) in hypertonic media. 
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In the course of the experiments described above, we noticed a significant 

delay in growth rate in samples exposed to hypertonicity. Figure 3.9A shows that this 

delay is maximal (40% reduction in colony radius) in media containing a non-

catabolic carbon source such as fructose (0.1%), while it is more moderate (20% 

reduction) in carbon catabolite repressing (1% glucose) media. Figure 3.9B shows a 

quantification of this growth arrest expressed as reduction in average hyphal length 

after hypertonic treatment (20-40% reduction in germ tube length). The delay in 

growth recovered after longer exposures to hypertonic media, as did the appearance 

of fluorescent patches and the block in endocytosis (not shown). 

 

` 

Figure 3.9. Hypertonic media elicit growth arrest of A. nidulans. A. Growth tests of two isogenic 

strains expressing UapA-GFP from either its native promoter (used for Fig. 1) or from the alcA 

promoter (used for all other figures). 0.5 NaCl was used for hypertonic treatment and tests were 

carried out in minimal media with fructose (0.1%) or glucose (1%) as carbon sources. NaCl led to a 

reduction of both the diameter of colonies and conidiospore production. The reduction of growth was 

stronger in fructose media. B. Reduction of hyphal length upon addition of either 0.8M sucrose or 0.5 

M NaCl for 4h in the strain expressing alcAp-UapA-GFP grown in fructose media. Measurements of 

hyphal length were performed by V. Bitsikas. 

3.3.4 Hypertonicity affects actin dynamics and thus blocks endocytosis 

A block in endocytosis can occur at several steps concerning the formation and 

internalization of the endocytic vesicle. To address this question we examined how 

basic elements of this process are affected by tonicity. In particular, we examined the 

cellular organization of well-characterized upstream (SlaB) and downstream (AbpA) 

endocytic factors, as well as that of tropomyosin (TpmA), tagged with either GFP or 

mRFP, under standard or hypertonic growth conditions. SlaB (Araujo-Bazán et al., 

2008) is a Sla2 S. cerevisiae orthologue (Wesp et al., 1997), which acts as a well-

characterized endocytosis regulator involved in the formation of early actin patch 

components (Newpher et al., 2005). In particular, Sla2 regulates the association of 

the clathrin endocytic machinery with actin polymerization (Newpher and Lemmon, 

2006).  
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AbpA (Araujo-Bazán et al., 2008) is homologue of Abp1 in S. cerevisiae, 

which is a late endocytic vesicle formation component. It appears near the end of 

Sla2 lifetime, is localized exclusively to cortical endocytic actin filaments/patches 

(Huckaba et al., 2004; Quintero-Monzon et al., 2005) and does not associate with 

actin cables (Huckaba et al., 2004). In A. nidulans, AbpA and SlaB are strongly 

polarized in hyphae, forming a ring that embraces the hyphal tip, leaving an area of 

exclusion at the apex (Araujo-Bazán et al., 2008). AbpA localizes to highly motile 

and transient peripheral foci overlapping with actin patches, which predominate in 

the tip (Taheri-Talesh et al., 2008). SlaB also localizes to peripheral foci, but these 

are markedly more abundant and cortical than those of AbpA (Araujo-Bazán et al., 

2008). Based on SlaB and AbpA cellular dynamics, it has been proposed that spatial 

association of exocytosis with endocytosis at the fungal tip underlies hyphal growth. 

Interestingly and unlike the case in S. cerevisiae, SlaB is an essential gene revealing 

a major role of endocytosis in filamentous fungal growth.  

Tropomyosin (TpmA) is a major actin-binding protein that regulates actin 

mechanics (Stewart, 2001). A GFP-TpmA fusion has been used to image actin 

cables, which was not feasible with GFP-actin fusions, in A. nidulans (Pearson et al., 

2004; Taheri-Talesh et al., 2008). GFP-TpmA is concentrated near the apex and at 

forming septa
 
(Pearson et al., 2004; Taheri-Talesh et al., 2008), labels actin cables 

along the hyphae, but does not seem to co-localize with endocytic actin patches. 

Figure 3.10A (upper panels) shows that, as expected, SlaB and AbpA form 

cortical foci which are mostly concentrated at the tip of hyphae, whereas TpmA has a 

rather diffuse localization in the cytosol, but also clearly labels actin cables along the 

hyphal axis and the tip region. The lower panels in Figure 3.10A show that neither 

sucrose nor NaCl affected the cortical and polar appearance of SlaB-GFP or AbpA-

mRFP foci, whereas hypertonic media dramatically modified the cellular localization 

of GFP-TpmA. More specifically, fluorescence was not any longer associated with 

actin cables and the tips of the hyphae, but was apparent as diffuse cytosolic 

fluorescence and in scattered cortical foci along the axis of the hyphae. This picture 

constitutes strong evidence that hypertonic media modify actin dynamics, rather than 

the formation of cortical endocytic complexes per se, probably through immediate 

actin de-polymerization followed by rapid localized re-polymerization. A similar 

conclusion has been proposed for the effect of tonicity in plants (Komis et al., 2002). 
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Figure 3.10. Hypertonicity and Lat-B effects on actin dynamics and the endocytic machinery. 

Microscopy was performed by V. Bitsikas. A. Cellular localization of SlaB, AbpA and of TpmA, 

tagged with either GFP or mRFP, under standard or hypertonic growth conditions. Samples were 

treated as previously described. SlaB-GFP and AbpA-mRFP form cortical foci which predominate at 

the tip of hyphae under all conditions. GFP-TpmA in standard conditions (-) labels diffusely the 

cytosol and more strongly actin-like cables along the hyphal length and the tip. In hypertonic 

conditions (Suc) labelling of the actin cables and the tip disappears and scattered cortical patches 

appear along the hyphal length. B. Effect of Lat-B (50 µM) on the subcellular localization of UapA (-

GFP or -mRFP tagged) in standard (-), endocytic (NH4
+
) or hypertonic (Suc) conditions. The effect of 

Lat-B on AbpA-GFP and SlaB-GFP was also examined as a control. Lat-B leads to the disassembly of 

all AbpA patches as expected (Araujo-Bazán et al., 2008), but has a minor effect on SlaB, as only the 

patches at the tip seem to disassemble. Lat-B has no effect on either the normal uniform localization 

of UapA in the PM in standard media (-) or on the appearance of UapA-specific fluorescent patches 

(plasmolysis) in hypertonic media (Lat-B+Suc). In contrast, Lat-B blocked the internalization of 

UapA by NH4
+
. Note that in the latter case, UapA cortical foci are also visible (arrows). 
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We also tested how actin de-polymerization triggered by Latrunculin B (Lat-B) 

(Taheri-Talesh et al., 2008) affects plasmolysis and transporter endocytosis. As a 

control of Lat-B action we followed its effect on AbpA, but also on SlaB. Figure 

3.10B shows that Lat-B led to complete disassembly of AbpA patches, as expected 

(Pantazopoulou and Peñalva, 2009), but had a moderate apparent effect on SlaB 

patches, more evident at the tip. This might be due to the fact that, unlike AbpA, 

SlaB regulates F-actin polymerization but contains a PI(4,5)P2 binding domain that 

contributes to its PM localization. Lat-B had no effect on either the localization of 

UapA-GFP in the PM, or on the appearance of UapA-GFP cortical patches 

(plasmolysis), but blocked UapA-GFP endocytosis by NH4
+
 (Figure 3.10B). 

Therefore, both hypertonicity and Lat-B blocked endocytosis, suggesting that 

hypertonicity, similarly to Lat-B, might act through an effect on actin dynamics. 

3.3.5 Hypertonic conditions elicit similar phenomena in S. cerevisiae  

We tested the effect of similar conditions and studied the response of S. cerevisiae to 

hypertonicity. In these studies we used a strain expressing a functional GFP-tagged 

version of the lactate (Jen1) permease, a transporter that in standard media labels 

uniformly the PM. Jen1 is endocytosed and degraded through the MVB pathway in 

response to the presence of a preferred carbon source such as glucose. Figure 3.11 

shows that both sucrose and NaCl lead to the appearance of prominent Jen1-specific 

fluorescent patches. These patches are clearly distinguishable from the Fur4p-

specific MCC foci observed in the standard media, the former being larger and 

extended towards the cytoplasm as expected for PM invaginations.  

In addition, Figure 3.11 shows that under hypertonic conditions, the 

endocytosis of Jen1 by glucose is totally blocked. As in A. nidulans, patch 

appearance and blockage of endocytosis showed similar kinetics and both 

phenomena recovered after 10-14 h in hypertonic media (not shown). Finally, 

similarly to A. nidulans, hypertonic media elicited a growth arrest (Figure 3.11), 

which has also been observed by others (Slaninová et al., 2000; Hohmann et al., 

2007). A notable difference between the response of the two fungi to hypertonicity 

was that S. cerevisiae proved more resistant than A. nidulans to tonicity, that is, 2-

fold higher concentrations of sucrose (1.6 M) or NaCl (1 M) were needed to elicit 

plasmolysis, blockage of endocytosis and growth arrest. Similar results were also 

obtained with a second S. cerevisiae transporter (Fur4; results not shown). 
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Figure 3.11. Hypertonic conditions elicit similar phenomena in S. cerevisiae as in A. nidulans. 

Epifluorescence microscopy images of a S. cerevisiae strain expressing a functional Jen1p-GFP 

chimeric transporter are shown. Jen1p-GFP is expressed uniformly in the PM under standard 

conditions of induction (-) but is rapidly internalized (20 min) and eventually degraded in the vacuole 

(60 min) upon addition of 1% glucose (Paiva et al., 2009). Hypertonic treatment (1.6 M sucrose or 1 

M NaCl) for 1 min leads to the appearance of mostly cortical fluorescent patches and shows no 

evidence of internalization or degradation of by glucose. The last panel shows the growth arrest 

elicited by addition of 1 M NaCl in the Jen1-GFP strain at an OD640nm of 0.5. Scale bar: 10 µΜ. 
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4.1 State of the art 

Similar to a number of A. nidulans (PrnB, UapC, AgtA) and A. oryzae (AoUapC) 

transporters involved in the uptake of amino acids and purines (Valdez-Taubas et al., 

2004; Pantazopoulou et al., 2007; Higuchi et al., 2009; Apostolaki et al., 2009), 

UapA is down-regulated in response to ammonium ions (for details see 1.5.6). 

Recently, a novel downregulation mechanism was revealed; it was shown that UapA 

endocytosis and sorting into the endosomal degradation pathway is elicited not only 

by NH4
+
, but also by the presence of its substrates. Substrate-induced turnover is 

independent of UapA transcriptional induction or intracellular concentration of uric 

acid and it occurs at concentrations as low as 5 µΜ. Remarkably, substrate-elicited 

endocytosis, unlike NH4
+
-induced turnover, is absolutely dependent on UapA 

transport activity (see also 5.1; Gournas et al., 2010).  
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Although the activity dependence clearly distinguishes this phenomenon from 

NH4
+
-induced endocytosis, both phenomena require UapA ubiquitination, which is 

mediated by HulA ubiquitin ligase, the only Rsp5 homologue of A. nidulans. 

Deletion of the C2 domain of HulA, dramatically blocked UapA ubiquitination and 

endocytosis, as evidenced by epifluorescence microscopy (Figure 4.1) and western 

blot analysis. Similar results were obtained by the substitution of the only Lys 

residue of the cytoplasmic C-terminal region of UapA (K572). In marked contrast, 

substitution of all five Lys residues located in the cytoplasmic N-terminal region of 

UapA (K21, K22, K59, K60, K73) did not have any effect in the internalization of 

the transporter, showing that HulA acts at a single Lys residue (Figure 4.1; Gournas 

et al., 2010).  

The convergence of broad-range and specific endocytic signals to a common 

ubiquitination mechanism suggested that different adaptors are recruited for each 

signal or that UapA is differentially modified when actively transporting its 

substrates or when NH4
+
 cellular levels increase (Gournas et al., 2010). Therefore, 

the next step towards the elucidation of the mechanisms regulating UapA 

ubiquitination and endocytosis was the identification of the adaptor proteins involved 

in this procedure. 

 

 

Figure 4.1. Epifluorescence microscopy of UapA-GFP subcellular localization under non-endocytic    

(-) or endocytic conditions (NH4
+
 or uric acid, UA) in strains bearing a deletion of the C2 domain of 

HulA or a substitution of the Lys572 located in the cytosolic C-terminal region of UapA or 

substitutions of all five Lys residues present in the cytosolic N-terminal region of UapA. Scale bar 5 

µm (adapted from Gournas et al., 2010). 
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Most of the advances in the study of intracellular trafficking have been 

achieved using the well-established prototype fungus S. cerevisiae. In order to take 

full advantage of the large collection of relevant mutations available, we established 

a heterologous system of UapA expression. The fact that S. cerevisiae lacks 

transporters of oxidized purines (xanthine and uric acid) made this model system 

appropriate for our purposes. Heterologously expressed UapA was fully functional 

and predominantly localized in the PM (Leung et al., 2010). However, 

epifluorescence microscopy and uptake assays under standard endocytic conditions 

showed that UapA cannot be endocytosed in this system, at least under the 

conditions tested (Mayia Karachaliou and George Diallinas, unpublished 

observations). Hence, the investigation for the adaptor proteins involved in UapA 

turnover was carried out in A. nidulans.  

4.2 Aim of study 

In S. cerevisiae, Rsp5-dependent ubiquitination of transporters at the PM is mediated 

by arrestin-like adaptor proteins containing PY motifs that interact with the WW 

domains of the ubiquitin ligase. The aim of this part of the study was to examine 

whether arrestin-like proteins have an analogous role in A. nidulans and if so which 

proteins are specific for selected transporters and under which conditions. In this 

direction, we primarily wanted to identify the arrestin(s) that serve as HulA adaptors 

and are responsible for UapA ubiquitination and endocytosis in response to NH4
+ 

or 

its substrates. Systematic knock outs led to the recognition of one arrestin-like 

adaptor, ArtA, involved in UapA endocytosis by both signals. Other questions raised 

include the identification of the interaction interface between the transporter and the 

adaptor, as well as the subcellular localization where these interactions occur. In 

addition, we wished to explore the importance of the PY motifs for the function of 

the ArtA and the possibility of its involvement in the ubiquitination of other A. 

nidulans transporters. Finally, it has been shown that in S. cerevisiae arrestin-like 

proteins are themselves ubiquitinated, which seems to be part of the mechanism 

regulating their action. Based on that, we investigated whether ArtA is ubiquitinated, 

in what conditions and what is the significance of this modification for UapA 

ubiquitination and endocytosis. 
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4.3 Results & Discussion 

4.3.1 Phenotypic analysis of null mutants of genes encoding arrestin-like 

proteins in A. nidulans 

A. nidulans has 10 genes coding for putative arrestin-like proteins, most of which 

contain PY elements (Figure 4.2). Three of them, palF, creD and apyA have been 

previously described (see 1.6.7). Seven more arrestin-like genes were identified and 

named  artA (ANID_00056.1), artB (ANID_01089.1), artC (ANID_01743.1), artD 

(ANID_09105.1), artE (ANID_02447.1), artF (ANID_03302.1) and artG 

(ANID_05453.1). In silico analysis was performed by S. Amillis. 

 

 

Figure 4.2. Schematical representation of the actual positions of putative PY elements in the A. 

nidulans arrestin-like protein sequences. Noticeably, ArtC has no canonical PY elements. 

A comparison of the arrestin-like proteins of A. nidulans with the well 

characterized arrestin-like proteins of S. cerevisiae showed that ArtA is significantly 

more similar to the Art1/Ldb19/Cvs7 (21.4% identity) than to any other arrestin-like 

protein of S. cerevisiae. Art1 is an arrestin that is necessary for the endocytosis of 

several nitrogen-containing compounds, such as amino acids and uracil (Lin et al., 

2008; Nikko et al., 2008; Léon and Haguenauer-Tsapis, 2009; Nikko and Pelham, 

2009; MacGurn et al., 2011). CreD is mostly similar to Art4/Rod1 and Art7/Rog3 

(24.1-26.7% identity), the former being involved in the endocytosis of the glucose 

transporter Htx6p and of the lactate permease Jen1 (Nikko and Pelham, 2009; 

Becuwe, Vieira, et al., 2012). The remaining ART proteins of A. nidulans share less 

clear-cut similarities with those of S. cerevisiae (identities up to 19.1%). 

Null mutant strains for nine genes encoding arrestin-like proteins (artA, artB, 

artC, artD, artE, artF, artG, apyA, creD) were constructed by S. Amillis. The knock-
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out mutant of the tenth arrestin, palF∆, was a gift from Prof. H. Arst. All knock-out 

null mutants were viable and could thus be tested directly for their morphology and 

rate of growth in different temperatures (25°C and 37°C), pH values, nitrogen or 

carbon sources and toxic analogues of purines, pyrimidines and amino acids. 

Highlights of this analysis are shown in Figure 4.3. Increased sensitivity towards 

toxic compounds has been used to identify arrestin-like genes in S. cerevisiae (Lin et 

al., 2008; Nikko et al., 2008).  

 

 

Figure 4.3. Growth phenotypes of arrestin null mutants. Minimal medium with 10 mM NH4
+
 as 

nitrogen source was used as a growth rate control. Hypoxanthine and sodium nitrate were used as 

nitrogen sources with the toxic analogues allopurinol (Allop) and 8-azaguanine (8-Azg), respectively. 

Growth tests were at 37°C and pH 6.8 and were performed by S. Amillis. In the lowest panel, 

vegetative microscopic samples of hyphal cells growing on minimal medium with glucose as carbon 

source and NH4
+
 as nitrogen source (16 h at 25°C) are shown after staining with Calcofluor white. 

Among the ten arrestin knock-outs, artE∆ showed an inability to produce 

coloured asexual conidiospores, decorating the surface of the colony. Several of the 

knock-out mutants showed different growth rates on various nitrogen or carbon 

sources and especially in respect to resistance or sensitivity to the toxic analogues 

tested. In regard to UapA, which is the primary subject of this work, artA∆ showed 

increased sensitivity to allopurinol, a well established substrate of this transporter 

(Diallinas and Scazzocchio, 1989). artA∆ also showed increased sensitivity to 8-

azaguanine, a substrate of the AzgA purine transporter (Cecchetto et al., 2004). As 

will be shown below, ArtA is indeed responsible for the endocytic turnover of both 

UapA and AzgA, in full accordance with the increased sensitivity observed for the 

artA∆ mutant to allopurinol and 8-azaguanine (Figure 4.3). Finally, none of the 



 
Mechanisms of Regulation of Transporter Ubiquitination & Endocytosis 154 

arrestin knock-outs showed altered polar growth or hyphal morphology, as evidenced 

by epifluorescence microscopic analysis of samples stained with Calcofluor white 

(Figure 4.3 lowest panel). 

4.3.2 A single arrestin is necessary for UapA endocytosis in response to NH4
+
 or 

excess substrate 

In order to investigate the role of all arrestin-like proteins in the endocytosis and/or 

MVB sorting of UapA, all relevant null mutants were crossed with a strain 

expressing a fully functional UapA-GFP version from its endogenous promoter 

(Gournas et al., 2010). Genetic crosses were performed by S. Amillis. The strain 

expressing UapA-GFP was deleted for the homologous uapC gene, encoding a 

secondary uric acid/xanthine transporter (Diallinas et al., 1995), so that uric acid or 

xanthine uptake was solely mediated by UapA. Isogenic progeny was selected and 

analyzed for UapA-GFP subcellular localization and endocytosis by epifluorescence 

microscopy. Results are summarized in Figure 4.4.  

None of the arrestin knock-out deletions had any effect on the expression or 

localization of UapA-GFP in the PM, visible in the hyphal periphery and in the septa, 

under control conditions. Under endocytic conditions, imposed by the presence of 

NH4
+
 or excess substrate (uric acid), where UapA-GFP is normally internalized and 

sorted in MVBs/vacuoles (see wild-type control in Figure 4.4 and Figure 4.5), a 

single arrestin null mutant, artA∆, showed no UapA-GFP vacuolar turnover. In all 

other arrestin knock-out deletion mutants UapA-GFP is turned-over similarly to the 

wild-type control in the presence of NH4
+
 or excess substrate. Given that we have 

previously shown that UapA-GFP vacuolar turnover occurs exclusively via 

endocytosis and not through direct sorting from the Golgi to the vacuole (Gournas et 

al., 2010), our results strongly suggest that lack of a functional ArtA blocks UapA 

internalization from the PM. 

To show more rigorously that ArtA controls UapA endocytosis and vacuolar 

turnover, artA
+ 

and artA∆ isogenic strains expressing UapA-GFP from the strong 

controllable alcAp promoter (Gournas et al., 2010) were constructed (by S. Amillis). 

These strains lack the genomic copies of uapA and uapC (i.e. uapA∆ uapC∆) so that 

uric acid or xanthine uptake takes place through the integrated copy of alcAp-UapA-

GFP, expressed solely under de-repressed conditions (fructose as sole carbon 

source). In the presence of glucose (repressing carbon source) no UapA-GFP 
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expression or transport activity can be detected. Using the alcAp system had two 

advantages. First, we could uncouple ammonium-elicited repression of uapA 

transcription from UapA endocytic turnover (Pantazopoulou et al., 2007), and 

second, we could regulate UapA de novo synthesis prior or after imposing endocytic 

conditions (Gournas et al., 2010). 

 

 

Figure 4.4. Epifluorescence microscopy of UapA-GFP subcellular localization under non-endocytic    

(-) or endocytic conditions (NH4
+
 or UA) in isogenic arrestin null mutants. Microscopy was performed 

by S. Amillis and the author. 

We examined the effect of NH4
+
 or excess substrate into already synthesized 

UapA-GFP or to de novo made UapA-GFP in artA
+ 

and artA∆ isogenic strains. In 

the first case, alcAp-UapA-GFP expression was induced (4–6 h) in the presence of 

fructose/ethanol, then repressed by addition of glucose (1 hour), prior to ammonium 

or substrate addition. In the second case, ammonium or substrate was added to 
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cultures in which alcAp-UapA-GFP expression was repressed by glucose, and then (> 

30 min) UapA-GFP expression was induced by shifting the cells in fructose/ethanol 

(4–6 h). In both conditions the result was identical, showing that lack of a functional 

ArtA blocked UapA-GFP sorting into early endosomes and abolished vacuolar 

turnover (Figure 4.5). Early endosomes marked with UapA-GFP were identified by 

their unique bidirectional motility observed in an inverted microscope and co-

localization with FM4-64, whereas vacuoles marked with UapA-GFP were identified 

by FM4-64 and CMAC (not shown). 

 

 

Figure 4.5. Confocal laser microscopy of UapA-GFP subcellular localization under non-endocytic (-) 

or endocytic conditions (NH4
+
 or UA) in isogenic artA

+
 (wt) and artA∆ strains expressing UapA-GFP 

from the alcAp. Microscopy was performed by G. Diallinas. 

A western blot analysis confirmed that under both endocytic conditions UapA-

GFP vacuolar turnover is significantly reduced in the artA∆ mutant (Figure 4.6A). 

Further evidence for the involvement of ArtA in UapA turnover was obtained by 

direct transport assays with radiolabelled xanthine. Figure 4.6B shows that, under 

endocytic conditions (NH4
+
), in the wild-type control (artA

+
) the apparent xanthine 

uptake drops to 60%, whereas in the isogenic strain lacking ArtA (artA∆) xanthine 

uptake remains close to 100%. We also obtained independent in vivo evidence for an 

apparent increase in UapA activity in an artA∆ genetic background under endocytic 

conditions by a simple  growth  test using  2-thioxanthine. This  xanthine  analogue is 
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 taken-up by UapA and is metabolized to 2-thiouric acid, which inhibits a laccase 

necessary for the conversion of yellow to green pigment in conidiospores (Alderson 

and Scazzocchio, 1967; Darlington and Scazzocchio, 1967). As a result, strains 

expressing UapA produce yellow conidiospores in media containing 2-thioxanthine 

and a non-repressing nitrogen source (e.g. nitrate, L-proline). In the presence of 

NH4
+
, however, UapA transcription is repressed and thus 2-thioxanthine is not taken 

up by the cells, and consequently conidiospores remain green. In media containing 

NH4
+
, a strain expressing UapA from the alcAp promoter, which is not repressible by 

NH4
+
, shows a leaky phenotype (i.e. mixture of green and yellow spores), apparently 

due to NH4
+
-elicited UapA turnover. Figure 4.6C shows that in an artA∆ genetic 

background the effect of 2-thioxanthine is very strong even in NH4
+
-containing 

media, strongly suggesting that lack of ArtA reduces dramatically the turnover of 

UapA by endocytosis. 

 

 

Figure 4.6. ArtA is involved in UapA endocytosis and vacuolar turnover. A. Western blot analysis of 

total protein extracts from artA
+
 (wt) and artA∆ strains, expressing UapA-GFP from the alcAp, using 

anti-GFP antibody. B. Uptake rate of 
3
H-xanthine in artA

+
 (wt) and artA∆ strains under non-endocytic 

(-) or endocytic conditions (NH4
+
). The uptake was performed by G. Diallinas. C. The 2-thioxanthine 

(2-TX) effect in artA
+
 (wt) and artA∆ strains (see text). 
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4.3.3 ArtA is essential for UapA ubiquitination 

We investigated whether ArtA is involved in the ubiquitination of UapA, as all 

evidence predicted. For that, we performed western blot analyses under conditions 

inhibiting the rapid de-ubiquitination of cargoes. Figure 4.7A shows that in the artA
+
 

strain the anti-GFP antibody detects a less motile form of UapA-GFP only after a 

relatively short shift in media containing NH4
+
 or substrate (uric acid), whereas in the 

isogenic artA∆ mutant such heavier forms are not visible. Similar less motile UapA-

GFP-specific molecules have been previously detected and shown to correspond to 

UapA-GFP/ubiquitin conjugates (Gournas et al., 2010). To further confirm this, we 

purified UapA-His molecules, through Ni
2+

 affinity chromatography, expressed in 

isogenic strains artA
+
 and artA∆ and the purified UapA-His fraction was 

immunoblotted with His- and ubiquitin-specific antibodies (Figure 4.7B). Our results 

confirm that a functional ArtA is necessary for the formation of UapA-ubiquitin 

conjugates, similar to the need for a fully functional HulA ubiquitin ligase or the 

presence of Lys572 in the tail of UapA (Gournas et al., 2010). 

 

 

Figure 4.7. ArtA is essential for UapA ubiquitination. A. Western blot analysis of membrane-enriched 

protein extracts from artA
+
 (wt) and artA∆ strains, expressing UapA-GFP from the alcAp, under 

conditions detecting ubiquitination of UapA (see 2.9.7). Notice the ArtA-dependent appearance of less 

motile bands of UapA-GFP under endocytic conditions in membrane enriched fractions, which are not 

detected in the absence of a fully active HulA ubiquitin ligase (hulA∆C2) or with a UapA mutant 

lacking Lys572 (K572R). B. The less motile ArtA-dependent UapA-GFP signals can also be detected 

with anti-Ub antibody in purified UapA-His after 20 min treatment with NH4
+
. 
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4.3.4 The PY motifs are essential for ArtA function 

In order to examine the function of the two canonical PPxY (PY) motives of ArtA, 

Ala substitutions were constructed using standard directed mutagenesis and were 

inserted to the genomic artA locus in a strain expressing UapA-GFP, through 

standard reverse genetics (A. Kokotos). Corresponding mutants were viable and 

showed wild-type growth and morphology, as expected, given that the artA∆ mutant 

shows no mutant phenotype. All mutants were analyzed microscopically in respect to 

alcAp-UapA-GFP  endocytosis  by  NH4
+
  or  substrate.  Figure 4.8A  shows  that Ala  

 

 

Figure 4.8. The PY motifs are essential for ArtA function. A. Epifluorescence microscopy of UapA-

GFP subcellular localization under non-endocytic (-) or endocytic conditions (NH4
+
 or UA) in 

isogenic artA mutants expressing UapA-GFP driven under the alcA controllable promoter. 

Microscopy performed by A. Kokotos. PY1 stands for ArtA P435A/V436A/Y437A and PY2 for ArtA 

P445A/G446A/Y447A. B. Epifluorescence microscopy of UapA-PYwt and UapA-PYala chimeras 

under non-endocytic conditions in hulA
+
 and in a hulA∆C2 background, and UapA-mediated growth 

of the corresponding strains on UA as sole nitrogen source (performed by. M. Evangelinos). 
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substitutions of either one of the two PY motives (PY1 or PY2) totally blocked 

UapA endocytosis. In vivo evidence supporting the functionally essential role of the 

two PY motives was obtained using the 2-thioxanthine sensitivity test (not shown).  

We obtained additional evidence that the PY motives are necessary and 

sufficient for HulA-dependent ubiquitination and turnover of UapA by constructing 

and analyzing mutants (M. Evangelinos) expressing chimeric fusions of UapA with a 

conserved 38-amino-acid sequence of ArtA including the two PY motives, either in 

their wild-type (UapA-PYwt) or in a mutated version (UapA-PYala). Figure 4.8B 

shows that UapA-PYwt chimera is not functional (lack of growth on uric acid) due to 

constitutive targeting to the vacuole, whereas UapA-PYala or UapA-PYwt expressed 

in a hulA∆C2 background are functional, showing normal targeting to the PM. 

The essentiality of the PPxY for ArtA-mediated UapA endocytosis was directly 

confirmed by western blot analysis. Unlike the result obtained in artA
+

 genetic 

background, UapA-GFP protein steady state levels were not reduced in the presence 

of either NH4
+
 or uric acid, an observation also associated with low level of UapA-

GFP vacuolar turnover, similar to the level obtained under non-endocytic conditions, 

as judged by the low amount of free GFP detected (Figure 4.9A). The requirement of 

the PPxY motives for HulA-dependent UapA ubiquitination was subsequently shown 

by an independent western analysis where no UapA-Ub conjugates could be detected 

in the strain expressing the artA allele mutated in its PPxY elements (Figure 4.9B). 

 

 

Figure 4.9. A. Western blot of total protein extracts of a wt (artA
+
) and an artA mutant strain carrying 

both PY1 and PY2 substitutions (2PY), expressing UapA-GFP under non-endocytic (-) or in the 

presence of UA or NH4
+
 for 2 h. B. Western blot analysis of UapA-GFP ubiquitination in membrane 

enriched fractions of a wt (artA
+
) and an ArtA-2PY strain, grown under endocytic (30 min, NH4

+
) or 

control conditions. 
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4.3.5 HulA-dependent ubiquitination of ArtA at Lys343 is critical for ArtA 

function 

We investigated whether ArtA itself is ubiquitinated and whether this has a role on 

UapA endocytosis. Figure 4.10 shows that anti-GFP antibody detects less motile 

forms of ArtA-GFP, which probably correspond to ArtA-ubiquitin conjugates. The 

steady state levels of ArtA-ubiquitin conjugates seemed moderately increased in 

response to NH4
+
, compared to control conditions or in response to substrates.  

 

 

Figure 4.10. HulA-dependent ubiquitination of ArtA at Lys-343 is critical for ArtA function. A. 

Western blots of total protein extracts of isogenic wt, hulA∆C2 and artA mutants PY1 and K343R 

under non-endocytic (-) or endocytic conditions (NH4
+
 or UA). 

The increase in ArtA ubiquitination levels in response to the presence of NH4
+
 

for increasing periods of time was confirmed by quantitative measurements of the 

relative ratios of ArtA-Ub/ArtA (Figure 4.11A). We subsequently showed that the 

less motile forms of ArtA-GFP cross-react with anti-Ubiquitin antibody (Figure 

4.11B). Finally, we showed that ArtA ubiquitination requires an interaction with a 

fully functional HulA ligase, as judged by the absence of ArtA-Ub forms in hulA∆C2 

genetic background or when using an ArtA mutated in its PY motives (Figure 4.10). 

Based on sequence alignments of ArtA and Art1, we predicted that Lys343 might be 

the residue acting as an acceptor of ubiquitination in ArtA. To test this, a strain 

expressing ArtA-K343-GFP was constructed (by A. Kokotos). Results also shown in 

Figure 4.10 and Figure 4.11confirm that Lys343 is indeed the acceptor residue for 

ubiquitination. These results show that HulA-dependent ArtA ubiquitination at a 

single Lys residue occurs through the involvement of its PY elements, very probably 

through a direct interaction with the WW motifs of HulA. 
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Figure 4.11. A. Time-course (left) and ImageJ semi- quantitative estimation (right) of NH4
+
-

dependent increase in ArtA ubiquitination. B. Western blots of immunoprecipitated ArtA-GFP and 

ArtA-K343R-GFP under denaturing conditions in the presence (60 min, NH4
+
 or substrate) or absence 

(-) of endocytic stimuli, probed with anti-GFP (left panel) or anti-ubiquitin (right panel) antibodies. 

CoIP was performed by S. Amillis. 

To investigate the role of ArtA ubiquitination, a strain expressing UapA-GFP 

in an ArtA-K343R genetic background was constructed (by A. Kokotos). In this 

strain, mutation ArtA-K343R severely inhibited UapA endocytosis, in response to 

both NH4
+
 and substrates (Figure 4.12). Western blot analysis showed that ArtA-

K343R is a practically loss-of function mutation in respect to UapA turnover, as 

intact UapA-GFP levels remain high under endocytic conditions.  

 

 

Figure 4.12. Role of ArtA ubiquitination in UapA endocytosis and turnover. Epifluorescence 

microscopy of UapA-GFP subcellular localization under non-endocytic (-) or endocytic conditions 

(NH4
+
 or UA) in a wt or an ArtA-K343R mutant expressing UapA-GFP. 
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In addition, the ratio of intact UapA-GFP/free vacuolar GFP is significantly 

higher, compared to the ratio found in an artA
+
 background (Figure 4.13A). Notably, 

however, some UapA-GFP turnover was observed in the ArtA-K343R background, 

suggesting that ArtA ubiquitination is critical, but not absolutely essential for some 

UapA turnover. This observation was in agreement with a subsequent Western blot 

analysis showing that, although UapA ubiquitination is significantly reduced in an 

ArtA- K343R mutant, some minor fraction of UapA can still be ubiquitinated (Figure 

4.13B). 

 

 

Figure 4.13. A. Western blot of total protein extracts of a wt (artA
+
) and ArtA-K343R mutant strain, 

expressing UapA-GFP under non-endocytic conditions (-) or in the presence of UA or NH4
+
 for 2 h. 

B. Western blot analysis of UapA-GFP ubiquitination in membrane enriched fractions of a wt (artA
+
) 

and an ArtA-K343R strain, grown under endocytic (30 min) or control conditions. 

4.3.6 The C-tail of UapA contains a region essential for ArtA binding 

Previous studies have shown that the UapA C-tail includes the single Lys residue 

(Lys572) necessary for HulA-dependent ubiquitination under endocytic conditions 

(Gournas et al., 2010). This suggested that ArtA might interact with C-terminal 

region of UapA. To investigate this assumption, the C-terminal region of UapA was 

fused into the C-terminal region of AzgA, a purine transporter, which is fairly 

insensitive to NH4
+
-triggered endocytosis (Pantazopoulou et al., 2007), and the 

resulting chimeric molecule was used for testing whether the UapA C-terminal 

region confers ArtA-dependent internalization of AzgA. Results in Figure 4.14 

confirm that the UapA C-terminus promotes enhanced NH4
+
-elicited AzgA 

endocytosis and that this phenomenon is dependent on a functional ArtA protein. 

This strongly suggested that the C-terminal region of UapA contains a domain 

necessary and sufficient for ArtA binding. 
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Figure 4.14. ArtA-dependent, NH4
+
-elicited, endocytosis of an AzgA-GFP version including the C-

terminus of UapA, as shown by epifluorescence microscopy. Construction and microscopy by S. 

Amillis and V. Yalelis, respectively. 

To further identify the region responsible for ArtA binding, we searched for 

UapA residues upstream from Lys572, which might prove necessary for UapA 

endocytosis. For this, two deletions corresponding to residues 564-571 and 547-571 

(M. Evangelinos) and Ala substitutions of a di-acidic motif (E
545

-V-E
547

) were 

constructed (S. Amillis; Figure 4.15A). Microscopic analysis of corresponding 

mutants showed that solely the longer deletion (residues 547-571) and the mutated 

di-acidic motif led to a severe block of NH4
+
- or substrate-elicited UapA endocytosis 

(Figure 4.15B). Interestingly, di-acidic motives are known to be involved in 

membrane cargo trafficking and in particular in ER-exit or Golgi-to-vacuole transfer 

(Bonifacino and Traub, 2003; Renard et al., 2010; Starr et al., 2012), but are not 

known to interact with arrestin-like proteins or be related to ubiquitination of cargos. 

In this direction, we showed that an intact E
545

-V-E
547

 element was necessary for 

UapA-GFP ubiquitination, and thus might be part of a putative ArtA binding site on 

the C-tail of UapA (Figure 4.15C). On the whole, our results showed that the region 

corresponding to residues 545-563 is required for UapA endocytosis, which in turn 

suggested that it might host the ArtA binding site. 

4.3.7 The function of ArtA is a prerequisite for the formation of UapA-specific, 

SagA-dependent, pre-endocytic puncta 

Considering that ArtA is involved in ubiquitination of UapA and that this 

modification constitutes the molecular signal for UapA endocytosis, we tested 

whether the effect of the artA∆ mutation is epistatic to a mutation blocking 
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endocytosis at a step downstream from cargo ubiquitination. For this, we decided to 

knock-out SagA (ANID_01023.1), the single End3 homologue of A. nidulans (38%, 

amino acid identity). In S. cerevisiae, End3 belongs to the family of proteins 

possessing an EH domain, members of which are implicated in endocytosis, vesicle 

transport, and signal transduction. End3 is part of the coat module protein complex 

along with Pan1, Sla1 and Sla2, otherwise known as the Pan1 complex, which acts 

downstream of cargo ubiquitination, but upstream of actin organization at endocytic 

sites (Tang et al., 2000). Furthermore, End3 has been shown to be necessary for the 

internalization of all transporters tested up-to date. 

 

 

Figure 4.15. A. Schematic representation of UapA C-tail mutations analyzed for UapA endocytosis. 

Lys-572 acting as ubiquitin acceptor is indicated. B. Epifluorescence microscopy (M. Evangelinos) of 

UapA C-terminal truncations (∆564–571, ∆547–571) under non-endocytic (-) or endocytic conditions 

(NH4
+
 or UA). C. Epifluorescence microscopy of mutation UapA-E545A/V546A/E547A (UapA-

EVE/A) under non-endocytic (-) or endocytic conditions (NH4
+
 or UA) and western blot analysis of 

UapA-GFP ubiquitination in membrane enriched fractions of a wt and a UapA-EVE/A strain, grown 

under endocytic (30 min, NH4
+
) or control conditions, performed by S. Amillis. 

The sagA gene has been genetically identified as a gene that only affects 

sensitivity to DNA-damaging agents (Jones et al., 1999). An apparent loss-of-

function mutation in sagA has no detectable mutant phenotype other than an increase 

in DNA alkylating agent sensitivity. A knock-out sagA mutant constructed for this 

work (by S. Amillis) had a moderately delayed rate of growth and increased 
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resistance to neomycin (Figure 4.16A). It also displayed a moderate defect in polarity 

maintenance, as evidenced by the increased bipolarity and early branching, as well as 

the partial loss of apical deposition of cell wall polysaccharides detected by staining 

with Calcofluor white (Figure 4.16B). Moreover, sagA proved to be essential for 

UapA endocytosis, as seen by western blot of UapA-GFP expression in the sagA∆ 

mutant, under endocytic conditions. This is consistent with the production of yellow 

spores in the deletion mutant, in media containing NH4
+ 

as a nitrogen source and 2-

thioxanthine (Figure 4.16C; for details in 2-thioxanthine effect see 4.3.2). Finally, a 

functional GFP-tagged SagA protein showed punctuate cortical subcellular topology 

(Figure 4.16D), typical of other endocytic markers (Araujo-Bazán et al., 2008). 

 

 

Figure 4.16. A. Growth tests at 37°C of the sagA∆ mutant, showing a moderately delayed rate of 

growth at complete (CM) and minimal media (MM) and increased resistance to neomycin, as 

compared to the wild-type (performed by G. Diallinas). B. Epifluorescence microscopy (left panels) of 

the sagA∆ mutant, displaying reduced apical deposition of cell wall polysaccharides compared to the 

wild-type, as evidenced by staining with Calcofluor white. Right panels: Quantitative analysis of the 

frequency of appearance of the bipolar and/or early branching phenotype (a) compared to the normal 

phenotype (b) in sagA∆ and wild-type strains, observed under the microscope (Nomarski). C. Left 

panels: The 2-thioxanthine (2-TX) effect in sagA
+
 (wt) and sagA∆ strains. Right panels: Western blot 

analysis of UapA-GFP expression in the sagA∆ mutant, under non-endocytic (-) or endocytic 

conditions. D. Epifluorescence microscopy (performed by S. Amillis and G. Diallinas) of the 

subcellular localization of SagA-GFP showing punctuate cortical subcellular topology, driven by the 

native and gpdAp
m 

promoter. 
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We compared UapA-GFP subcellular localization in artA∆, sagA∆ or 

artA∆sagA∆ null mutants by constructing the appropriate isogenic strains. Figure 

4.17 shows that upon imposing an endocytic signal, either by NH4
+ 

or substrates, 

there was a clear difference in the PM localization of UapA-GFP in the wild-type 

and in artA∆, sagA∆ or artA∆sagA∆ mutant backgrounds. In wild-type, as expected, 

UapA-GFP was internalized into mobile structures, apparently early endosomes, and 

sorted to the MVB/vacuole for degradation. As a consequence the amount of UapA-

GFP remaining in the PM was reduced. In the artA∆ mutant UapA-GFP remained 

stable in the PM, marking the periphery of cells in a relatively homogeneous manner, 

similar to the picture obtained in all three strains under non-endocytic conditions.  

In the sagA∆ mutant, under endocytic conditions, UapA-GFP remained largely 

in or close to the PM, but in contrast to artA∆, it also formed very distinctive cortical 

foci. Using an inverted fluorescent microscope we noticed that these puncta, which 

are very probably pre-endocytic membrane invaginations, are relatively static and 

remain attached to the PM, in mark contrast to the mobile early endosomes, seen in 

the wild-type strain. In the double mutant artA∆ sagA∆, UapA-GFP remained 

extremely stable in the PM, without forming cortical patches, similar to the single 

artA∆ mutant. This result strongly suggested that ArtA is implicated in UapA 

endocytosis at a step taking place in the PM, upstream of the action of SagA and the 

formation of pre-endocytic invaginations containing UapA-GFP. 

 

 

Figure 4.17. SagA and ArtA block UapA internalization at distinct steps of endocytosis. Confocal 

laser microscopy of UapA-GFP subcellular localization under endocytic conditions (NH4
+
 or UA) in 

isogenic wt, artA∆, sagA∆ and artA∆/sagA∆ strains expressing UapA-GFP. 
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To further confirm the above idea, we also tested whether blocking UapA 

ubiquitination by mutation K572R would have an effect on the formation of SagA-

dependent, UapA-GFP-specific pre-endocytic invaginations. Figure 4.18 shows that, 

blocking UapA ubiquitination also blocked the formation of pre-endocytic 

invaginations containing UapA-GFP in the sagA∆ background. Our results confirm 

that UapA ubiquitination takes place in the PM rather than in an early endosomal 

compartment, such as early endosomes. 

 

 

Figure 4.18. Confocal laser microscopy of UapA-K572R-GFP subcellular localization under 

endocytic conditions (NH4
+
 or UA) in isogenic wt and sagA∆ strains expressing UapA-GFP. Arrows 

indicate vacuoles. Arrowheads indicate immobile cortical puncta associated with the PM, only visible 

in the sagA∆ genetic background. 

4.3.8 Specificity of ArtA in respect to transporter endocytosis 

We finally investigated the substrate specificity of ArtA by examining what is the 

effect of deleting the artA gene on other transporters. We constructed artA∆ mutants 

expressing GFP-tagged transporters for L-proline (PrnB), L-glutamate (AgtA) or 

purines (AzgA), proteins that undergo NH4
+
-elicited (PrnB and AgtA; Tavoularis et 

al., 2001; Apostolaki et al., 2009) or substrate-triggered (AzgA; George Diallinas, 

unpublished observations) endocytosis. Notably, all these transporters belong to 

structurally and evolutionary distinct transporter families (Diallinas, 2008b). Figure 

4.19 shows that ArtA is necessary for PrnB and AzgA endocytosis, but does not 

affect AgtA internalization. 
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Figure 4.19. Specificity of ArtA in respect to the endocytosis of different transporter cargos. 

Epifluorescence microscopy of PrnB-GFP, AgtA-GFP, AzgA-GFP in artA∆ and artA
+
 backgrounds 

under non-endocytic (-) or endocytic conditions (+). Endocytic conditions for PrnB and AgtA indicate 

addition of NH4
+
 and for AzgA addition of substrate (hypoxanthine) for 2 h. AgtA-GFP consistently 

gives a lower fluorescent signal compared to the other transporters tested. Notice that, unlike UapA-

GFP or AzgA-GFP, AgtA-GFP and PrnB-GFP show a degree of constitutive turnover (appearance of 

GFP-labelled vacuoles) under non-endocytic conditions. For AgtA, this was recently shown to occur 

by direct sorting from the Golgi to the vacuole (Sotiris Amillis, unpublished observations). 

Constructions and microscopy were performed by V. Yalelis (PrnB-GFP) and the author (AgtA-GFP 

and AzgA-GFP). 
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5 Oligomerization of UapA 

& its Role in Membrane Trafficking 

& Endocytosis 

5.1 State of the art 

Efficient binding and transport of substrates are prerequisites for substrate-elicited 

endosomal sorting of UapA (see also 4.1; Gournas et al., 2010). However, in the 

course of previous epifluorescence microscopic analyses of our group, it has been 

shown that PM–embedded inactive versions of UapA-GFP are internalized by uric 

acid in the presence of active untagged UapA molecules (Figure 5.1). This 

phenomenon of in trans endocytosis occurs even when the active UapA molecules 

themselves cannot be endocytosed, such as the UapA-K572R mutant. A possible 

explanation that has been proposed is the association of UapA molecules in an 

oligomeric complex (Gournas et al., 2010).  

The possibility of UapA existing in the membrane in the form of a dimer or an 

oligomer was further supported by the observation of higher molecular weight bands, 

migrating slower than the UapA monomers, in immunodetection experiments of the 

purified transporter. Moreover, those bands responded to purine induction and 

ammonium repression, in the same way monomeric UapA does, and were 

conspicuously absent in a negative control strain lacking uapA in its genetic 
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background (Njimoh Dieudonné Lemuh, George Diallinas and Dimitris Hatzinikolaou, 

unpublished observations). Finally, a putative oligomeric form of the transporter was 

observed in a denaturing gel, after several purification steps of UapA that had been 

heterologously expressed in S. cerevisiae (Leung et al., 2010). In both cases, however, 

the constituents of the higher molecular weight bands have not been biochemically 

characterized. 

 

 

Figure 5.1. Substrate-induced endocytosis of inactive UapA molecules is triggered in trans. 

Epifluorescence microscopy of the subcellular localization of a non-functional UapA mutant (N409D-

GFP) under non-endocytic (-) or endocytic conditions (UA) expressed either alone, or co-expressed 

with the wild-type UapA (UapA
+
) or the UapA version that cannot be ubiquitinated and thus 

endocytosed (K572R). Scale bar 5 µm (adapted from Gournas et al., 2010). 

5.2 Aim of study 

The aim of this part of the study was to investigate the existence of UapA homo-

oligomerization and its possible role in transporter cellular expression and/or function. 

UapA oligomerization was investigated by employing both indirect and direct 

methods, the latter including fluorescence complementation and pull-down assays. 

Other questions raised include the identification of the intracellular compartment in 

which UapA oligomeric complexes are formed and the identification of the interface 

involved in the interaction of the monomers. To this end, several ER-retained mutants 

were co-expressed with their corresponding wild-type versions and were analysed in 

respect to the ability of the latter to pull the former out of the ER and vice versa. 

Finally, by addressing these questions we also attempted to elucidate the involvement 

of oligomerization in transporter sorting, stability and endocytosis from the PM. 
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5.3 Results & Discussion 

5.3.1 Non-functional UapA mutants have an apparent dominant-negative effect 

on wild-type UapA 

Preliminary evidence for UapA oligomerization was obtained by investigating the 

possibility of mutant transporter molecules, devoid of uptake activity, to confer a 

dominant-negative effect on wild-type transporter function via their functional 

association. Asn409 is an absolutely essential amino acid for UapA transport activity 

per se. For example, mutant N409D does not exhibit detectable uptake activity, 

despite the fact that the protein is properly targeted to the PM, as evidenced by 

epifluorescence analysis (Koukaki et al., 2005) and is capable of substrate binding 

(Papageorgiou et al., 2008). To test the effect of this non-functional mutant version of 

UapA on wild-type UapA, the two UapA forms were co- expressed and [
3
H] xanthine 

uptake assays and growth tests were performed under inducing conditions. In 

particular, a plasmid carrying alcAp-uapA-N409D was generated (designated 

pAN510exp:alcA-N409D; for details on the construction of this plasmid see 8.2) and 

was transformed in a uapA∆::uapA-GFP uapC∆::pyrG
Af

 azgA∆ pabaA1 argB2 

pantoB100 strain of A. nidulans. The growth of several transformants selected for 

arginine prototrophy, on minimal media with uric acid as the sole nitrogen source, 

under conditions inducing alcAp-uapA-N409D expression, was significantly reduced 

compared to that of an isogenic control strain that does not express the mutant UapA 

version. Kinetic analysis of a selected transformant revealed an almost 50% decrease 

in uptake capacity as compared to that observed in a strain expressing the UapA-GFP 

alone (Figure 5.2). 

 

Figure 5.2. Radiolabelled [
3
H]-xanthine (0.2 mM) uptake capacity, expressed as % initial uptake rate, 

and growth test comparing UapA-GFP activity in the absence and presence of UapA-N409D. In order 

to maximize the effect, the mutant UapA version was highly expressed via the alcAp promoter. Results 

shown represent averages of several experiments, each experiment carried out in triplicate, with 

standard deviation <20%. Strains were grown on alcAp-inducing minimal media, at 25°C. 
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One explanation of the apparent dominant-negative effect of the non-functional 

UapA on the wild-type transporter could be the formation of oligomeric complexes 

between wild-type and mutant proteins in the PM. This hypothesis is compatible with 

the idea of UapA homo-oligomerization and suggests that at least some of UapA 

molecules function as oligomers. A dominant-negative effect on transport activity has 

been reported in mammalian cells co-expressing mutant and wild-type forms of the 

dopamine transporter (DAT). In that case, loss-of-function mutant transporters that 

were targeted to the cell surface inhibited wild-type DAT uptake activity without 

affecting the membrane targeting of the latter (Torres et al., 2003).  

The effect of UapA-N409D on wild-type transporter activity is unlikely to be 

due to a decrease in the transcriptional expression levels of the latter, since the two 

UapA versions were expressed under different promoters and thus their transcriptional 

regulation was independent. Nevertheless, one could not exclude the possibility that 

the two UapA versions compete for PM sorting; thus, increased accumulation of the 

mutant molecules might indirectly lead to reduced translocation to the PM of the wild-

type UapA, this being the cause of the reduction in growth and substrate uptake. 

5.3.2 In trans endocytosis of non-ubiquitinated UapA versions 

The observation of in trans endocytosis of inactive UapA molecules in the 

simultaneous presence of the UapA-K572R mutant, which cannot be ubiquitinated and 

thus internalized (Gournas et al., 2010), prompted us to investigate the fate of this 

mutant, in the presence of functional UapA forms. A strain carrying the uapA-K572R-

GFP was genetically crossed with one carrying the uapA100 mutation, a duplication 

of 164 bp in the promoter region of the uapA gene, resulting in its constitutive and 

increased expression (Arst and Scazzocchio, 1975; Ravagnani et al., 1997). A double 

mutant was selected from the progeny and was examined microscopically in the 

presence and absence of endocytic conditions. As indicated in Figure 5.3, co-

expression of UapA-K572R-GFP with wild-type UapA over-expressed via the 

uapA100 promoter resulted in the ammonium-elicited internalization of the former and 

its sorting to the vacuoles (lower panels), while when this mutant was expressed alone, 

it was predominantly localized in the PM (upper panels). Given the absolute 

requirement of this Lys residue for transporter ubiquitination and eventual endocytosis 

(Gournas et al., 2010), the hypothesis that UapA oligomerization is responsible for the 

phenomenon of in trans endocytosis was further supported. 
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Figure 5.3. In trans endocytosis of a UapA mutant that cannot be ubiquitinated and thus endocytosed 

(UapA-K572R-GFP) due to its co-expression with a wild-type UapA. In order to maximize the effect, 

the wild-type UapA version was highly expressed via the uapA100 promoter (see text). 

5.3.3 Direct biochemical evidence for UapA oligomerization 

To provide further evidence for homo-oligomerization, we performed a pull-down 

assay, a method commonly used to identify natural binding partners of a captured 

protein, using membrane protein extracts of a strain co-expressing differentially 

tagged UapA molecules (see 1.7.3). In particular, a strain carrying the uapA gene 

tagged C-terminally with a sequence encoding an epitope of 10 His residues (His10) 

and expressed under the control of the strong regulatable promoter alcA was 

genetically crossed with a strain carrying uapA analogously tagged with the GFP 

epitope, and also expressed from alcAp. From this cross we obtained a strain 

expressing simultaneously UapA-His and UapA-GFP (see later in Figure 5.8). 

Total membrane proteins were prepared from this strain and solubilised with 1% 

DDM, which is the optimal concentration for UapA solubilisation, based on 

previously performed solubilisation assays (Lemuh et al., 2009). The protein sample 

was purified with the use of a Ni-NTA column under non-denaturing conditions and 

the fractions obtained were resolved electrophoretically in an SDS polyacrylamide gel. 

Silver staining of the eluted fractions at 250 mM and 350mM imidazole showed a 

major band at ~55 kDa, which very probably corresponds to monomeric UapA-His 

(Figure 5.4A). The same analysis also showed the existence of other minor bands of 

slower mobility. Western blot analysis with anti-His antibody confirmed the identity 

of the major 55kDa band as being specific to UapA-His, and also showed that a minor 

band migrating close to the 100 kDa marker, is also UapA-His specific. In addition, in 

the f250 fraction, a very high molecular weight band (> 180kDa), was also detected as 

being UapA-His specific. The higher molecular weight bands observed in these 
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immunoblots might be oligomers or aggregates of UapA. Notably, pure monomeric 

UapA-His displayed higher electrophoretic mobility than the one predicted based on 

its amino acid sequence (63 kDa), which is a common phenomenon among purified 

hydrophobic proteins (Raunser et al., 2006; Lemuh et al., 2009). 

 

 

Figure 5.4. Pull down assay of membrane protein extracts from a strain co-expressing UapA-His and 

UapA-GFP and a control strain expressing UapA-His alone, all under the control of the alcAp. Total 

membrane proteins were solubilized and applied to Ni-NTA columns. The columns were washed with 

increasing concentrations of imidazole (20 mM, 50 mM, 250 mM, 350 mM, 500 mM) yielding fractions 

f20, f50, f250, f350, f500, respectively, and eluates were desalted and concentrated. Pure protein samples 

were resolved in reducing gels and were silver stained or immunoblotted. UapA-His eluted at 250 mM 

and 350mM imidazole, thus demonstrating its very strong affinity to the nickel column. A. Silver 

staining and western blot analysis of f250 and f350 obtained from the strain expressing both UapA-His and 

UapA-GFP. The prominent band over the 48 kDa marker corresponds to monomeric UapA-His. Two 

less prominent bands just over the 100 kDa and a band heavier than the 180 kDa marker are probably 

dimeric and oligomeric forms of UapA, respectively. B. Western blot analysis of f250 of the same strain 

with the anti-GFP antibody revealed that UapA-GFP co-purified with UapA-His (left panels), thus 

demonstrating a physical interaction between the two UapA versions, while f250 of the strain expressing 

UapA-His alone did not react with the anti-GFP antibody, as expected (right panels). 

The high expression levels obtained through the alcAp combined with the strong 

affinity of the His10 epitope for Ni
2+

 (the binding strength increases with the number of 

His residues) enabled the development of an efficient and reproducible purification 

protocol for this highly hydrophobic protein. Moreover, the observation of putative 

oligomeric forms of UapA in reducing gels indicated that the interaction between the 

monomers is fairly strong. To rigorously show the physical association between UapA 

molecules, purified protein samples were immunoblotted with anti-GFP antibody. A 

prominent band migrating at the position corresponding to monomeric UapA-GFP 

(~75 kDa,) was detected (Figure 5.4B), thus demonstrating that UapA-GFP co-purified 

with UapA-His, as a result of a physical interaction between them. 
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5.3.4 In vivo evidence for UapA oligomerization 

Bimolecular fluorescence complementation (BiFC), also referred to as split-YFP 

assay, allows the in vivo detection of oligomerization by ruling the reconstitution of a 

fluorescent protein that has previously been bisected (see 1.7.3). While biochemical 

methods of detection of protein-protein interactions require cell disruption and cannot 

guarantee that oligomers are not formed during cell lysis, the BiFC assay allows 

detection of oligomerization in intact living cells and with minimal perturbation of the 

normal cellular environment (Hu et al., 2002). The rationale of using BiFC in this 

study, in addition to confirming UapA oligomerization, was to enable the detection of 

the subcellular localization of the oligomer formation. 

The determination of UapA oligomerization in physiological conditions required 

the construction of chimeras co-expressing differentially tagged UapA molecules. 

Previous studies have shown that the fusion of GFP or mRFP to the C-terminus of 

UapA does not affect the functional properties of the transporter (Pantazopoulou et al., 

2007). Two forms of uapA were constructed bearing C-terminal fusions of either the 

462 bp N-terminal part (YFPN) or the 258 bp C-terminal part (YFPC) of Yellow 

Fluorescent Protein (YFP). The generated plasmids (pAN510exp-YFPC and pAN510exp-

YFPN, respectively; see 8.2) were co-transformed in a strain lacking all major purine 

transporters (∆ACZ: uapA∆ uapC∆ azgA∆). Transformants were selected for arginine 

prototrophy and e analyzed for the presence of both tagged uapA genes (uapA-YFPC 

and uapA-YFPN) by PCR (Figure 5.5A) and for functionality by growth tests (Figure 

5.5C). The same strain was also transformed with each of the plasmids individually, 

and the resulting transformants were used as control strains in epifluorescence 

microscopy, in order to eliminate the possibility of false-positive fluorescence. 

As seen in Figure 5.5B, co-expression of UapA-YFPC and UapA-YFPN resulted 

in co-localization of the two proteins in the PM and a positive YFP signal, similar to 

what was observed with UapA-GFP proteins, although devoid of any signs of 

constitutive degradation. YFP fluorescence was more easily detected in transformants 

with multiple plasmid integrations; this was reasonable since only hetero-olimers 

(formed by differentially tagged UapA) allow YFP fluorophore reconstitution, while 

monomers or oligomers, composed of either solely UapA-YFPC or solely UapA-

YFPN, are not microscopically visible (Figure 5.5B). In line with that, it has been 

reported that the fluorescence intensity produced by BiFC in living cells is generally 

less than 10% of that produced by intact fluorescent proteins, while the fluorescence 
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intensity of BiFC complexes that is produced in vitro is comparable to the intensity 

produced by intact fluorescent proteins (Hu et al., 2002; Kerppola, 2006). 

 

 

Figure 5.5. Functional UapA oligomers are present in the PM, as evidenced by BiFC analysis.             

A. Agarose-gel electrophoresis of the PCR products amplified from genomic DNA of the UapA-YFPC 

UapA-YFPN transformant, confirming the successful integration of both uapA-YFPC and uapA-YFPN 

constructs. Amplifications from plasmids pAN510exp-YFPN (N) and pAN510exp-YFPC (C) were used as 

positive controls of the corresponding PCR reactions. The primers used were complementary to the 

UapA ORF and to the YFPN (left panels) or the YFPC (right panels) fragments, respectively. B. Growth 

test of the UapA-YFPC UapA-YFPN transformant, as compared to the isogenic UapA-GFP control strain 

and an isogenic strain lacking all major purine transporters (∆ACZ). The effects of oxypurinol and 2-

thioxanthine (2-TX) were stronger on the double transformant compared to the wild-type; this 

observation, along with a compact phenotype on uric acid (UA), implied that UapA is over-expressed or 

more stable in this transformant. C. Epifluorescence microscopic analysis of a strain co-expressing 

multiple copies of UapA-YFPC and UapA-YFPN (lower panels) showed detectable fluorescence of 

reconstituted YFP, similar to that obtained in the UapA-GFP control strain, but labelling exclusively the 

PM, in all pH tested. YFP signal was slightly boosted by the increase of the pH in the growth media and 

was notably enhanced by the induction of UapA promoter with uric acid (UA). Strains expressing 

UapA-YFPN or UapA-YFPC alone did not show any fluorescence (upper panels). 

Fluorescent signal was prominent in the PM at all pHs tested, although fairly 

increased at higher pH values, and was significantly enhanced when uric acid was 

used as a nitrogen source, as a result of the induction of the promoter of uapA. The 

UapA-YFPC UapA-YFPN transformant showed similar to wild-type growth on nitrate, 

but also on uric acid. This latter observation showed that YFPC and YFPN tags did not 

affect UapA function. This was further supported by the fact that UapA-YFPC UapA-

YFPN transformant also accumulated other known substrates of UapA, such as the 

oxypurinol or 2-thioxanthine. This was apparent as reduced growth on oxypurinol 

(Scazzocchio et al., 1982) or strong yellow pigmentation of conidiospores on 2-
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thioxanthine (Alderson and Scazzocchio, 1967; Darlington and Scazzocchio, 1967; see 

also 4.3.2). The rather compact growth on uric acid and the strong effect of oxypurinol 

or 2-thioxanthine further suggested that in the UapA-YFPC UapA-YFPN transformant, 

UapA is very probably over-expressed or more stable (Figure 5.5C). 

In the BiFC experiments described above, UapA-YFP expression was driven by 

the endogenous promoter of uapA, which allows continuous but low level UapA 

synthesis. To enable high UapA expression levels, the strong and controllable alcA 

promoter was used. In particular, plasmids carrying alcAp-uapA-YFPC and alcAp-

uapA-YFPN were generated (pAN520exp:alcA-uapA-YFPC and pBS-argB:alcA-uapA-

YFPN, respectively; see 8.2) and introduced in the ∆ACZ strain. Co-transformants 

were selected for arginine and p-aminobenzoic acid prototrophy and were further 

analyzed for the presence of both tagged uapA genes by PCR and Southern blot and 

for functionality by growth tests and uptake assays. 

Using epifluorescence microscopy, a strong YFP signal was observed, 

associated exclusively with the PM of the double transformant (UapA-YFPC UapA-

YFPN), under inducing conditions for alcAp, (0.1% Fructose, ethanol; Figure 5.6A). In  

 

 

Figure 5.6. Functional expression of split-YFP-tagged UapA, driven by the alcAp. A. Epifluorescence 

microscopic analysis of a control strain expressing UapA-GFP and a strain expressing UapA-YFPN 

only, both grown on alcAp-inducing minimal media (left panels). Panels on the right display the 

presence and absence of fluorescence originating from YFP reconstitution in a strain expressing both 

UapA-YFPC and UapA-YFPN under inducing (I) and repressing (R) conditions, respectively. B. 

Radiolabelled [
3
H]-xanthine (0.2 mM) uptake capacity of the UapA-YFPC UapA-YFPN and an isogenic 

UapA-GFP control strain, expressed as % initial uptake rate. Results shown represent averages of 

several experiments, each carried out in triplicate, with standard deviation <20%. On the right, growth 

tests of the corresponding strains on alcAp-inducing or repressing (R) minimal media, at 37°C and 25°C. 
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contrast, in the same strain, under repressing conditions (1% Glucose), there was no 

detectable YFP fluorescence. In addition, a strain expressing solely UapA tagged with 

YFPN, the YFP fragment containing the tripeptide that ultimately forms the YFP 

fluorophore (Ghosh et al., 2000), also did not show any fluorescence. This is 

consistent with previous observations of Takeshita et al. (2008) showing lack of 

fluorescence in strains expressing solely one of the YFP fragments in A. nidulans 

strains. The double transformant displayed a growth pattern similar to that of the 

control strain, which was also under the alcAp control. Both strains showed a compact 

phenotype when grown on inducing minimal media with uric acid as a sole nitrogen 

source, at 25°C, as expected for strains over-expressing UapA or with more stable 

protein (Figure 5.6B). In agreement with this, the UapA-YFPC UapA-YFPN 

transformant showed very similar radiolabelled xanthine uptake capacity compared to 

a standard isogenic UapA-GFP control strain (Figure 5.6B). 

5.3.5 Evidence that ER-retained mutants do not oligomerize 

Transporters are co-translationally synthesized in the ER and traffic by a canonical 

vesicular, COPII-dependent transport through the cis-, medial and trans-Golgi before 

reaching the PM. A major question to ask was at which step of the exocytic process 

does UapA oligomerization take place? Answering this question was expected to assist 

in identifying the physiological role of UapA oligomerization. Our group has available 

several UapA-specific mutants that show complete or partial retention in the ER 

membrane, the latter being usually also associated with increased vacuolar turnover. In 

order to investigate the subcellular site of UapA oligomerization, three different 

mutants with impaired transport to the PM were examined using the BiFC assay. The 

rationale for selecting these mutants for further studies is outlined below. 

i) An N-terminal motif necessary for ER exit 

In the course of a systematic mutational analysis of the amino terminal region of 

UapA, a motif, G
40

LIGDYDY
47

, conserved in all fungal UapA-like transporters 

(Figure 5.7A), was recognized as necessary for proper targeting in the PM, since 

substitution of D44, Y45, D46, and Y47 with Ala residues (abbreviated DYDY/A) led 

to a complete retention of the transporter in the ER and lack of growth on uric acid 

(Sotiris Amillis and George Diallinas, unpublished observations; Figure 5.7B and C). 

Di-acidic motifs found in the cytosolic domains of transmembrane proteins have been 
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shown to serve as ER-export signals. These signals interact with the sec23-24 

complex, which is responsible for the concentrated exit of transmembrane proteins 

from the ER (Bonifacino and Glick, 2004; Watanabe and Riezman, 2004). Therefore, 

ER-retention of DYDY/A mutant could be the result of deficient interaction of UapA 

N-tail with the ER export machinery.  

ii) A mutation affecting the topology of TMS1  

Ile74, which is predicted at the cytoplasmic limit of TMS1, has been shown to be a 

critical residue for UapA export from the ER. Ile74 replacement with Asp led to 

complete ER-retention, also reflected in the inability to grow with uric acid as a sole 

nitrogen source (Amillis et al., 2011; Figure 5.7B and C). Classical selective screens 

for isolating revertants have led to the isolation of solely first site-suppressors of I74D. 

All isolated suppressors that fully restored UapA-GFP localization concerned the 

replacement of the Asp74 residue with small aliphatic residues (Ala, Gly or Val) 

(Amillis et al., 2011). This observation suggests that the presence of a hydrophobic 

residue is crucial for the local topology of TMS1 and thus for proper UapA folding.  

iii) A mutation deleting TMS14 

An in-frame deletion of a 123 bp DNA fragment (including a 63 bp intron), 

corresponding to TMS14 of UapA, was shown to block transport in the ER. As a 

result, the deletion mutant (abbreviated TMS14∆) was unable to grow on uric acid as a 

sole nitrogen source (Vlanti et al., 2006; Kosti et al., 2012; Figure 5.6B and C). 

Replacement of TMS14 with the TMS14 domain from XanQ, an E. coli homologue of 

UapA, restored the localization of the chimeric molecule in the PM of A. nidulans, but 

did not restore transporter function (Vlanti et al., 2006). This result showed that a 

heterologous 14
th

 TMS, even if it does not restore function, it is necessary for proper 

UapA folding. It should be noted that the lack of the last TMS might also result in an 

inverted, extracellular, orientation of the C-tail of UapA (Vlanti et al., 2006). 

We have used the above relevant mutants to test whether lack of a specific, 

cytoplasm-facing N-terminal motif or partial misfolding due to locally perturbed TMS 

are associated with UapA oligomerization. Plasmids carrying each of the alcAp-

DYDY/A-YFPC, alcAp-DYDY/A-YFPN, alcAp-I74D-YFPC, alcAp-I74D-YFPN, alcAp-

TMS14∆-YFPC and alcAp-TMS14∆-YFPN were generated and introduced in the ∆ACZ 

(uapA∆ uapC∆ azgA∆) strain in pairs (pAN520exp:alcA-DYDY/A-YFPC together with 

pBS-argB:alcA-DYDY/A-YFPN, pAN520exp:alcA-I74D-YFPC together with pBS-
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argB:alcA-I74D-YFPN and pAN520exp:alcA-TMS14∆-YFPC together with pBS-

argB:alcA-TMS14∆-YFPN; see also 8.2). Co-transformants were selected for arginine 

and p-aminobenzoic acid prototrophy and were further analyzed by Southern blot for 

the presence of both tagged uapA genes and by growth tests for functionality. 

Epifluorescence microscopy was then used to examine the fate of oligomerization in 

all three ER-retained UapA mutants. Several transformants were examined for each 

mutant pair with ratios of plasmid integrations (YFPC:YFPN) ranging from 3:1 to 1:3. 

As expected, transformants co-expressing YFPC- and YFPN-tagged UapA mutant 

forms under the alcAp (DYDY/A-YFPC DYDY/A-YFPN, I74D-YFPC I74D-YFPN and 

TMS14∆-YFPC TMS14∆-YFPN) did not grow with uric acid as a sole nitrogen source 

(Figure 5.7C). All strains selected were also tested by epifluorescence microscopy and 

showed no sign of YFP reconstitution (Figure 5.7B). Given the fact that ER-localized 

YFP reconstitution has been previously reported (Zamyatnin et al., 2006), there are 

two possible ways to explain the absence of fluorescence; first, UapA molecules might 

start interacting downstream from the ER, or second, the relevant mutations might 

interfere with UapA oligomerization. 

 

 

Figure 5.7. ER-retained mutants of UapA analyzed by BiFC. A. Sequence alignment of a part of the 

amino terminal region of UapA, showing conservation of the G
40

LIGDYDY
47

 motif in fungal UapA-

like transporters (performed by S. Amillis). Epifluorescence analysis (B) and growth tests (C) of strains 

co-expressing differentially tagged (YFPC or YFPN) versions of ER-retained mutants, expressed under 

the alcAp, and of their GFP-tagged versions, expressed under the endogenous UapA promoter. Strains 

were grown on alcAp-inducing minimal media, at 25°C. The images of I74D-GFP and TMS14∆ are 

from Amillis et al., 2011 and Vlanti et al., 2006, respectively.  
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The apparent lack of YFP reconstitution in the strains expressing mutations that 

are very probably affecting the topology of TMS1 or TMS14, could well be due to 

partial disruption of the overall folding of UapA. However, lack of YFP reconstitution 

in the strain co-expressing the DYDY/A-YFPC with DYDY/A-YFPN is less easily 

rationalised due to disruption of UapA folding. In this case, the relevant mutations 

disrupt a highly conserved motif within the N-terminal cytoplasmic region of UapA, 

probably involved in transporter sorting rather than folding. This observation 

prompted us to investigate further, with a direct co-immunoprecipitation assay, 

whether DYDY/A mutants oligomerize.  

Plasmids expressing the DYDY/A mutant under the control of the alcAp and C-

terminally tagged with the His10 epitope or the GFP epitope (alcAp-DYDY/A-GFP) 

were constructed (pBS-argB:alcA-DYDY/A-His and pAN520exp:alcA-DYDY/A-GFP, 

respectively; see 8.2) and introduced in the ∆ACZ strain. Co-transformants were 

selected for arginine and p-aminobenzoic acid prototrophy and the presence of both 

tagged uapA mutants was confirmed by Southern blot. As expected, DYDY/A-His 

DYDY/A-GFP transformants showed no growth when uric acid was used as sole 

nitrogen source, and when microscopically observed, they displayed the typical pattern 

of ER export-impaired mutants (Figure 5.8A). Moreover, an isogenic transformant 

expressing solely the alcAp-driven DYDY/A-GFP (Figure 5.8A) confirmed that over-

expression via the alcAp did not change the phenotype observed by growth tests and 

epifluorescence microscopy of the original mutant (Figure 5.7). 

 

 

Figure 5.8. Evidence that DYDY/A mutant does not oligomerize. A. Epifluorescence microscopy and 

growth test at 25°C of the strain DYDY/A-His DYDY/A-GFP and the control strains DYDY/A-GFP 

and UapA-His UapA-GFP, all expressed under the control of alcAp. B. Pull down assays of membrane 

protein extracts from strains co-expressing UapA-His with UapA-GFP (left panels) and DYDY/A-His 

with DYDY/A-GFP (right panels), all expressed under the alcAp. In western blot analysis of f250, 

DYDY/A-GFP in the double mutant strain, unlike UapA-GFP in the control strain, did not co-purify 

with the corresponding His-tagged version. 
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Total membrane proteins of the DYDY/A-His DYDY/A-GFP and its 

corresponding control strain were purified with the use of a Ni-NTA column under 

non-denaturing conditions and the fractions obtained were resolved electrophoretically 

in an SDS polyacrylamide gel. Western blot analysis of f250 revealed that while UapA-

GFP co-purified with UapA-His in the control strain, DYDY/A-GFP reacted with the 

anti-GFP antibody only marginally, thus demonstrating dramatically reduced physical 

interaction between the two mutant versions (Figure 5.8B). Moreover, the anti-His blot 

of DYDY/A-GFP displayed only one prominent band, at the molecular weight of the 

monomer, unlike the control strain which also displayed less motile bands, probably 

corresponding to dimeric and oligomeric forms of the transporter. Thus, YFP 

reconstitution seems to be lost not only in strains expressing mutations that probably 

affect UapA folding through defective local topologies of specific transmembrane 

regions, but also due to mutations specifically blocking the ER-exit process. 

5.3.6 In search of segments/residues critical for UapA oligomerization 

To further understand the molecular basis of UapA oligomerization and identify 

domains essential for this, we tested the ability of each of the UapA ER-retained 

mutants studied here, to co-associate with the wild-type transporter. This strategy has 

been also used for the identification of the interaction interface of the human 

dopamine transporter (DAT) oligomers (Torres et al., 2003). To this aim, we co-

expressed each of the mutant forms with the corresponding wild-type partner and 

performed BiFC analysis. More specifically, the ∆ACZ (uapA∆ uapC∆ azgA∆) strain 

was co-transformed with pairs of plasmids, one carrying alcAp-uapA-YFPN (pBS-

argB:alcA-uapA-YFPN) and the other carrying alcAp-DYDY/A-YFPC or alcAp-I74D-

YFPC or alcAp-TMS14∆-YFPC (pAN520exp:alcA-DYDY/A-YFPC, pAN520exp:alcA-

I74D-YFPC and pAN520exp:alcA-TMS14∆-YFPC, respectively). Co-transformants 

were selected based on arginine and p-aminobenzoic acid prototrophy and shown to 

display normal growth on uric acid (Figure 5.9A).  

When wild-type and N-tail mutants (DYDY/A or I74D) were co-expressed, the 

distribution of the mutant transporter changed dramatically. In both cases, a strong 

fluorescent signal labelled the PM in a fashion similar to the wild-type (Figure 5.9B). 

Mutants were apparently able to associate with the wild-type transporter and the 

combination of the two forms led to a sort of “in trans sorting”, where the presence of 

the wild-type enabled the trafficking of the mutant out of the ER and into the PM.  
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Additionally, in the DYDY/A-YFPC UapA-YFPN strain, prominent YFP signal 

was observed also in ring-like internal structures, typical of ER perinuclear 

membranes (Figure 5.9B). The perinuclear localization of those structures was 

confirmed by staining the nuclei with Hoechst dye and the vacuoles with CMAC 

(Figure 5.9C). This observation demonstrated that the mutant UapA version interfered 

with the normal delivery of the wild-type to the cell surface. A similar case has been 

described for the dopamine transporter (DAT), where DAT mutants with impaired 

targeting to the PM interfered with normal processing of the wild-type transporter to 

the PM (Torres et al., 2003). 

 

 

Figure 5.9. Examination of the ability of ER-retained mutants to associate with wild-type molecules. 

Growth tests (A) and epifluorescence microscopy analysis (B) of strains co-expressing YFPC-tagged, 

ER-retained mutants with YFPN-tagged wild-type molecules. C. Staining with Hoechst and CMAC dyes 

providing evidence that the YFP-labelled rings of the DYDY/A-YFPC UapA-YFPN strain are 

perinuclear, an image typical for ER membranes. D. Growth tests and epifluorescence microscopy of 

three DYDY/A-GFP UapA-His transformants. All UapA versions were expressed under the control of 

alcAp. Strains were grown on alcAp-inducing minimal media, at 25°C. 
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On the other hand, the deletion mutant (TMS14∆) failed to co-associate with the 

full-length transporter. Although the TMS14∆-YFPC UapA-YFPN strain displayed 

normal growth on uric acid, indicating that at least the wild-type UapA reached the 

PM, epifluorescence microscopy showed practically no fluorescence. We cannot 

conclude at this stage whether YFP reconstitution was blocked by the inverted 

orientation of the C-tail, where YFP fragments are fused, or UapA oligomerization 

was abolished by the lack of TMS14, which would imply that TMS14 is a part of, or 

indirectly affects, the interaction interface. 

Finally, in order to confirm that the apparent in trans exocytic sorting of the 

DYDY/A mutant and the physical trapping of the wild-type in the ER were not 

dictated by the reconstitution of the YFP molecule, we repeated the experiment using 

the His10 and GFP tags, instead. Interestingly, co-expression of alcAp-driven 

DYDY/A-GFP with the alcAp-driven UapA-His (pBS argB alcA-uapA-His; see 8.2), 

resulted in three different phenotypes, as evidenced by epifluorescence microscopy 

and growth tests, which possibly reflected the wild-type-to-mutant ratio of of relative 

expression. More specifically, DYDY/A-GFP was either localized solely in the PM 

and the strain exhibited normal growth on uric acid or it was localized both in the PM 

and the ER and the strain exhibited reduced growth on uric acid, or it was completely 

retained in the ER, leading to lack of growth on uric acid (Figure 5.9D). This is 

consistent with previous observations of Sorkina et al. (2003), where differential 

subcellular localization of the DAT transporter visualized by Fluorescence Resonance 

Energy Transfer (FRET) microscopy was proportional to the relative expression of 

each fluorescent partner. 

The dominant-negative effect of the DYDY/A mutant on the targeting of the 

wild-type to the PM and the observation of ER-localized YFP reconstitution 

confirmed that oligomerization of newly synthesized UapA occurs already in the ER 

and suggested that proper UapA oligomerization is involved in the efficient transport 

of the transporter from the ER to the PM. 

5.3.7 Investigating the role of TMS7 in UapA oligomerization 

Within the G
40

LIGDYDY
47

motif, Tyr47 was found to play a key functional role. More 

specifically, Ala substitution of Y47 led to ER-retention of UapA (Sotiris Amillis & 

George Diallinas, unpublished results). Second-site suppressor mutations of Y47A 

were obtained and shown to map in TMS7 (V298A) and in the short, outward-facing, 
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α-helix linking TMS11-TMS12 (F437C). V298 is well conserved in eukaryotic NAT 

transporters known to be specific for nucleobases, whereas in bacterial NATs the 

analogous residue is more variable. F437 is also well conserved in eukaryotic NATs, 

but not so in bacterial homologues. The V298A mutation, which has a significant 

stronger suppressing effect of Y47A, was further shown to restore the sorting and PM 

localization of UapA-Y47A, albeit not fully (Vasillis Yalelis and George Diallinas, 

unpublished results). The suppressing effect of F437C on Y47A for the localization 

was only marginal. How mutations in central transmembrane or external α-helices 

restore UapA defective sorting due to mutations in a cytoplasmic N-terminal ER-exit 

motif, is not known.  

Interestingly, in TMS7, in close proximity to the location of the V298A 

suppressor, we have observed the presence of a Gly-rich sequence, namely 

G
301

X3G
305

X7G
313

, which conforms to the GX3G motifs known to be critical for the 

non-covalent association of transmembrane α-helices and the stabilisation of 

membrane-associated dimerization and pore formation (Russ and Engelman, 2000; 

Fink et al., 2012; see also 1.7.4). The UapA TMS7 Gly residues are well conserved in 

fungal NATs, but less so in mammalian homologues, and not at all in bacterial NATs. 

When all three Gly residues (G301, G305 and G313) were substituted by Ala, the 

resulting mutant (GGG/A) was retained in the ER and showed increased vacuolar 

turnover (Vassilis Yalelis, Sotiris Amillis and George Diallinas, unpublished results). 

Remarkably, mutation V298A also suppresses the ER-exit defect of UapA versions 

carrying G301, G305 or G313 Ala substitutions, similar to suppression of the Y47A 

mutation. Overall, these observations suggest the possible involvement of TMS7 in 

ER-exit and/or PM localization of UapA. Notably, TMS7 is predicted to be located 

towards the lipid phase of the PM in the UapA structure (Figure 1.19; Kosti et al., 

2012), an observation that favors the idea that this transmembrane segment might be 

part of an interface involved in UapA oligomerization, thus further linking the process 

of oligomerization to UapA exocytic sorting. This idea prompted us to test directly the 

ability for oligomerization of UapA mutants expressing a triple Ala substitution of the 

Gly residues in TMS7.  

Plasmids expressing the alcAp-GGG/A-His and alcAp-GGG/A-GFP were 

constructed (pBS-argB:alcA-GGG/A-His and pAN520exp:alcA-GGG/A-GFP, 

respectively; see 8.2) and introduced in the ∆ACZ strain. Co-transformants were 

selected for arginine and p-aminobenzoic acid prototrophy and the presence of both 
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tagged uapA mutants was confirmed by Southern blot. As expected, transformants 

showed a growth phenotype similar to a negative control mutant (recipient strain 

∆ACZ) on uric acid as a sole nitrogen source, since mutant UapA was retained in the 

ER and/or sorted to the vacuoles (Figure 5.10A).  

Pull down assays of total membrane proteins and western blot analysis of f250 

revealed that a significant amount of GGG/A-GFP co-purified with GGG/A-His. In 

addition, apart from GGG/A-His and GGG/A-GFP monomers, prominent bands of 

higher molecular weight were also detected, possibly corresponding to oligomeric 

forms of the mutant transporter. Notably, the anti-GFP blot showed a significantly 

increased ratio of higher-to-lower molecular weight bands in the GGG/A mutant, 

compared to control strain (Figure 5.10B). These results suggest that the replacement 

of the Gly residues in TMS7 does not abolish oligomerization, but might affect the 

oligomer/monomer relative ratio of UapA, and thus impair export from the ER. 

 

 

Figure 5.10. A. Epifluorescence microscopy and growth tests of the control strain UapA-His UapA-

GFP, and the double mutant strain GGG/A-His GGG/A-GFP, all expressed under the control of alcAp. 

Strains were grown on alcAp-inducing minimal media, at 25°C. B. Pull down assays of membrane 

protein extracts from strains co-expressing UapA-His and UapA-GFP (left panels) or GGG/A-His and 

GGG/A-GFP (right panels), all expressed under the alcAp. In western blot analysis of f250, both UapA-

GFP and GGG/A-GFP clearly co-purified with their His-tagged versions. Notably, the 

oligomer:monomer ratio of GGG/A-GFP is significantly elevated, compared to that of the control strain. 

In accordance to what had been observed for DYDY/A, when GGG/A-GFP was 

co-expressed with the wild-type version UapA-His (both under the control of alcAp), 

two phenotypes were obtained; one showing ER retention of GGG/A-GFP and lack of 

growth on uric acid and another showing PM labelling and ability to grow weakly with 

uric acid as a sole nitrogen source. Therefore, once again the wild-type appeared to 

have pulled the mutant version out of the ER and promoted its sorting into the PM 

(Figure 5.11).Thus, our results suggest that replacing the Gly residues of TMS7 with 

Ala has not abolished, at least, cross-oligomerization with wild-type UapA molecules. 
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Figure 5.11. Epifluorescence microscopy and growth tests of the control strain UapA-His UapA-GFP, 

the double mutant strain GGG/A-His GGG/A-GFP and strains expressing both the mutant and the wild-

type (UapA-His GGG/A-GFP), all expressed under the control of alcAp. Strains were grown on alcAp-

inducing minimal media, at 25°C. 

It has been reported that, although mutations changing the surface of the 

interface can destabilize the dimer, it is possible to restore dimerization by making 

compensatory changes to the opposing monomer (Lemmon et al., 1992). To test the 

effect of one mutant transporter to the other, strains co-expressing DYDY/A-His with 

GGG/A-GFP or GGG/A-His with DYDY/A-GFP were generated. Interestingly, while 

GGG/A-GFP labelled almost exclusively the ER in the presence of DYDY/A-His, a 

significant fraction of DYDY/A-GFP was efficiently targeted to the PM in the 

presence of the GGG/A-His, in spite of some retention in the ER. However, despite 

the presence of the DYDY/A in the PM, the relevant strain did not show any growth 

on uric acid (Figure 5.12). 

 

 

Figure 5.12. Growth tests and epifluorescence microscopy of strains co-expressing GGG/A and 

DYDY/A mutants, with the GFP epitope fused either to the former (upper panels) or the latter (lower 

panels). All mutants were expressed under the control of alcAp. Strains were grown on alcAp-inducing 

minimal media, at 25°C. 
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5.3.8 UapA PM oligomers dissociate upon substrate-elicited endocytosis 

To test whether UapA remains oligomerized during endocytosis and sorting to the 

endosomal/MVB/vacuolar pathway, the PM internalization of alcAp–driven UapA-

YFPC / UapA-YFPN was induced by either NH4
+
 or uric acid and YFP reconstitution 

was observed by epifluorescence microscopy. Exposure to NH4
+
 caused sorting of 

YFP in endosomes, which occurred concomitantly with a decrease in PM 

fluorescence, similar to what was observed in the control strain (Figure 5.13A). The 

endosomal nature of YFP-labelled particles was supported by their co-localization 

with mobile FM4-64-labelled endosomes (Peñalva, 2005; Figure 5.13B). In contrast, 

upon uric acid addition YFP labelled exclusively the PM, and no fluorescence was 

observed in any internal structures. Interestingly, however, under this condition PM 

labelling was not uniform, but rather showed a foci-like labelling. Moreover, labelled 

areas displayed inconspicuous cortical puncta, that appeared like sites of endocytosis, 

where further internalization has been blocked (Figure 5.13A). 

To ensure that over-expression by the alcAp was not implicated in these 

observations, the test was repeated with the strain co-expressing UapA-YFPC and 

UapA-YFPN driven by the endogenous UapA promoter. As expected, the subcellular 

localization displayed was comparable to the one observed with the alcAp (Figure 

5.13C). Cortical punctuation, however, was only observed when the samples had been 

treated with 60µΜ uric acid, a concentration that is sufficient for stimulating UapA 

turn over, but inadequate for its transcriptional induction. On the other hand, upon 

incubation with 600µM uric acid, PM was uniformly labelled, probably as a result of 

the induction of UapA expression. 

It has been reported that the generation of an intact YFP molecule under some 

conditions can be considered an irreversible process (Magliery et al., 2005; Kerppola, 

2006) and a stable interaction may be established between the two proteins fused to 

the YFP halves (Held et al., 2008). If this is the case with the UapA-YFP chimeric 

constructs, the non-response to transport activity-dependent, substrate-elicited 

endocytosis, might, in principle, be due to lack of transport activity, resulting from the 

lack of dynamic de-oligomerization. However, we have previously shown, by growth 

tests and direct transport assays, that the strain expressing the two UapA-YFP 

constructs is fully capable of relevant transport activities (Figure 5.6). Thus, lack of 

internalization in the presence of uric acid should not be due to lack of transport 

activity. It rather seems to be due to either loss or reduction of UapA-YFP de-
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oligomerization per se. In other words, if interaction of the YFP parts block de-

oligomerization of UapA, this block is not critical for UapA function, but it is for 

efficient UapA internalization in the presence of substrates. Interestingly, this putative 

block in UapA de-oligomerization does not block NH4
+
-elicited endocytosis. 

 

 

Figure 5.13. UapA oligomerization status upon induction of endocytosis, as observed by BiFC. A. 

Treatment with NH4
+
 for 4h after 1h transcriptional repression by glucose triggered UapA 

internalization in a similar to the wild-type fashion. Upon substrate incubation for 5h, however, no 

YFP-labelled internal structures were observed, while PM fluorescence was unevenly distributed 

(square), forming inconspicuous cortical puncta, associated with the PM and areas of decreased 

fluorescence. Inset, higher magnification image of a small region of the hypha (rectangle) B. UapA 

oligomers after 2 h incubation with NH4
+

 and simultaneously stained with FM4-64. Arrows highlight 

cytoplasmic granular bodies labelled with both YFP and FM4-64, which at the conditions used labels 

mainly the endosomes. C. Expression under the native promoter gave similar results in respect to 

endocytosis induced by NH4
+

 or uric acid (UA). Notably, unlike the intense and solid labelling of the 

lumens of larger vacuoles in the GFP-tagged control strain (arrow, upper panel), in the UapA-YFPC 

UapA-YFPN strain, YFP labelled the large vacuoles very faintly, mainly in the vacuolar membrane, 

possibly due to YFP dissociation in early stages of the degradation process (arrow, lower panel). 

Moreover, the uneven YFP labelling of the PM was only prominent upon addition of 60µM uric acid, a 

concentration that triggers endocytosis but does not stimulate transcriptional induction. Addition of 

600µM uric acid restored the uniformity of YFP labelling in the PM, probably as a result of 

transcriptional induction of UapA expression, which was also demonstrated by reinforcement of PM 

fluorescence in the control strain. 
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De-oligomerization and substrate-elicited endocytosis as a consequence of 

transport activity has also been reported for dopamine transporter (DAT) 

oligomerization and endocytosis (Chen and Reith, 2008). Such phenomena of 

substrate-induced, activity-related, turnover of transporters might have evolved and 

been conserved from lower eukaryotes to metazoans as a fine negative feedback 

control for avoiding excess uptake of potentially toxic metabolites (Hicke and Dunn, 

2003). 



 

666   
6 Concluding Remarks 

& Future Outlook 

As it was illustrated in the introductory chapter of this study considerable work has 

been carried out towards elucidating the molecular mechanisms of intracellular 

trafficking of transmembrane proteins (Sato and Nakano, 2007; Lauwers et al., 2010; 

Becuwe, Herrador, et al., 2012; Springer et al., 2014 and references therein). 

Whereas many major compartments and pathways are well defined, less is known 

about the dynamic nature of these processes and the molecular components 

responsible for their regulation. Through this study, essential components of the 

mechanism of intracellular trafficking of A. nidulans transporters were identified and 

aspects of their regulation by specific intracellular and extracellular signals were 

demonstrated. A model was generated in which there are two distinct molecular 

pathways for the regulation of UapA endocytosis, in response to broad range signals, 

such as NH4
+
, and specific signals (substrates), respectively. This study focused also 

on the blockage of endocytic mechanisms in hypertonic solutions, which is the result 

of major changes in the physiology of both A. nidulans and S. cerevisiae. Finally, it 

was demonstrated that UapA oligomerizes and that this oligomerization is dynamic 

and critical for UapA sorting and turnover. 



 
Concluding Remarks & Future Outlook 194 

The effects of hypertonic treatment on fungi have been extensively studied 

before. Yeast cells respond to increased tonicity by cell shrinkage, cessation of 

growth associated with diminished translational capacity (Teige et al., 2001), rapid 

closure of the glycerol export channel Fps1 and remodeling of the actin cytoskeleton 

(Chowdhury et al., 1992). These phenomena are transient and recover through 

gradual accumulation of the osmolyte glycerol (Blomberg and Adler, 1989), as a 

consequence of the activation of genes of the high-osmolarity glycerol (HOG) 

pathway (Brewster et al., 1993). However, under extreme and persisting osmotic 

conditions the PM of S. cerevisiae is functionally and structurally reorganized 

irreversibly, which in turn leads to cell death (Dupont et al., 2010). This work, along 

with another report in S. cerevisiae (Slaninová et al., 2000), show with the use of 

TEM that response to hypertonicity also includes the rapid formation of deep PM 

invaginations or localized plasmolysis. 

In agreement with these observations, it was shown in vivo that patches 

originally detected with transporters correspond to PM invaginations, rather than 

specific membrane microdomains, transiently elicited by hypertonic conditions. This 

phenomenon is associated with transient growth arrest and temporary but total block 

of transporter endocytosis in both A. nidulans and S. cerevisiae, as a result of the 

disassembly of actin cytoskeleton. Similarly to yeast (Dupont et al., 2010) and unlike 

what has been observed in mammals (Daukas and Zigmond, 1985), hypertonic 

conditions have a dramatic effect also in fluid phase endocytosis, which might reflect 

differences in the molecular mechanisms employed by fungal and animal cells to 

respond to hypertonicity. Notably, conditions established herein can be used as tools 

to study transporter trafficking and endocytosis in A. nidulans and other filamentous 

fungi or even more complex cells, where genetic blocks in relevant genes are usually 

lethal or debilitating (Hein et al., 1995; Araujo-Bazán et al., 2008). This will permit 

us to address novel questions on transporter trafficking, recycling and turnover 

through alternative pathways. 

As previously stated (Gournas et al., 2010), the transport-dependence of 

substrate-elicited UapA endocytosis clearly distinguishes this phenomenon from 

NH4
+
-induced turnover. However, in both phenomena, UapA internalization is 

dependent on the ubiquitination of the transporter by the same ubiquitin ligase 

(HulA
Rsp5

), which acts on the same Lys residue (K572) with the involvement of the 

same arrestin-like adaptor (ArtA). The fact that ArtA controls UapA ubiquitination 
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and endocytosis in response to both NH4
+
 and substrates leads to an apparent 

paradox. NH4
+
-elicited endocytosis is a broad range physiological response 

concerning probably most transporters involved in the uptake of nitrogenous 

compounds that can be used as secondary nitrogen sources, such as purines, amino 

acids or nitrate. The physiological rationale for this is that when NH4
+
 is present in 

the media as a primary nitrogen source, there is no need for taking up other 

nitrogenous compounds through their specific transporters, which are consequently 

internalized and turned-over. In contrast to NH4
+
-elicited, substrate-induced 

endocytosis is a highly specific signal, which seems to concern a single transporter in 

each case (Amillis et al., 2007; Vlanti and Diallinas, 2008; Gournas et al., 2010; 

George Diallinas and Sotiris Amillis, unpublished results). If arrestins respond to 

broad-range signals through their dephosphorylation, ubiquitination and recruitment 

to PM cargos, as reported in a number of recent publications (MacGurn et al., 2011; 

Becuwe, Vieira, et al., 2012; Merhi and André, 2012), how could this model account 

for the role of arrestin-like proteins in specific substrate-elicited endocytosis of a 

given transporter? 

In S. cerevisiae, different arrestin-like proteins have been shown to recognize 

the same transporter in response to different stimuli (Lin et al., 2008; Nikko and 

Pelham, 2009), whereas in the case of Fur4, five adaptors are involved in the 

endocytosis of the transporter both by substrates and by cycloheximide (Nikko and 

Pelham, 2009). Through the work of our laboratory, including my own, presented in 

this thesis, the regulation of two endocytic pathways by a single arrestin-like protein 

is described for the first time. The diversity of the two pathways is confirmed and the 

convergence of both endocytic signals to a common ubiquitination mechanism is 

justified by the differential modification of the adaptor (ubiquitination) occurring 

specifically when NH4
+
 cellular levels increase, rather than by the recruitment of 

different adaptors. Based on the experiments using UapA, a model is proposed 

(Figure 6.1) that might also be applicable to other transporters related to the uptake 

of secondary nitrogen sources. According to this model, in the presence of NH4
+
, 

ArtA is activated or recruited massively in the PM and thus promotes HulA-

dependent ubiquitination of UapA. In contrast, in the presence of specific substrates, 

UapA undergoes dynamic rounds of alternating conformations associated with 

transport catalysis, which promote interactions with the endocytic machinery even in 

the absence of broad range signals activating arrestin adaptors.  
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Further aspects on adaptor regulation in A. nidulans remain to be elucidated, 

such as whether it occurs via a phosphorylation/de-phosphorylation cascade 

signaling pathway, which are the kinases/phosphatases involved in these 

modifications or whether there are other post-translational modifications involved, 

either on the adaptor proteins or the cargos. Moreover, a di-acidic motif at the C-tail 

of UapA was found to be involved in the ubiquitination and endocytosis of the 

transporter, indicating that this might serve as the interaction interface between the 

transporter and the adaptor. This raises the question of whether there are conserved 

motifs in transporters regulated by the same arrestins and if not, what is the 

mechanism of recognition of cargos by their cognate adaptors. 

 

 

Figure 6.1. Model for the regulation of UapA ubiquitination and endocytosis. ArtA is in a 

constitutively ubiquitinated state with a low ratio of ubiquitinated (dark green) to non-ubiquitinated 

(light green) molecules, which increases several-fold in the presence of NH4
+
. The ubiquitinated ArtA 

mediates the interaction of UapA with HulA, which results in UapA ubiquitination and eventual 

internalization (left). In the presence of its substrates, conformational changes of UapA associated 

with its transport cycle (right) increase the affinity of the transporter for ArtA adaptor molecules, even 

for those that are not ubiquitinated, and thus UapA ubiquitination and turnover occur (adapted from G. 

Diallinas). 

Our results also provide a possible explanation for the inability of UapA to be 

endocytosed when heterologously expressed in S. cerevisiae (Mayia Karachaliou and 

George Diallinas, unpublished observations). This could be the absence of cis-

elements on UapA that are required for the endocytosis of a transporter in S. 

cerevisiae, such as specific motifs recognized by adaptors of Rsp5 ubiquitin ligase. 
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We showed here that apart from ArtA, at least one other factor, the SagA 

(homologue of End3 of S. cerevisiae), is necessary for the endocytosis of UapA in A. 

nidulans. Notably, among the transporters tested, SagA was found essential only for 

carriers specific for purines (Karachaliou et al., 2013; Vassilis Yalelis, Sotiris 

Amillis and George Diallinas, unpublished observations). This specificity indicates 

that the regulation of endocytosis has a narrow specificity range and even though the 

conservation between the two proteins (Art1 and End3) and their A. nidulans 

homologues is high, small differences in their affinity for UapA are probably 

sufficient to hinder the interaction with the transporter. The expression in S. 

cerevisiae of all the components known to date to be essential for UapA endocytic 

internalization could serve as a workaround to enable the use of this heterologous 

system for trafficking studies. Nevertheless, the possibility that yet another protein 

essential for UapA endocytosis exists, cannot be excluded. 

The observation of in trans endocytosis was the motive that prompted us to 

investigate whether UapA oligomerizes. We demonstrated UapA oligomerization 

using several direct and indirect approaches and showed that the physical interaction 

between the monomers is fairly strong, since it remains stable even in reducing 

conditions. Similar results were obtained very recently for the human vitamin C 

transporter 1 (hSVCT1), which is also a member of the NAT family (Boggavarapu et 

al., 2013). Purification of hSVCT1 and low-resolution structure obtained by TEM 

and single particle analysis unveiled the existence of a major monomeric and minor 

dimeric population. UapA, however, was also observed to form higher order 

oligomers, which were diminished in a mutant that has lost the ability to oligomerize 

(DYDY/A), as evidenced by BiFC. This mutant bears substitutions of four amino 

acids forming a putative di-acidic motif at the N-tail of UapA, which were shown to 

be essential for ER export (Sotiris Amillis and George Diallinas, unpublished 

observations). Other ER-retain mutants (I74D, TMS14∆) also failed to reconstitute 

the YFP fluorophore, unless one of the putative partners was a wild-type molecule. 

In that case, «in trans sorting» of the mutant protein to the PM occured, while some 

ER-retention of the oligomers was also observed. Taken together, we showed that 

UapA oligomer formation occurs already in the ER and that it is involved in the 

proper targeting of the transporter to the PM.  

The exact role of UapA oligomerization in ER-exit is still unknown and could 

constitute the target of further research. One possible role has very recently been 
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proposed. Springer et al. (2014) showed that oligomerization induces local 

membrane bending, which in turn promotes COPII vesicle generation and eventual 

sorting to the PM. Other issues to be addressed include the determination of the 

oligomeric state at which most UapA molecules exist in the cell, the investigation of 

the possible existence of a dynamic equilibrium between different oligomeric states, 

as well as the identification of the possible role of oligomerization in UapA function. 

An interesting and as yet standing question about UapA oligomerization is 

what the interaction interface between UapA monomers is. Genomic analysis of 

membrane protein families has shown that GXXXG (GX3G) and GXXXXXXG 

(GX6G) are among the most prevalent motifs mediating helix-helix interactions in 

membrane proteins. Moreover, these motifs are particularly well conserved in 

families corresponding to transporters and channels (Liu et al., 2002). In line with 

that, we found that a conserved GX3G motif in the TMS7 of UapA, which is 

predicted to be located towards the lipid phase of the PM (Figure 1.19; Kosti et al., 

2012), is possibly involved in UapA oligomerization. 

Another UapA domain that is worth examining in the future for an involvement 

in the oligomerization of the transporter is the motif G
224

X6GX6GX6GX6G
252

 in 

TMS5. As seen in Figure 6.2, three out of four Gly residues that lie within or at the 

limits of TMS5 are highly conserved in fungi and bacteria, but not in higher 

eukaryotes,  whereas  the  fourth  one  (Gly231)  is  absolutely  conserved,  with  the 

 

 

Figure 6.2. Multiple alignment of the putative TMS5 of UapA and selected NAT homologues. Highly 

conserved amino acids are shaded in blue boxes. Gly residues forming the G
224

X6GX6GX6GX6G
252

 

motif in UapA are indicated (blue arrows). Putative GX3GX3G and GX3G motifs of hSVCT and 

rSNBT1, respectively, are shaded in orange boxes. The listed NAT homologues include: UapA of A. 

nidulans; UapC of A. nidulans, AFUapC of A. fumigatus, Xut1 of C. albicans, UraA of Escherichia 

coli, YgfU of E. coli, XanQ of E. coli, XanP of E. coli, Lpe1 of Zea mays, hSVCT1 of Homo sapiens, 

hSVCT2 of H. sapiens, rSNBT1 of Rattus norvegicus (adapted from Krypotou and Diallinas, 2014). 
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exception of the rat sodium-dependent nucleobase transporter 1 (rSNBT1). Although 

the aforementioned motif is not present in higher eukaryotes, the human vitamin C 

transporters hSVCT1 and hSVCT2 contain a GXXXGXXXG motif, which has also 

been shown to mediate membrane protein interactions (Plotkowski et al., 2007), 

while part of it (GXXXG motif) is also conserved in rSNBT1 (Figure 6.2). 

Additionally, the residue I74, the substitution of which led to ER retention and 

abolishment of UapA oligomerization, lies at the cytoplasmic limit of TMS1, within 

a region that is rich in leucine residues. Four of these residues form a putative leucine 

zipper (L70X6LX6LX6L91; Figure 6.3A), a common motif that has been shown to 

provide stable binding between α-helices (Oates et al., 2010), which however is not 

conserved within the NAT family. Mutations replacing Leu with Ala residues within 

TMS1 (L77/84A and L77/84/91A) led to increased appearance of UapA in vacuoles, 

besides also being abundant in the PM, suggesting that the leucine zipper might have 

a role in the stability of the transporter in the membrane. Moreover, kinetic analysis 

showed that these mutations either increased (180% in L77/84A) or did not affect 

significantly (80% in L77/84/91A) UapA transport capacity for xanthine, which is 

consistent with their abundance in the PM (Pantazopoulou and Diallinas, 2006). 

Interestingly, according to the modeled structure of UapA, not only is TMS1 

predicted to be to be located at the periphery of the molecule, but it is also in close 

proximity to TMS7 (Figure 1.19; Kosti et al., 2012). Thus, it is likely that both TMSs 

are involved in the interaction interface of the oligomers. 

 

 

Figure 6.3. A. Speculative topology of TMS1 of UapA. The Leu residues forming a putative Leu 

zipper, as well as the I74 and Y47, which when substituted lead to complete ER retention, are depicted 

in circles. B. Predicted biological assembly of the uracil transporter UraA from E. coli, generated by 

PISA software based on the crystal structure of the monomer. Monomers within the dimer are 

depicted in different colors. Bound substrates are also displayed (retrieved from 

http://www.rcsb.org/pdb/explore.do?structureId=3qe7). 
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On the other hand, based on the crystal structure of the E. coli uracil/H
+
 

symporter UraA, which is the only resolved structure of a member of the NAT 

family, yet another domain can be proposed as a putative interaction interface 

between UapA monomers. In particular, although UraA was crystallized as a 

monomer, a software analyzing crystal structures and predicting their most likely 

biological form (PISA) suggests that UraA forms dimers and that the interaction 

interface lies within the TMS13 of each monomer (Figure 6.3B; 

http://www.rcsb.org/pdb/explore.do?structureId=3qe7). The TMS14 of the two 

monomers are tightly located at either side of the interacting domains, a 

conformation that might serve a supporting role for the TMS13 to acquire a topology 

that favors intermolecular interactions. An indirect role of TMS14 in the 

establishment of the dimer, could explain the lack of YFP reconstitution in the 

TMS14∆ mutant of UapA, even when one of the YFP-tagged partners was a wild-

type molecule. 

Last but not least, the present results strongly suggest that de-oligomerization 

of UapA is very probably a consequence of, rather than a prerequisite for, transport 

activity. Attachment of YFP epitopes did not affect UapA transport activity but 

apparently blocked its internalization by substrates, but not by NH4
+
, probably as a 

result of the stable reconstitution of the YFP molecule. This observation implied that 

while NH4
+
-elicited endocytosis proceeds with at least some UapA molecules being 

in oligomeric structures, addition of substrates elicits the dissociation of transporter 

oligomers, which in turn leads to their internalization and sorting to the 

endosomal/vacuolar pathway as monomers. This is in line with previous observations 

on dopamine transporter (DAT) oligomerization and endocytosis (Chen and Reith, 

2008). Nevertheless, we cannot exclude the possibility that some UapA oligomers do 

dissociate and eventually internalize as monomers, this explaining the areas of 

decreased PM fluorescence in the sample treated with substrates. In that case, UapA 

de-oligomerization coincides with the dissociation of YFP parts and therefore, no 

fluorescent internal structures are observed. Notably, a block in constitutive 

endocytosis of YFP-tagged UapA was also observed, which is in accordance with 

our model suggesting that this type of internalization occurs via the substrate-induced 

endocytic pathway (Figure 6.1).  

Combining this model with our results suggesting UapA de-oligomerization 

prior to its substrate-elicited internalization, one could speculate that the 



 
201 Concluding Remarks & Future Outlook 

conformational changes of UapA associated with its function are responsible for the 

disruption of the interaction between the UapA monomers and that this dissociation 

is responsible for making the transporter accessible also to non-ubiquitinated ArtA. 

However, this is just a hypothesis yet to be explored and to be supported by 

experimental data. A first step towards this could be the examination of the 

ubiquitination status of UapA molecules that are fixed in an oligomeric arrangement 

due to the stable reconstitution of YFP. In addition, other fluorescence 

complementation-based methods, such as FRET, could be employed for the 

observation of the oligomers in vivo, in order to avoid the tight reconstitution of the 

YFP parts. In conclusion, the substrate-induced turnover of transporters is generally 

believed to have evolved as a negative feedback control for avoiding excess uptake 

of potentially toxic metabolites (Hicke and Dunn, 2003) and UapA de-

oligomerization by substrates and subsequent internalization appears to serve as a 

fine regulatory mechanism to this end.
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8.1 Abbreviations 

AFM Atomic Force Microscopy 

ARTs Arrestin-Related Trafficking adaptors 

ATP Adenosine-Triphosphate 

bp Base pairs 

BiFC  Bifluorescence Complementation assay 

BSA  Bovine Serum Albumin 

°C Celsius degrees 

CFTR  Cystic Fibrosis Transmembrane Conductance Regulator 

CM Complete Media 

CMAC  7-amino-4-chloromethyl coumarin 

CoIP  Coimmunoprecipitation 

COPI  Coat Protein Complex I 

COPII  Coat Protein Complex II 

CORVET Class C Core Vacuole/Endosome Tethering Complex 

∆ACZ  uapA∆ uapC∆ azgA∆ 

Da Dalton 

DDM  Dodecyl-β-D-maltoside 

DRM  Detergent-resistant Membranes 

EE  Early Endosome 

EDTA  Ethylenediaminetetraacetic Acid 

ER  Endoplasmic Reticulum 

ERAD  ER-Associated Degradation 

ERES  ER Exit Site 

ERGIC  ER-Golgi Intermediate Compartment  
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ERQC  ER-derived Quality Control Compartment 

ESCRT  Endosomal Sorting Complex Required for Transport 

EtBr  Ethidium Bromide 

EtOH  Ethanol 

FP  Fluorescent Protein 

GEF  Guanine Nucleotide Exchange Factor 

GFP  Green Fluorescent Protein 

h  Hour 

H2Odist  Distilled water 

HOG  High-Osmolarity Glycerol 

HOPS  Homotypic Fusion and Vacuole Protein Sorting 

HRP  Horse Radish Peroxidase 

Km  Michaelis-Menten constant 

Lat-B  Latrunculin B 

LB  Luria-Bertani 

LE  Late Endosome 

MCC  Membrane Compartment occupied by Can1 

MCP  Membrane Compartment occupied by Pma1 

MFS  Major Facilitator Superfamily 

min  Minute 

MM Minimal media 

mRFP  Monomeric Red Fluorescent Protein 

MT  Microtubules 

MVB  Multivesicular Body 

NAT  Nucleobase–Ascorbate Transporters 

NCS1  Nucleobase Cation Symporter family 1 

NCS2  Nucleobase Cation Symporter family 2 

NEM  N-ethylmaleimide 

paba p-aminobenzoic acid 

panto D-pantothenic acid 

PCR Polymerase Chain Reaction 

PIC   Protease inhibitors cocktail 

PM  Plasma Membrane 

PMA  Phorbol 12-Myristate 13-Acetate 

PRT  Purine-Related Transporter family 

PY  PPXY motif 

pyro Pyridoxine 

ribo Riboflavin 

rpm Rounds per minute  

RT Room Temperature 

sec Second 

SDS  Sodium Dodecyl Sulfate 

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SM  Sec1/Munc18 proteins 

SNAP  Soluble NSF (NEM-sensitive fusion protein) Attachment Protein 
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SNARE Soluble NSF (NEM-sensitive fusion protein) Attachment Protein Receptor 

SRP  Signal Recognition Particle 

suc  Sucrose 

Tm  Melting temperature 

TCA  Trichloroacetic Acid 

TEM  Transmission Electron Microscopy 

tER  transitional ER 

TGN  trans-Golgi Network 

TMR  Transmembrane Receptor 

TMS  Transmembrane Segment 

u  Unit 

UA  Uric Acid 

UBD  Ubiquitin-Binding Domain 

UPR  Unfolded Protein Response 

Ura  Uracil 

UV  Ultraviolet 

wt  Wild type 

X  Xanthine 

YAC  Yeast Artificial Chromosome 

YFP  Yellow Fluorescent Protein 

YNB  Yeast Nitrogen Base 

Amino Acids 

A Ala  Alanine  

C  Cys  Cysteine  

D  Asp  Aspartic acid  

E  Glu  Glutamic acid  

F  Phe  Phenylalanine  

G  Gly  Glycine  

H  His  Histidine  

I  Ile  Isoleucine 

K  Lys  Lysine   

L  Leu Leucine  

M  Met  Methionine 

N  Asn  Asparagine 

P  Pro  Proline 

Q  Gln  Glutamine 

R  Arg  Arginine 

S  Ser  Serine 

T  Thr  Threonine 

V  Val  Valine 

W  Trp  Tryptophan 

Y  Tyr  Tyrosine  
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8.2 Plasmids used in this study 

8.2.1 List of Plasmids used in this study 

Plasmid Name Based on References 

pAN510expXS - (Papageorgiou et al., 2008) 

pDV8 - (Takeshita et al., 2008) 

pDV7 - (Takeshita et al., 2008) 

pAN510exp-YFPC pAN510expXS this study 

pAN510exp-YFPN pAN510expXS this study 

pAN510exp - 
(Vlanti and Diallinas, 2008; 

Papageorgiou et al., 2008) 

pBS-argB:alcA - (Gournas et al., 2010) 

pBS-argB:alcA-uapA-YFPN pBS-argB:alcA this study 

pAN520exp:alcA-uapA-YFPC  pAN510exp-YFPC this study 

pAN510exp:alcA-N409D pAN510exp this study 

pAN520exp:alcA-uapA
-XbaI

 pAN520exp:alcA-uapA-YFPC this study 

pBS-argB:alcA-uapA
-XbaI

 pBS-argB:alcA-uapA-YFPN this study 

pAN520exp:alcA-uapA-YFPC 
fix

 pAN520exp:alcA-uapA
-XbaI

 this study 

pBS-argB:alcA-uapA-YFPN 
fix

 pBS-argB:alcA-uapA
-XbaI

 this study 

pAN520exp:alcA-DYDY-YFPC pAN520exp:alcA-uapA-YFPC 
fix

 this study 

pBS-argB:alcA-DYDY-YFPN pBS-argB:alcA-uapA-YFPN 
fix

 this study 

pAN520exp:alcA-I74D-YFPC pAN520exp:alcA-uapA-YFPC this study 

pBS-argB:alcA-I74D-YFPN pBS-argB:alcA-uapA-YFPN this study 

pAN520exp:alcA-TMS14∆-YFPC pAN520exp:alcA-uapA-YFPC 
fix

 this study 

pBS-argB:alcA-TMS14∆-YFPN pBS-argB:alcA-uapA-YFPN 
fix

 this study 

pBS-argB:alcA-ctailess-His pBS-argB:alcA-uapA
-XbaI

 this study 

pBS-argB:alcA-DYDY/A-His pBS-argB:alcA-ctailess-His this study 

pBS-argB:alcA-GGG/A-His pBS-argB:alcA-ctailess-His this study 

pBS-argB:alcA-uapA-His pBS-argB:alcA-ctailess-His this study 

pAN520exp:alcA-DYDY/A-GFP pAN520exp:alcA-uapA
-XbaI

 this study 

pAN520exp:alcA-GGG/A-GFP pAN520exp:alcA-uapA
-XbaI

 this study 

8.2.2 Description of plasmids constructed in this study 

The construction process of the plasmids generated in this study is briefly described, 

followed by the corresponding plasmid maps. For a detailed description of the 

cloning procedure, please refer to Materials and Methods (section 2.6). For the 

references of the plasmids used as cloning vectors, please refer to the list of plasmids 

used in this study (section 8.2.1). For the sequences of the primers used for 
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amplifying the cloning inserts or for site-directed mutagenesis, please refer to the list 

of oligonucleotides used in this study (section 8.3). 

pAN510exp-YFPC & pAN510exp-YFPN 

YFPC and YFPN fragments were amplified by PCR from plasmids pDV8 and pDV7 

and using the primers YFPcF/YFPnR and YFPnF/YFPnR, respectively. Amplified 

fragments were digested with XbaI restriction endonuclease and were cloned in XbaI 

digested pAN510expXS cloning vector, generating plasmids pAN510exp-YFPC and 

pAN510exp-YFPN. 

pBS-argB:alcA-uapA-YFPN 

The fragment uapA-YFPN-3’UTR was PCR amplified from plasmid pAN510exp-

YFPN with the primers expBamF/3’UTR BglIIR and was double digested with 

BamHI/BglII restriction endonucleases. The digested fragment was cloned to a 

BamHI digested pBS-argB:alcA cloning vector, thus generating plasmid pBS-

argB:alcA-uapA-YFPN. 

pAN520exp:alcA-uapA-YFPC 

Plasmid pAN510exp-YFPC was digested with SalI restriction endonuclease and argB 

selection marker was replaced with pabaA selection marker. The resulting plasmid 

was then double digested with NotI/BamHI restriction endonucleases and the 

endogenous UapA promoter was replaced with alcAp, which was recovered from the 

pBS-argB:alcA-uapA-YFPN plasmid with a NotI/BamHI double digestion, thus 

generating the plasmid pAN520exp:alcA-uapA-YFPC.  

pAN510exp:alcA-N409D 

UapA-N409D ORF was amplified by PCR using the primers expBamF/uapAXbaR. 

The amplified fragment was double digested with BamHI and XbaI restriction 

endonucleases and was cloned in a BamHI/XbaI digested pAN510exp cloning vector. 

The resulting plasmid was then double digested with NotI/BamHI restriction 

endonucleases and the endogenous UapA promoter was replaced with alcAp, which 

was recovered from the pBS-argB:alcA-uapA-YFPN plasmid with a NotI/BamHI 

double digestion, thus generating the plasmid pAN510exp:alcA-N409D. 
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pAN520exp:alcA-uapA-YFPC 
fix

 & pBS-argB:alcA-uapA-YFPN 
fix

 

To enable the exchange of UapA ORF with mutant versions of UapA in the 

pAN520exp:alcA-uapA-YFPC and pBS-argB:alcA-uapA-YFPN with a simple 

BamHI/XbaI digestion, the two plasmids were NotI/BamHI digested and cloned with 

the alcAp, which had been previously amplified with the primers 

alcANotIF/alcABamHIR and digested with the same pair of endonucleases. This 

way, the Xba restriction site of the pBS-argB:alcA multicloning site was removed. 

The plasmids were then XbaI digested and religated to ensure the removal of the 

YFP fragments, thus generating plasmids pAN520exp:alcA-uapA
-XbaI 

and pBS-

argB:alcA-uapA
-XbaI

. Next, the resulting plasmids were BamHI/XbaI digested and 

cloned with uapA-YFPC and uapA-YFPN that had previously been amplified with 

primers expBamHIF/GFPSpeIR and expBamHIF/YFPnSpeIR, respectively, and 

digested with BamHI/SpeI. This way the YFP fragments were fixed to the respective 

cloning vectors and the final plasmids (pAN520exp:alcA-uapA-YFPC
fix

 and pBS-

argB:alcA-uapA-YFPN
fix

) could be used as cloning vectors for several UapA 

mutants. 

pAN520exp:alcA-DYDY/A-YFPC & pBS-argB:alcA-DYDY/A-YFPN 

pAN520exp:alcA-uapA-YFPC
fix

 and pBS-argB:alcA-uapA-YFPN
fix

 were BamHI/XbaI 

digested and cloned with uapA-DYDY/A, which had previously been amplified with 

primers expBamHIF/uapAXbaR NS and digested with BamHI/XbaI, thus generating 

the plasmids pAN520exp:alcA-DYDY/A-YFPC and pBS-argB:alcA-DYDY/A-YFPN, 

respectively. 

pAN520exp:alcA-I74D-YFPC & pBS-argB:alcA-I74D-YFPN 

pAN520exp:alcA-I74D-YFPC and pBS-argB:alcA-I74D-YFPN were constructed by 

site-directed mutagenesis of the pAN520exp:alcA-uapA-YFPC and pBS-argB:alcA-

uapA-YFPN, respectively, using the primers BamTMS1F/BamTMS1R. 

pAN520exp:alcA-TMS14∆-YFPC & pBS-argB:alcA-TMS14∆-YFPN 

pAN520exp:alcA-uapA-YFPC
fix

 and pBS-argB:alcA-uapA-YFPN
fix

 were BamHI/XbaI 

digested and cloned with uapA-TMS14∆, which had previously been amplified with 

primers expBamHIF/uapAXbaR NS and digested with BamHI/XbaI, thus generating 
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the plasmids pAN520exp:alcA-TMS14∆-YFPC and pBS-argB:alcA-TMS14∆-YFPN, 

respectively. 

pBS-argB:alcA-ctailess-His 

UapA-ctailess ORF was amplified by PCR using the primers expBamF/ Ctail His 

Spe R. This reverse primer contains the sequence coding for the His10 tag, right after 

a XbaI restriction site. The amplified fragment was double digested with BamHI and 

SpeI restriction endonucleases and was cloned in a BamHI/XbaI digested pBS-

argB:alcA-uapA
-XbaI

 cloning vector. This way the His10 tag was fixed on the resulting 

plasmid (pBS-argB:alcA-ctailess-His) and the UapA-ctailess ORF could be easily 

replaced by any other ORF by a simple BamHI/XbaI digestion. 

pBS-argB:alcA-DYDY/A-His, pBS-argB:alcA-GGG/A-His  & pBS-argB:alcA-

uapA-His 

pBS-argB:alcA-ctailess-His was BamHI/XbaI digested and cloned with the also 

BamHI/XbaI digested UapA-N-tail. The resulting plasmid was once again 

BamHI/XbaI digested and the UapA-N-tail was replaced by the uapA-DYDY/A, 

uapA-GGG/A or uapA, which had previously been amplified with primers 

expBamHIF/uapAXbaR NS II and digested with BamHI/XbaI, thus generating the 

plasmids pBS-argB:alcA-DYDY/A-His, pBS-argB:alcA-GGG/A-His and pBS-

argB:alcA-uapA-His, respectively. 

pAN520exp:alcA-DYDY/A-GFP & pAN520exp:alcA- GGG/A-GFP 

pAN520exp:alcA-uapA
-XbaI

 was BamHI/XbaI digested and cloned with the also 

BamHI/XbaI digested UapA-N-tail. The resulting plasmid was once again 

BamHI/XbaI digested and the UapA-N-tail was replaced by the uapA-DYDY/A or 

uapA-GGG/A-GFP, which had previously been amplified with primers 

expBamHIF/uapAXbaR NS II and expBamHIF/GFPXbaR, respectively, and double 

digested with BamHI/XbaI, thus generating the plasmids pAN520exp:alcA-DYDY/A 

and pAN520exp:alcA-GGG/A-GFP. pAN520exp:alcA-DYDY/A was then XbaI 

digested and cloned with the GFP ORF, which had previously been amplified with 

primers GFP Xba F2/GFP SpeIR and XbaI/SpeI double digested, thus generating the 

plasmid pAN520exp:alcA-DYDY/A-GFP. 
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8.3 Oligonucleotides used in this study 

5’ – 3’ Sequence Name 

CGTCTAGAGGCCGACAAGCAGAAGAAC YFPcF 

CGTCTAGAGCTTGTACAGCTCGTCCATG YFPcR 

CGTCTAGAGGTGAGCAAGGGCGAGGAG YFPnF 

CGTCTAGAGCATGATATAGACGTTGTGGCTG YFPnR 

CGCGGGATCCCTCCATCCATTCAACCGAC expBamF 

GCTCTAGACTAAGCCTGCTTGCTCTGATAC uapAXbaR 

GCAGATCTGCAATAACTCAACCGCCTTCCC 3’UTR BglIIR 

CGCGGCGGCCGCTAAGTCCCTTCGTATTTCTCC alcANotIF 

CGGGATCCATTTTGAGGCGAGGTGATAG alcABamHIR 

CGACTAGTTTACTTGTACAGCTCGTCCATG GFPSpeIR 

CGCGACTAGTGCATGATATAGACGTTGTGGCTG YFPnSpeIR 

GCTCTAGAGCCTGCTTGCTCTGATACTC uapAXbaR NS 

GGCCTCAACGAGAAGGATCCCGTGCTGTTGGCGTTTATC BamTMS1F 

GATAAACGCCAACAGCACGGGATCCTTCTCGTTGAGGCC BamTMS1R 

CCGACTAGTTTAATGATGATGATGATGATGGTGGTGGTGGTGTCT

AGAGACTTCAGCAGGCATGATTGCG 
Ctail His Spe R 

GCTCTAGAAGCCTGCTTGCTCTGATACTC uapAXbaR NS II 

CGCTCTAGATTACTTGTACAGCTCGTCC GFPXbaR 

CGTCTAGAATGGTGAGCAAGGGCGAG GFP Xba F2 
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Έκφραση και καθαρισμός ενός λειτουργικού μεταφορέα ξανθίνης – 

ουρικού οξέος (UapA). 

Leung J., Καραχάλιου Μ., Alves A., Διαλλινάς Γ. & Byrne B. 

Περίληψη 

Η οικογένεια μεταφορέων νουκλεοτιδικών βάσεων–ασκορβικού (NAT) περιλαμβάνει μεταφορείς με 

θεμελιώδη ρόλο στην πρόσληψη βασικών κυτταρικών μεταβολιτών, όπως το ουρικό οξύ και η βιταμίνη 

C. Ο πιο εκτενώς μελετημένος NAT μεταφορέας είναι ο μεταφορέας ουρικού– ξανθίνης (UapA) στον 

ασκομύκητα Aspergillus nidulans. Λεπτομερείς γενετικές και βιοχημικές αναλύσεις έχουν αποκαλύψει 

πολλά σε σχέση με το μηχανισμό δράσης αυτής της πρωτεΐνης. Ωστόσο, η δυσκολία χειρισμού 

μεμβρανικών πρωτεϊνών αποτελεί περιοριστικό παράγοντα στην προσπάθεια κατανόησης σχέσεων 

δομής–λειτουργίας μέσω κλασικών προσεγγίσεων δομικής βιολογίας (κρυσταλλογραφία, NMR). Στην 

εργασία αυτή περιγράφουμε την ετερόλογη υπερέκφραση λειτουργικών μορίων UapA σημασμένων με 

την πράσινη φθορίζουσα πρωτεΐνη (GFP) σε στελέχη του Saccharomyces cerevisiae. Συγκεκριμένα, η 

χιμαιρική πρωτεΐνη UapA–GFP εκφράστηκε σε συγκέντρωση 2.3 mg/L στο στέλεχος pep4Δ, στο οποίο 

έχει απενεργοποιηθεί μία βασική χυμοτοπιακή ενδοπεπτιδάση, και σε συγκέντρωση 3.8 mg/L στο 

στέλεχος npi1-1, το οποίο παρουσιάζει μειωμένη δράση της λιγάσης της ουβικουιτίνης, Rsp5p. 

Παράλληλα, παρατήρηση με μικροσκόπιο επιφθορισμού έδειξε ότι η UapA-GFP εντοπίζεται κατά κύριο 

λόγο στην πλασματική μεμβράνη και στα δύο στελέχη, με υψηλότερη ένταση φθορισμού στο στέλεχος 

npi1-1. Σε συμφωνία με αυτές τις παρατηρήσεις, το στέλεχος npi1-1 έδειξε 5-πλάσια πρόσληψη [
3
H]-

ξανθίνης σε σύγκριση με το pep4Δ. Παρότι το στέλεχος npi1-1 έδωσε καλύτερα αποτελέσματα σε 

επίπεδο λειτουργικής έκφρασης, η προερχόμενη από αυτό πρωτεΐνη UapA–GFP έδειξε αυξημένο βαθμό 

πρωτεόλυσης. Υπερέκφραση της πρωτεΐνης στο στέλεχος pep4Δ και επακόλουθος καθαρισμός της 

παρήγαγαν αξιόλογες (mg) ποσότητες καθαρής πρωτεΐνης, κατάλληλης για περαιτέρω δομικές και 

λειτουργικές μελέτες. Επιπλέον, η εργασία αυτή δημιούργησε ένα απλό ευκαρυωτικό σύστημα 

κατάλληλο για τη χρήση αντίστροφης γενετικής και άλλων στοχευμένων προσεγγίσεων, με σκοπό την 

περαιτέρω κατανόηση του μηχανισμού δράσης αυτής της σημαντικής πρωτεΐνης. 
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The Nucleobase–Ascorbate Transporters (NATs) family includes carriers with fundamental functions in
uptake of key cellular metabolites, such as uric acid or vitamin C. The best studied example of a NAT
transporter is the uric acid–xanthine permease (UapA) from the model ascomycete Aspergillus nidulans.
Detailed genetic and biochemical analyses have revealed much about the mechanism of action of this
protein; however, the difficulties associated with handling eukaryotic membrane proteins have limited
efforts to elucidate the precise structure–function relationships of UapA by structural analysis. In this
manuscript, we describe the heterologous overexpression of functional UapA as a fusion with GFP in dif-
ferent strains of Saccharomyces cerevisiae. The UapA–GFP construct expressed to 2.3 mg/L in a pep4D dele-
tion strain lacking a key vacuolar endopeptidase and 3.8 mg/L in an npi1-1 mutant strain with defective
Rsp5 ubiquitin ligase activity. Epifluorescence microscopy revealed that the UapA–GFP was predomi-
nately localized to the plasma membrane in both strains, although a higher intensity of fluorescence
was observed for the npi1-1 mutant strain plasma membrane. In agreement with these observations,
the npi1-1 mutant strain demonstrated a �5-fold increase in uptake of [3H]-xanthine compared to the
pep4D deletion strain. Despite yielding the best results for functional expression, in-gel fluorescence of
the UapA–GFP expressed in the npi1-1 mutant strain revealed that the protein was subject to significant
proteolytic degradation. Large scale expression of the protein using the pep4D deletion strain followed by
purification produced mg quantities of pure, monodispersed protein suitable for further structural and
functional studies. In addition, this work has generated a yeast cell based system for performing reverse
genetics and other targeted approaches, in order to further understand the mechanism of action of this
important model protein.

� 2010 Elsevier Inc. All rights reserved.
Introduction

The ubiquitous Nucleobase–Ascorbate Transporter (NAT)1 fam-
ily includes carriers with fundamental functions in uptake of key cel-
lular metabolites, such as uric acid or vitamin C [1–3]. These
transporters are also responsible for mediating uptake of purine ana-
logues used as antimicrobials, anticancer agents, antivirals [4] and as
agents against parasitic diseases [5]. They are found in all organisms
from bacteria (e.g. YgfO [6]), to plants [7,8] and humans [9].
Although highly related in structure, there are some key differences
in substrate specificity among the members of the family. These dif-
ferences can be used to subdivide the family into three distinct sub-
groups; some bacterial, the fungal and the plant NATs transport
oxidized purines, xanthine or uric acid, some other bacterial trans-
ll rights reserved.
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port only uracil, whereas the transporters from higher eukaryotes
are specific to either L-ascorbic acid [1,2] or nucleobases in general
[10]. In addition, the NATs from bacteria, fungi and plants are proton
dependent, whereas the vertebrate transporters are sodium depen-
dent. In common with several other carriers belonging to evolution-
ary distinct families, they are predicted to contain 12 a-helical
transmembrane segments (TMS) and intracellular N and C termini
[11]. NATs contain two specific motifs; the NAT signature motif,
[Q/E/P]-N-X-G-X-X-X-X-T-[R/K/G] (where X is a hydrophobic amino
acid residue) found in an amphipathic region just upstream of TM9
and the QH motif in the middle of TMS1, known to be critical for
function of well-studied examples of this family [6,11–14]. The best
characterized NAT is the uric acid–xanthine permease (UapA) from
the model ascomycete Aspergillus nidulans [12,15–17]. Native UapA
expression is developmentally activated early during germination
of conidiospores and is subsequently dependent on the presence of
environmental purines and/or nitrogen sources [15,17,18]. The UapA
protein functions as a high-affinity, high-capacity transporter spe-
cific for uric acid and xanthine, but can also transport several xan-
thine analogues albeit with lower affinity. Extensive biochemical
of a functional uric acid–xanthine transporter (UapA), Protein Expr. Purif.
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and genetic analyses have made UapA a model for study of struc-
ture–function relationships of members of the NAT family. The long
amphipathic loop linking TMS8–TMS9, which includes the NAT sig-
nature motif, was found to have a principal role in substrate translo-
cation [11,19,20]. Four amino acid residues (E356, D388, Q408,
N409) proved irreplaceable and several other affect UapA function,
substrate affinity or specificity (A363, E371, R373, G411, T416,
R417). Kinetic evidence is strongly supportive that the NAT motif
in particular interacts with the imidazol moiety of xanthine, uric acid
or other UapA ligands. In this interaction, Q408 is proposed to make
a direct H bond with position N9 or C8@O of xanthine or uric acid,
respectively, whereas N409 seems to be a dynamic element abso-
lutely necessary for molecular movements associated with UapA-
mediated transport. G411 and T416 are also important for narrowing
the specificity of UapA to xanthine and uric acid, whereas R417 in-
creases the affinity of UapA specifically for uric acid. Similar muta-
tional analysis and Cys-scanning mutagenesis of YgfO, a bacterial
NAT that is a functional homologue of UapA, confirmed the impor-
tance of the four irreplaceable for function amino acid residues
found in UapA [6,21], revealing a very close relationship between
the functional role of these individual residues in the two proteins.

Further studies have identified residues in TMS12 (T526, F528)
with roles in the selectivity of UapA allowing binding and transport
of uric acid and xanthine, but excluding other purines [20,22,23]. In
contrast, the equivalent residues in YgfO have been found to be
essential for function but not substrate selectivity, an observation
highlighting subtle difference in the molecular make-up of the
two transporters [24]. Furthermore, Cys-scanning mutagenesis in
YgfO showed that these residues are probably in the vicinity of
the binding site located in the TMS8–TMS9 region [24]. Finally,
the QH motif in TMS1 (Q85, H86 in UapA) has also been shown
to play an essential role in substrate transport and protein folding
in both UapA [14] and YgfO [25], whereas the loop linking TMS1-
TMS2 and several residues along TMS1 also affect UapA selectivity
[20].

Despite the detailed studies of UapA and YgfO the understand-
ing of this essential group of transporters is currently limited by
the lack of high resolution structural data. One of the major hurdles
to structural studies is the expression of high quality transporter
protein. A recent study described the homologous expression of
UapA in A. nidulans using the strong ethanol-inducible alcA pro-
moter [26]. The protein produced was purified to near homogene-
ity and, based on circular dichroism, the purified UapA sample
displayed a predominantly a-helical structure, as expected. How-
ever, the amounts produced were too low (0.6 mg/47 mg of mem-
brane protein/2.5 g of dry mycelium/10 L).

Heterologous expression of membrane proteins in appropriate
systems provides the best alternative for obtaining higher protein
yields [27]. However, work on eukaryotic transporters has shown
that one major hurdle to successful expression in heterologous sys-
tems is aberrant trafficking in the endoplasmic reticulum [28,29].
Some research has been done to develop specific Saccharomyces
cerevisiae cell strains which optimize plasma membrane expres-
sion of eukaryotic transporters [30–32]. Most notably, npi1, a
Table 1
List of S. cerevisiae expression strains used in this study.

Strains Description

MATa ura3-52 (Ura�) A standard wild-type strain, ura
MATa ura3-52 uapA-gfp (Ura� UapA) Ura� transformed with plasmid
MATa ura3-52 npi1-1 (Npi1) A Ura� strain carrying mutation
MATa ura3-52 npi1-1 uapA-gfp (Npi1 UapA) Npi1 transformed with plasmid
MATa ura3-52 lysD201 pep4D (Pep4D) A strain carrying deletions of pep

gene necessary for lysine prototr
MATa ura3-52 lysD201 pep4D uapA-gfp The Pep4� strain transformed w

Please cite this article in press as: J. Leung et al., Expression and purification
(2010), doi:10.1016/j.pep.2010.02.002
mutation in Rsp5, the gene encoding a HECT ubiquitin ligase neces-
sary for normal transporter turnover, proved the most promising
modification [29]. This mutation is likely to reduce ubiquitination,
therefore preventing transporter molecules being targeted to the
vacuole for degradation, either via endocytosis or through direct
sorting from the Golgi.

In this work, we describe the high-yield heterologous expres-
sion and purification of a functional uric acid–xanthine transporter
(UapA) in S. cerevisiae. The system of S. cerevisiae used is designed
for the large scale production of eukaryotic membrane proteins
[33,34] and provides two important advantages. Firstly, it does
not contain a NAT homologue [14] meaning that the functional
expression of UapA can be assayed in vivo by directly measuring
the uptake of xanthine or uric acid. Secondly, S. cerevisiae is not
only the best studied simple eukaryotic system in respect to pro-
tein trafficking, but also provides unique genetic tools for modify-
ing and improving the expression of a protein.
Materials and methods

Generation of S. cerevisiae expression construct and initial expression
trials

The full-length UapA was amplified from a cDNA clone using
the oligonucleotide primers 50-TCGACGGATTCTAGAACTAGTGGAT
CCCCCATGGATCCCTCCATCCATTCAAC-30 and 50-AAATTGACCTTGAA
AATATAAATTTTCCCCAGCCTGCTTGCTCTGATACTCC-30. These incor-
porate homologous recombination domains allowing direct incor-
poration into the pDDGFP-2 S. cerevisiae expression vector [34]. The
expression vector generated was introduced by standard transfor-
mation and selection of complementation of a ura3� auxotrophy
(see Table 1 for details of the strains used in this study), into a stan-
dard wild-type strain (S288C), a pep4D deletion strain lacking a key
vacuolar endopeptidase, which also leads to reduced levels of other
vacuolar hydrolases [37], or an npi1-1 mutant strain with a defective
Rsp5 ubiquitin ligase activity [29]. Selected transformants were
grown in an aerated 50 ml tube containing 5 ml-URA medium with
2% glucose overnight at 30 �C with shaking. The culture was then di-
luted in 10 ml-URA medium supplemented with 0.1% glucose to give
a starting OD600 of 0.12. The cultures were then incubated with shak-
ing at 30 �C to an OD600 of 0.6, and protein expression induced with a
final concentration of 2% galactose. After 22 h of induction, the cells
were harvested by centrifugation at 4000g and 4 �C for 5 min. The
supernatant was decanted and the cell pellet resuspended in
200 ll yeast solubilization buffer (50 mM Tris–HCl (pH 7.6), 5 mM
EDTA, 10% glycerol, 1 complete protease inhibitor cocktail tablet
(Roche) per 50 ml buffer). Two hundred microliters of cell suspen-
sion was then transferred to a black Nunc 96-well optical bottom
plate to examine the protein expression levels. GFP fluorescence
emission was measured at 512 nm, by excitation at 488 nm, in a
microplate spectrofluorometer (SpectraMax). The protein expres-
sion level was calculated from the relative fluorescent units, as de-
scribed in Drew et al. [34].
Origin

cil auxotroph
pUapA-GFPH This study
npi1-1 which knocks-down Rsp5 ubiquitin ligase expression [35]
pUapA-GFPH This study
4, which encodes a vacuolar protease, and lys, a
ophy

[36]

ith plasmid pUapA-GFPH This study
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Induction of UapA expression for uptake assays

YPD standard media were used for yeast growth. Minimal med-
ia (MM), used for induction conditions and growth tests, were
made with Difco Yeast Nitrogen Base w/o amino acids and ammo-
nium. Induction of UapA expression from the GAL1 promoter was
achieved after 24 h of growth at 30 �C (OD600 nm 0.6–0.8) of appro-
priate strains, initiated from a single colony or from an o/n culture,
in MM with urea (5 mM) as the sole nitrogen source, glucose (0.1%)
as carbon source, galactose (2%) and appropriate auxotrophic sup-
plements. Repression of UapA expression was achieved in MM sup-
plemented with urea (5 mM) and glucose (2%). Standard drop tests
were carried out at 30 �C. Purines (uric acid, xanthine) or purine
analogues (oxypurinol) were used at 0.1 mg/ml final
concentration.

Uptake assays

Kinetic analysis of UapA activity was measured by estimating
uptake rates of [3H]-xanthine uptake, as described in [18,38].
Briefly, [3H]-xanthine uptake in MM was assayed in liquid cul-
tures of S. cerevisiae, with optical density of 0.6–0.8, concentrated
at 107 cells/100 ll, at 30 �C. Initial velocities were measured at
1 min of incubation with 0.2 lM radioactive substrate. Reactions
were terminated by addition of an equal volume of ice-cold
MM containing 1000-fold excess of non-radiolabelled substrate.
Background uptake values were corrected by subtracting values
obtained in the simultaneous presence of 1000-fold excess of
non-radiolabelled substrate. The background uptake level did
not exceed 15–20% of the total counts obtained in wild-type
strains. Km/i and Vm values were obtained directly by performing
and analyzing (Prism3) uptakes at various concentrations, as de-
scribed previously [20]. All transport assays were carried out in
at least two independent experiments, with three replicates for
each concentration or time point. Radiolabelled [3H]-xanthine
(21.1 Ci/mmol) was purchased from Moravek Biochemicals, Brea,
CA.

Epifluorescence microscopy

Liquid cultures of S. cerevisiae were inoculated in MM with urea
(5 mM), glucose (0.1%), galactose (2%) and the appropriate auxotro-
phic supplements and were incubated for 24 h, protected from light,
at 30 �C, 230 rpm. Samples were 10-fold concentrated (OD600 nm 3–
6), a 7 ll aliquot was mixed with an equal volume of low melting
agarose 1.2%, and observed on an Axioplan Zeiss phase-contrast epi-
fluorescent microscope with appropriate filters. The resulting
images were acquired with a Zeiss-MRC5 digital camera using the
AxioVs40 V4.40.0 software and processed in the Adobe Photoshop
CS2 V9.0.2 software.

Large scale expression and preparation of membranes

Large scale expression and preparation of membranes was per-
formed as described in Drew et al. [34]. In brief, a starter culture
was grown overnight at 30 �C in 5 ml of URA media supplemented
with 2% glucose. This culture was used to inoculate a further
150 ml-URA media supplemented with 2% glucose, which was also
then incubated overnight. This culture was then used to inoculate
10 L of URA media containing 0.1% glucose. The starter culture was
diluted to give a starting OD600 of 0.12. The cultures were then
incubated with shaking at 30 �C to an OD600 of 0.6, and protein
expression was induced with a final concentration of 2% galactose
for 20 h, at 30 �C. Cells were then harvested by centrifugation at
4000g and 4 �C for 5 min. The cells were resuspended in 300 ml
of cold cell resuspension buffer (50 mM Tris–HCl (pH 7.6), 1 mM
Please cite this article in press as: J. Leung et al., Expression and purification
(2010), doi:10.1016/j.pep.2010.02.002
EDTA, 0.6 M sorbitol) supplemented with protease inhibitors
(Roche). Cells were lysed using a Constant Systems (Constant Sys-
tems) cell disruptor at 4–10 �C. Unbroken cells and debris were re-
moved by centrifugation at 15,000g at 4 �C for 10 min. The
supernatant was further centrifuged at 150,000g at 4 �C for
60 min in order to isolate the membranes. The supernatant was
discarded and the membrane pellet was resuspended in membrane
resuspension buffer (20 mM Tris–HCl (pH 7.5) 0.3 M sucrose) to a
final volume of 6 ml/L starting cell culture using a disposable
10 ml syringe with 21-gauge needle.
Solubilization and purification of UapA

The membranes were solubilized in membrane solubilization
buffer (1 � PBS, 150 mM NaCl, 10% (v/v) glycerol, 1% (w/v)
DDMLA, and protease inhibitors) with constant stirring at 4 �C
for 1 h. Unsolubilized membrane was pelleted by centrifugation
at 150,000g and 4 �C for 45 min. Imidazole, pH 7.5, was added
at a final concentration of 10 mM to the detergent solubilized
sample and this was mixed with 20 ml of Ni2+–NTA superflow re-
sin (Qiagen) pre-equilibrated with Buffer A (1 � PBS, 150 mM
NaCl, 10 mM imidazole pH 7.5, and 0.03% (w/v) DDMLA). The resin
and solubilized protein sample were incubated at 4 �C for 5 h
with slow stirring. The mixture was applied onto a poly-prep/
glass econo-column chromatography column (Bio-Rad) and
washed with 20 CV of Buffer A supplemented with 20 mM imid-
azole followed by 20 CV of Buffer A supplemented with 30 mM
imidazole and then 5 CV of Buffer B (20 mM Tris–HCl, pH 7.5,
150 mM NaCl, 0.03% (w/v) DDMLA). The fusion protein was eluted
in Buffer B supplemented with 250 mM imidazole. The GFP tag
was removed from the fusion protein by treatment with an equi-
molar concentration of His-tagged TEV protease. The protein sam-
ple was then dialyzed overnight in Buffer B supplemented with
10% glycerol using 12 kDa molecular weight cut-off dialysis tub-
ing (Spectrum Labs). The remaining protein sample was passed
through a 0.22 lm filter (Millex) to remove any precipitation
prior to loading onto a 5 ml His-trap column (GE Biosciences).
The His-tagged GFP and TEV protease bind to the column, while
the target UapA protein is found in the flow-through. The purified
UapA was concentrated to 0.5 ml in 50 kDa molecular weight cut-
off filters (Amicon). Aggregates were removed from the sample by
centrifugation at 18,000g and 4 �C for 10 min. The sample was
then loaded onto a superdex 200 10/300 gel filtration column
equilibrated with Buffer B. The protein samples were collected
and analyzed by SDS–PAGE.
SDS–PAGE and in-gel fluorescence analysis

The protein samples were separated on Novex 12% Tris-Gly gels
(Invitrogen). The gels were rinsed with dH2O and the protein bands
visualized using Coomassie Blue stain, prior to detection of the
fluorescent bands with a LAS-1000-3000 charge-coupled device
(CCD) imaging system (Fujifilm). The gel was exposed to blue light
(460 nm) for 20 s with a cut-off filter of 515 nm.
CD spectroscopy

Circular dichroism analysis was performed on a Chirascan™ Cir-
cular Dichroism Spectrometer. CD spectrum of protein samples
(6.3 lM) were recorded in 20 mM Tris, pH 7.5, 150 mM NaCl,
0.03% DDMLA in a quartz cuvette of 1 mm path length at the wave-
length range 260–180 nm at 0.5 nm intervals at 20 and 30 �C. The
spectrum was corrected against the baseline.
of a functional uric acid–xanthine transporter (UapA), Protein Expr. Purif.
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Results

UapA expressed in S. cerevisiae is functional

A full length cDNA corresponding to the ORF of uapA was cloned
into the S. cerevisiae expression vector pDDGFP-2 [34], down-
stream from the GAL1 promoter and in-frame with the GFP–His8

epitope. This 2 l vector harbors a URA3 selection marker (see
Materials and methods). The vector carrying uapA was used to
transform mutant strains carrying either the pep4D deletion or
the npi1-1 mutation, as well as an isogenic standard wild-type
strain (see Materials and methods). Several stable ura3+ transfor-
mants were selected and tested for their ability to take up [3H]-
xanthine, the standard radiolabelled substrate used for assaying
UapA activity (Materials and methods). In comparative assays we
noticed that transformants of all three different strains used
showed saturable UapA-mediated [3H]-xanthine uptake (see later,
Fig. 1E). We proceeded in a detailed kinetic analysis of UapA-med-
iated xanthine transport in the mutant carrying the pep4D dele-
tion, which was eventually chosen for high-yield purification of
UapA (see later). Fig. 1A shows that in the strain expressing UapA,
[3H]-xanthine uptake increases linearly for 4 min and reaches a
significant maximum plateau after 5 min, while an isogenic control
strain (carrying an empty vector) has practically no ability for xan-
thine uptake, as expected. We performed a standard Michaelis–
Menten kinetic analysis using increasing concentrations of [3H]-
Fig. 1. (A) Time course of UapA–GFP-mediated [3H]-xanthine uptake rates in S. cerevisiae
low background values of xanthine uptake. Results are averages of at least two independ
profile. Estimation of relative [3H]-xanthine uptake in the presence of excess (1 mM) of n
the presence of 0.2 lM [3H]-xanthine. X, xanthine; UA, uric acid; A, adenine; G, guanine; H
methyl-xanthine; 6tX, 6-thio-xanthine; 7mX, 7-methyl-xanthine; 8mX, 8-methyl-xanthin
UapA–GFP expressed in S. cerevisiae (FGY217). The values were estimated from a Michae
ja025220m). (D) Sub-cellular topology of UapA–GFP. Nomarski and epifluorescence m
galactose-induction. UapA–GFP is expressed principally on the plasma membrane, but
UapA–GFP plasma membrane expression in different S. cerevisiae strains (npi1-1, pep4
xanthine (left) is also shown under identical conditions with the epifluorescence analys
less degree of the standard control strain (see text).
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xanthine/xanthine or [3H]-xanthine/uric acid mixtures and found
that: (i) UapA-mediated transport of xanthine (or binding of uric
acid) is saturable and characteristic of a single carrier (Hill co-effi-
cient �1), (ii) Km (xanthine) or Ki (uric acid) values obtained are
very similar to the ones obtained in A. nidulans (Fig. 1C) and char-
acteristic of a high-affinity transport system, and (iii) The capacity
(Vm value) for xanthine uptake is relatively high (Fig. 1C). We also
tested the effect of known UapA competitive inhibitors, present in
excess (1 mM), on [3H]-xanthine uptake (for experimental details
see Materials and methods). Fig. 1B shows a competition profile,
very similar to the one obtained in A. nidulans [11,13].

The similarity in transport kinetics and substrate specificity of
UapA expressed in yeast and in A. nidulans shows that expression
in yeast is fully functional.

Expression of UapA in S. cerevisiae does not lead to a detectable
growth phenotype

Two stable ura3+ transformants of mutant strains carrying either
the pep4D deletion or the npi1-1 mutations, as well as an isogenic
standard wild-type strain, were phenotypically tested for their resis-
tance/sensitivity on potentially toxic UapA substrates, such as high
concentrations of uric acid (1–2 mM) or oxypurinol (50–100 lV)
[11,20,23]. Sensitivity phenotypes would have permitted the direct
selection of resistant mutants, a powerful genetic tool to approach
structure–function relationships and trafficking mechanisms. Drop
(FGY217). An isogenic strain lacking UapA (empty vector control) shows only very
ent experiments, each experiment carried out in triplicate. (B) UapA–GFP specificity
on-labeled purines, pyrimidines and analogues. Measurements were carried out in
x, hypoxanthine; U, uracil; 1mX, 1-methyl-xanthine; 2tX, 2-thio-xanthine; 3mX, 3-
e; 9mX, 9-methyl-xanthine. (C) Estimation of Ki (uric acid), Km (xanthine) and Vm of

lis–Menten kinetic analysis, using the Prism3 (http://pubs.acs.org/doi/abs/10.1021/
icroscopy of a FGY217 (pep4D) transformant expressing UapA–GFP, after 24 h of

is also detectable in the cytoplasm and the vacuolar membrane. (E) Comparison of
D and a standard control strain; see text). UapA-mediated transport rate of [3H]-
is (right). Notice the prominent pseudohyphal appearance of strain npi1-1, and to a
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Fig. 2. In-gel fluorescence analysis of UapA–GFP expressed in S. cerevisiae expres-
sion strains pep4D (lane 3) and npi1-1 (lane 4). The signal obtained from uninduced
pep4D cells is shown in lane 2 and fluorescent molecular weight markers are shown
in lane 1.
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tests carried out on galactose media (inducing conditions) showed
no evidence for sensitivity compared to an isogenic transformant
hosting an empty vector (results not shown). The same negative re-
sult was obtained in liquid cultures, tested at regular intervals, for a
period of 30 h (up to an OD of 1.5) (not shown). Given that UapA is
functionally expressed in S. cerevisiae, these rather unexpected re-
sults suggested that uric acid or oxypurinol are not toxic in yeast,
at least under the conditions tested.

Localization of UapA–GFP in the plasma membrane of S. cerevisiae

In several cases, overexpressed proteins may be susceptible to
proteolysis. This might be due to improper folding, usually evident
by retention in the ER, or problematic trafficking towards the plasma
membrane and subsequent vacuolar degradation. Thus, proper sub-
cellular targeting of transporters provides a good indication of their
stability and functionality. We used the GFP tag to investigate the
cellular topology of UapA–GFP using epifluorescence microscopy.
Fig. 1D shows that UapA–GFP labels predominantly the plasma
membrane of yeast cells and to a lesser extent some internal struc-
tures such as the vacuolar membrane or the ER. No evidence for
UapA–GFP degradation in the vacuole was obtained. We also tested
the sub-cellular localization of UapA–GFP in the two other yeast
strains used in this work. In all cases UapA–GFP labels primarily
the plasma membrane, but also internal structures that seem to be
the ER and the vacuolar membrane. Interestingly, the intensity of
fluorescence associated with the plasma membrane was signifi-
cantly higher in the npi1-1 genetic background, which is in perfect
agreement with the fact that we detected�5-fold increase in the up-
take of radiolabelled xanthine in this strain compared to standard
strain or the one carrying pep4D (Fig. 1E). An increase in the total
UapA protein level was also detected in the npi1-1 (see below). These
results were in agreement with previous reports showing that
knocking-down Rsp5-dependent ubiquitination can be used to en-
hance the heterologous expression of transporters in S. cerevisiae
[29]. However, we eventually selected the pep4D mutant for UapA
purification for reasons associated with its reduced stability in the
npi1-1 genetic background, described below.

Selection of the appropriate S. cerevisiae genetic background for UapA
purification

Preliminary analysis of the expression of UapA–GFP in the
pep4D strain indicated an expression level of 2.3 mg/L
(RFU = 25,000). The conditions and the pep4D strain used to func-
tionally express UapA, constitute an appropriate system to purify
good quality and significant amounts of pure UapA protein as de-
scribed below. However, a further increase in the yield of the trans-
porter might be eventually required for crystallization. For that, we
also tried the expression of UapA through the same vector system
in the npi1-1 strain. In this case, we obtained a significantly in-
creased expression level of 3.8 mg/L compared to that achieved
with the pep4D strain. However, in-gel fluorescence (Fig. 2) of
UapA–GFP expressed in pep4D and npi1-1 cell strains indicated
that the protein produced in npi1-1 was subject to significant deg-
radation, as indicated by the presence of a range of fluorescent
lower molecular weight bands. In contrast, the protein expressed
in pep4D was visible as a single band suggesting that in the case
of UapA the lack of proteases was essential for expression of intact
protein under the conditions tested.

Purification of UapA

UapA was isolated from S. cerevisiae membrane preparations
using a three step purification protocol (Fig. 3). Following the first
Ni2+–NTA purification step the sample contains a major band of
Please cite this article in press as: J. Leung et al., Expression and purification
(2010), doi:10.1016/j.pep.2010.02.002
about 70 kDa on the denaturing gel (Fig. 3A). The same band is also
visible by in-gel fluorescence (Fig. 3B) indicating that this band cor-
responds to UapA–GFP. After TEV cleavage to remove the GFP–His8

tag and His trap purification the major band has shifted to approxi-
mately 55 kDa (Fig. 3A). The same protein band is not observed using
in-gel fluorescence. In addition, the�70 kDa band corresponding to
UapA–GFP is also not detected indicating cleavage of GFP is highly
efficient. Following SEC the protein is visible as the one 55 kDa band
and a larger band of approximately 110 kDa. It is possible that this
larger band is a higher oligomeric form of the transporter. The chro-
matogram of the SEC profile shows a single monodispersed peak
with no obvious aggregation (Fig. 4A). It is possible that the higher
oligomeric form is an artifact of the SDS–PAGE, as often membrane
proteins appear as several forms on a gel, but are revealed as one
apparently monodispersed species by SEC. Since TEV cleavage re-
moves both the GFP and the His8 tag, it is not possible to confirm
the identity of the protein by Western blot analysis. Therefore, the
protein samples were analyzed by Mass Spectrometry, which con-
firmed the identity of the major band as UapA. The final yield of
highly pure UapA was 0.15 mg/L.

CD spectroscopic analysis

CD spectroscopic analysis of the purified UapA yielded spectra
characteristic of a highly a-helical protein as demonstrated by
the absorbance minima at 208 and 222 nm [39]. Virtually identical
spectra were obtained for the protein at 20 and 30 �C (Fig. 4). These
results suggest that the protein maintains the same overall fold at
the temperatures tested.
Discussion

Heterologous expression of eukaryotic transporters is in general
very problematic. Yeast provides one of the most promising
of a functional uric acid–xanthine transporter (UapA), Protein Expr. Purif.
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Fig. 3. SDS–PAGE (A) and in-gel fluorescence (B) analysis of samples of UapA taken at different points in the purification process. The SDS–PAGE (A) shows pre-stained
molecular weight markers (lane 1), protein sample following Ni2+ affinity chromatography (lane 2), protein sample following TEV cleavage and reverse His trap
chromatography (lane 3), protein sample following size exclusion chromatography (lane 4). The in-gel fluorescence shows protein sample following Ni2+ affinity
chromatography (lane 1), protein sample following TEV cleavage and reverse His trap chromatography (lane 2), protein sample following size exclusion chromatography
(lane 3) and fluorescent molecular weight markers (lane 4).
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systems for production as, despite significant retention at the ER, a
proportion of the expressed transporters find their way to the plas-
ma membrane and show detectable activity (e.g. [28,40]). Here, we
used a S. cerevisiae GFP expression system, specifically designed for
the large scale production of eukaryotic membrane proteins
[33,34], to express and purify the uric acid–xanthine transporter
(UapA) of A. nidulans. The vector used, which carries the full length
cDNA of the uapA ORF fused with a GFP–His8 epitope, was intro-
duced into three different S. cerevisiae strains; a standard ura3D
(S288C) strain and two isogenic versions also carrying either a
deletion of the PEP4 gene (encoding vacuolar protease) or a
knock-down mutation (npi1-1) in NPI1 gene (encoding Rsp5 E3
HECT ubiquitin ligase). The rationale for the use of these strains
was the following; pep4D might result in higher UapA yields as it
lacks an efficient system for transporter turnover [41], whereas
npi1-1 is expected to augment UapA expression at the plasma
membrane as it lacks an efficient ubiquitination-dependent endo-
cytic mechanism [29]. All strains expressed a fully functional UapA,
as judged from transport kinetics and epifluorescence microscopy.
Similarly to analogous UapA–GFP chimeras used in A. nidulans, the
C-terminal fusion of a GFP with UapA seems to have no effect on
transport activity in the yeast system. This is not always the case
as several carriers fused with GFP affect transport activity, or most
often trafficking of the carrier to the plasma membrane [42–45].
Despite the fact that we obtained higher expression of UapA in
the npi1-1 mutant, the pep4D mutant proved more appropriate
for production of the intact UapA, indicating that in our case at
least the absence of the protease is more important than the ab-
sence of the pathway targeting protein for degradation. It may be
that a strain containing both the npi1-1 and the pep4D mutants
would improve the overall yield of UapA. The presence of a C-ter-
Please cite this article in press as: J. Leung et al., Expression and purification
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minal GFP–His8 allowed accurate assessment of the expression le-
vel of the fusion protein by fluorescence, removed the need for
Western blot analysis and allowed rapid detergent screening using
fluorescent size exclusion chromatography (FSEC). In addition, we
used a homologous recombination cloning methodology making
plasmid generation very efficient and quick. We have optimized
the functional expression of UapA and developed a protocol for
the isolation of mg quantities of functional, highly stable, UapA
from A. nidulans. The high quality protein produced is suitable for
further functional and structural studies.

Starting with a 10 L culture volume we were able to isolate
1.5 mg of at least 95% pure UapA, a yield suitable for structural
studies. The protein was concentrated to approximately 10 mg/
ml with no significant losses due to aggregation, indicating that
the protein is reasonably stable at the high concentrations typically
required for crystallization trials. As mentioned, the starting
expression level was 2.3 mg/L, indicating that we were losing sig-
nificant amounts of the protein during solubilization and purifica-
tion of the protein. One of the major advantages of the presence of
the GFP is that it is very easy to monitor the recovery of the protein
in the early stages of isolation, before TEV cleavage. Analysis has
shown that the losses of UapA are incurred at several stages; the
cell breakage step is only about 60% efficient, and while solubiliza-
tion is close to 100% efficient, only about 50% of the protein binds
to the Ni2+ resin. There are likely to be other losses due to unfolding
and subsequent aggregation of some of the protein. However, the
amounts of protein obtained are sufficient for further work. Earlier
work has shown that it is possible to express UapA homologously
in A. nidulans. CD spectroscopic analysis of the A. nidulans ex-
pressed protein confirmed that this was a largely a-helical protein.
Comparison of the CD spectra obtained for the A. nidulans ex-
of a functional uric acid–xanthine transporter (UapA), Protein Expr. Purif.
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Fig. 4. Elution profile (A) for UapA separated on a superdex 200 10/300 gel filtration
column. Far-ultraviolet CD spectra (B) of purified UapA in a buffer of 20 mM Tris–
HCl, pH 7.5, 150 mM NaCl, 0.03% (w/v) DDMLA recorded at 20 �C (solid line) and
30 �C (dashed line). Background values obtained with a buffer blank were negligible
for the wavelength shown and were not subtracted.
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pressed UapA with that obtained in this study indicated that both
proteins were in a similar folded state, further confirming the suit-
ability of the S. cerevisiae system for production of UapA.

Expression of UapA into S. cerevisiae will also provide a novel
genetic system which will have all the advantages of yeast genetics
and molecular biology for the analysis of NAT proteins. Unexpect-
edly, expression of UapA did not confer any visible growth pheno-
type in yeast. In A. nidulans, UapA-mediated uptake of uric acid in
strains lacking uric acid oxidase (uaZ� mutants) is toxic [46]. Uric
acid toxicity is a common observation in all kinds of cells, espe-
cially those lacking uric acid oxidase, connected with its pro-oxi-
dant activity and low solubility. In addition, UapA-mediated
uptake of oxypurinol also leads to toxicity in A. nidulans. We do
not understand why none of these cytotoxic effects were detected
in S. cerevisiae cells expressing UapA, despite the fact that these
lack a uric acid oxidase. Unfortunately, the lack of UapA-dependent
visible growth phenotypes does not allow the use of the system
developed herein for the direct selection of mutants affected in
UapA trafficking, function or specificity. In addition, signals trigger-
ing UapA endocytosis in A. nidulans do not seem to function in
yeast cells (unpublished observations). However, yeast cells
expressing UapA still provide an excellent system for performing
reverse genetics and other targeted approaches in order to under-
stand structure–function relationships in a prototype member of a
very important transporter family, and also open the way for the
functional analysis of several NAT members with unknown func-
tion from plants and animals.
Please cite this article in press as: J. Leung et al., Expression and purification
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Οι υπερτονικές συνθήκες προκαλούν παροδική πλασμόλυση, μειωμένο 

ρυθμό αύξησης και αναστολή της ενδοκύτωσης των μεταφορέων στους 

Aspergillus nidulans και Saccharomyces cerevisiae 

Μπίτσικας Β.*, Καραχάλιου Μ*., Γουρνάς Χ. & Διαλλινάς Γ.  

*Ισάξια συνεισφορά 

Περίληψη 

Χρησιμοποιώντας στελέχη του Aspergillus nidulans που εκφράζουν διαμεμβρανικούς μεταφορείς 

σημασμένους με την πράσινη φθορίζουσα πρωτεΐνη (GFP) σε υπερτονικές συνθήκες, παρατηρήσαμε την 

άμεση εμφάνιση στατικών φθορίζουσων κηλίδων στο επίπεδο της πλασματικής μεμβράνης. Οι φθορίζουσες 

κηλίδες που παρατηρήθηκαν δεν αντιστοιχούν σε μικροπεριοχές της μεμβράνης ειδικές για μεταφορείς, 

καθώς συνεντοπίζονται με άλλες μεμβρανικές πρωτεΐνες όπως το πεπτίδιο ομόλογο της πλεξτρίνης (PH) και 

η SsoA t-SNARE, ή τους λιπόφιλους δείκτες FM4-64 και Φιλιπίνη. Επιπλέον, δεν εμφανίζουν 

χαρακτηριστικά λιπιδικών σχεδιών ή άλλων μεμβρανικών μικροπεριοχών. Εικόνες μικροσκοπίας που έχουν 

επεξεργαστεί με αλγόριθμους απο-αλληλεπικάλυψης (deconvolution) έδειξαν ότι οι φθορίζουσες αυτές 

κηλίδες αντιστοιχούν σε εκτεταμένες εγκολπώσεις της μεμβράνης. Οι μεταφορείς παραμένουν πλήρως 

λειτουργικοί κατά τη διάρκεια του φαινομένου της πλασμόλυσης. Η εμφάνιση αυτών των εγκολπώσεων 

συνοδεύεται από μειωμένο ρυθμό αύξησης και πλήρη αναστολή της ενδοκύτωσης μέσω κλαθρίνης, αλλά και 

της ενδοκύτωσης ρευστής φάσης. Τα παραπάνω φαινόμενα είναι παροδικά και άμεσα αναστρέψιμα με την 

απομάκρυνση των υπερτονικών διαλυμάτων. Το υπερτονικό στρες δεν επηρέασε την τοπολογία πρωίμων 

(SlaB-GFP) και όψιμων (AbpA-mRFP) παραγόντων του μηχανισμού ενδοκύτωσης, αλλά φαίνεται να 

τροποποιεί τον υποκυτταρικό εντοπισμό της τροπομυοσίνης (GFP-TpmA), υποδεικνύοντας ότι η 

παρεμπόδιση της ενδοκύτωσης των μεταφορέων και των λιπόφιλων χρωστικών γίνεται μέσω της 

τροποποίησης της δυναμικής οργάνωσης της ακτίνης. Το συμπέρασμα αυτό υποστηρίζεται και από τη δράση 

στην ενδοκύτωση των μεταφορέων της λατρουνκουλίνης Β, ενός παράγοντα που προκαλεί τον 

αποπολυμερισμό της ακτίνης. Παρόμοια φαινόμενα παρατηρήσαμε και στον Saccharomyces cerevisiae, 

γεγονός που υποδεικνύει ότι οι ασκομύκητες αποκρίνονται στις υπερτονικές συνθήκες χρησιμοποιώντας 

παρόμοιους μηχανισμούς. Τέλος, η εργασία αυτή δείχνεο ότι οι υπερτονικές συνθήκες μπορούν να 

χρησιμοποιηθούν σαν εργαλείο για τη μελέτη της ρύθμισης των μεταφορέων στον A. nidulans, όπου η 

πλήρης απενεργοποίηση γονιδίων σχετικών με την ενδοκύτωση είναι συνήθως θνησιγόνος. 
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Hypertonic conditions trigger transient plasmolysis, growth arrest
and blockage of transporter endocytosis in Aspergillus nidulans and
Saccharomyces cerevisiae
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Abstract
By using Aspergillus nidulans strains expressing functional GFP-tagged transporters under hypertonic conditions, we
noticed the rapid appearance of cortical, relatively static, fluorescent patches (0.5–2.3 mm). These patches do not
correspond to transporter microdomains as they co-localize with other plasma membrane-associated molecules, such as
the pleckstrin homology (PH) domain and the SsoA t-Snare, or the lipophilic markers FM4-64 and filipin. In addition,
they do not show characteristics of lipid rafts, MCCs or other membrane microdomains. Deconvoluted microscopic
images showed that fluorescent patches correspond to plasma membrane invaginations. Transporters remain fully active
during this phenomenon of localized plasmolysis. Plasmolysis was however associated with reduced growth rate and a
dramatic blockage in transporter and FM4-64 endocytosis. These phenomena are transient and rapidly reversible upon
wash-out of hypertonic media. Based on the observation that block in endocytosis by hypertonic treatment altered
dramatically the cellular localization of tropomyosin (GFP-TpmA), although it did not affect the cortical appearance of
upstream (SlaB-GFP) or downstream (AbpA-mRFP) endocytic components, we conclude that hypertonicity modifies
actin dynamics and thus acts indirectly on endocytosis. This was further supported by the effect of latrunculin B, an
actin depolymerization agent, on endocytosis. We show that the phenomena observed in A. nidulans also occur in
Saccharomyces cerevisiae, suggesting that they constitute basic homeostatic responses of ascomycetes to hypertonic shock.
Finally, our work shows that hypertonic treatments can be used as physiological tools to study the endocytic down-
regulation of transporters in A. nidulans, as non-conditional genetic blocks affecting endocytic internalization are lethal
or severely debilitating.

Keywords: Fungi, patches, plasma membrane invaginations, microdomain/actin dynamics

Introduction

Eukaryotic transporters respond to environmental
and developmental signals at both the transcrip-
tional and post-translational levels. Their tight control
includes mostly rapid de novo synthesis and even more
rapid down-regulation through endocytosis and vacu-
olar degradation (André andHaguenauer-Tsapis 2004,
Dupré et al. 2004). The molecular mechanisms under-
lying endocytosis and vacuolar degradation are best
understood in Saccharomyces cerevisiae. It has been
shown that the principal signal for transporter endo-
cytosis and entry into multivesicular bodies (MVBs),

which eventually fuse with the vacuole/lysosome and
thus deliver the vesicles to degradative enzymes, is their
ubiquitination (André and Haguenauer-Tsapis 2004,
Dupré et al. 2004, Belgareh-Touze et al. 2008).
Ubiquitination serves as a signal not only for trans-
porter internalization from the plasma membrane, but
also to redirect newly synthesized transporter mole-
cules from the Golgi to endosomes (Soetens et al.
2001, Umebayashi and Nakano 2003) and for MVB
sorting (Helliwell et al. 2001, Soetens et al. 2001,
Reggiori and Pelham 2002, André and Haguenauer-
Tsapis 2004, Blondel et al. 2004, Erpapazoglou et al.
2008).
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The trafficking, function and turnover of S. cerevi-
siae transporters is also known to depend on their
partitioning in lipid-rafts or plasma membrane
compartments (MCs) with distinct lipid composi-
tion. Two such non-overlapping membrane com-
partments (MCs) have been distinguished, using
GFP-tagged transporters as markers, as evenly dis-
tributed ~300 nm isolated patches (Grossmann et al.
2007). The first, MCC, contains permeases specific
for arginine (Can1p), tryptophan (Tat2p) and uracil
(Fur4p), whereas the second, MCP, contains the
proton ATPase Pma1p (Malinska et al. 2004,
Grossmann et al. 2006, 2007). MCCs contain a
distinct lipid composition enriched in ergosterol, as
visualized by staining with filipin, a fluorescent
marker binding this lipid (Malinska et al. 2003,
Grossmann et al. 2007), but also as supported
by biochemical assays relating transporter extract-
ability from membranes using Triton-X 100
(Grossmann et al. 2007). The compartmentation of
the plasma membrane into MCC and MCP is highly
stable (Malinska et al. 2004), but transporters dock
within MCC patches in a reversible, membrane
potential-dependent manner (Grossmann et al.
2007). Based on a number of observations relating
to the rate of transporter endocytosis with localization
in MCCs, it has been proposed that the biological
function of MCCs is to protect therein embedded
transporters and other proteins from internalization
and turnover (Grossmann et al. 2008). This view is
somehow contradicted by other studies showing that
MCC organization is, at least in part, mediated by
large protein complexes, termed eisosomes, which
were proposed to mark static sites of endocytosis
(Walther et al. 2006). One possible function of
MCCs and eisosomes is to regulate protein and lipid
abundance by sorting them into distinct, spatially
separated pools where they are stabilized or from
which they can be either endocytosed, or protected
from internalization, selectively. Electron microscopy
analysis suggested that MCC patches correspond to
furrow-like invaginations in the plasma membrane of
yeast (Strádalová et al. 2009).
Several transporters of the filamentous ascomycete

Aspergillus nidulans have been studied (for reviews
see Pantazopoulou and Diallinas 2007, Diallinas
2008). In most cases, transporters tagged with
GFP remain fully functional, although in some cases
the GFP tag led to increased instability and vacuolar
turnover (Tavoularis et al. 2001, Pantazopoulou et al.
2007, Vlanti and Diallinas 2008). After transcrip-
tional activation of the corresponding genes during
conidiospore germination (Amillis et al. 2004), trans-
porter proteins show a uniform distribution along
the plasma membrane of germlings and developing

mycelia. Often, GFP-tagged transporters also label
the vacuoles, which is the site of their constitutive
turnover (see Figure 1).
Transporter turnover is dramatically enhanced

upon various physiological signals or stress condi-
tions. For example, several transporters of purines
(UapA, UapC), pyrimidines (FcyB, FurD) and amino
acids (PrnB, AgtA) are rapidly turned-over in the
presence of ammonium ions (Tavoularis et al. 2001,
Valdez-Taubas et al. 2004, Pantazopoulou et al. 2007,
Vlanti and Diallinas 2008, Apostolaki et al. 2009,
Borbolis and Diallinas, unpublished). This is a typical
example of down-regulation of transporters specific for
nitrogenous compounds when a primary nitrogen
source such as ammonium or glutamine is added
in the media, a phenomenon very well studied in
S. cerevisiae. Several A. nidulans transporters are also
down-regulated by endocytosis and vacuolar degrada-
tion in the presence of their substrates (Vlanti and
Diallinas 2008, Gournas et al. 2010, Borbolis, Pavlides
and Diallinas, unpublished). An interesting aspect
concerning the turnover of the UapA permease by
its substrates is that endocytosis of inactive UapA
molecules has been shown to occur in trans when
co-expressed with active UapA versions, even if the
latter cannot be endocytosed (Gournas et al. 2010).
This last observation strongly suggested that UapA
molecules might be organized in specific plasma
membrane microdomains, either constitutively or
prior to endocytosis.
In the course of previous work, we noticed that

some A. nidulans transporters tagged with GFP form
fluorescent cortical patches, when the samples were
washed in buffers containing relatively high salt con-
centrations (Pavlides and Diallinas, unpublished). In
the present work, we investigated the conditions
eliciting the appearance of transporters as cortical
patches, whether this phenomenon is specific to
transporters and their turnover, and whether patches
correspond to transporter-specific microdomains
or membrane compartments similar to MCCs. We
show that patches originally observed with trans-
porters correspond to membrane invaginations
rather than specific membrane microdomains, tran-
siently elicited by hypertonic conditions. We further
show that this phenomenon is associated with tran-
sient growth arrest and a total block of endocytic
mechanisms in A. nidulans. Similar conclusions
were reached in S. cerevisiae. We finally investigate
aspects concerning the mechanism blocking endo-
cytosis and discuss how conditions established
herein can be used as physiological tools to study
transporter trafficking and sorting in the MVB
pathway in A. nidulans, where genetic blocks in
relevant genes are usually lethal or debilitating

Fungal response to hypertonicity 55

M
ol

 M
em

br
 B

io
l D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
D

r 
G

eo
rg

e 
D

ia
lli

na
s 

on
 0

8/
24

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



(Araujo-Bazán et al. 2008, Rodríguez-Galán et al.
2009, Abenza et al. 2010).

Methods

Strains, genetics, media and growth conditions

A. nidulans and S. cerevisiae strains used are listed
in Table I. Newly-made A. nidulans strains were
constructed with standard genetic crossing using
auxotrophic markers for heterokaryon establishment.
Standard complete (CM) and minimal media (MM)
for A. nidulans were used (www.fgsc.net). Nitrogen
sources were used at the following concentrations:
urea 5 mM, NaNO3 10 mM, NH4Cl 10 mM, uric
acid 0.1 mg/ml. Induction of UapA expression from
the alcA promoter was achieved after 14 h of growth in
MM supplemented with urea (5 mM) and fructose
(0.1%). Repression of UapA expressed from the alcA
promoter (alcAp) was achieved in MM supplemented
with urea (5 mM) and glucose (1%). Growth tests
were carried out at 25�C, at pH 6.8. Supplements
were added when appropriate. In yeast, Jen1p-GFP
expression was induced by 4 h growth in MM sup-
plemented with 0.5% lactate (Paiva et al. 2009) and
Fur4p-GFP by 16 h growth in MMwith 2% galactose
(Leung et al. 2010).

Epifluorescence and confocal microscopy

Samples for fluorescence microscopy were prepared
as in Valdez-Taubas et al. (2004). In particular, the
samples were incubated in 3 cm Petri dishes on cover

slips, protected from light, in liquid MM supple-
mented with urea as nitrogen source and appropriate
auxotrophies, at 25�C for 12–17 h and then shifted
to various conditions for 2–4 h. Staining with
FM4-64 (Molecular Probes, Inc, USA) was accord-
ing to Penalva (2005). In particular, cover slips with
germinated conidia were placed on top of plastic
covers, covered with 0.1 ml of 10 mM FM4-64 in
MM, incubated on ice for 15 min, washed in 5 ml
MM, and transferred to fresh 3 ml medium for
0–30 min chase time. Staining with filipin (Sigma)
was performed by addition of 0.1 ml MM supple-
mented with 25 mg/ml filipin on cover slips with
germinated conidia, on top of plastic covers,
15 min prior to observation. Calcofluor white (Sigma)
staining, used for detecting the presence and deposi-
tion of polysaccharides (chitin and b-1,3-glucan) in
the cell walls of yeast and mycelial fungi, was
performed according to Slaninová et al. (2000). Cells
were stained for 5 min on coverslips with a solution of
Calcofluor (0.001%w/v in relevant growth medium),
washed and immediately observed in the fluorescence
microscope. Lat-B was used as described (Taheri-
Talesh et al. 2008), at a final concentration of 20–
40 mg/ml (50–100 mM). The drug was added from a
10 mM stock in DMSO. For endocytosis, uric acid
(0.1 mg/ml) or NH4Cl (10–50 mM) was added for
1 h before observation. For hypertonic treatment,
sucrose, NaCl or other agents were added as indicated
in the relevant Figures. Samples were observed on an
Axioplan Zeiss phase-contrast epifluorescent micro-
scope with appropriate filters and the resulting
images were acquired with a Zeiss-MRC5 digital
camera using the AxioVs40 V4.40.0 software. Image

Table I. Strains used in this study.

Strains Genotype Origin

Aspergillus nidulans
UapA-GFP pabaA1 DuapA DuapC DazgA argB2::argB uapA-gfp (Pantazopoulou et al. 2007)
alcAp-UapA-GFP pabaA1 DuapA DuapC DazgA argB2::argB alcAp-uapA-gfp (Gournas et al. 2010)
UapA-mRFP AzgA-GFP pabaA1 DuapA DuapC DazgA argB2 [uapA-mrfp]argB [azgA-gfp]argB This study
AzgA-GFP pabaA1 DuapA DuapC DazgA argB2::argB azgA-gfp (Pantazopoulou et al. 2007)
PrnB-GFP yA2 pabaA1 argB2 prn397::prnB-gfp-trpCC-term prnC (Tavoularis et al. 2001)
FurD-GFP DuapA DuapC DazgA DfurD::riboB DcntA::riboB DnkuA::argB

pantoB100 [furD-GFP]pantoB
(Borbolis and Diallinas unpublished)

GFP-PH domain yA2 pabaA1 argB2::argBBglII gpdAp-gfp-(PHdomainPLCD1)2 (Pantazopoulou and Penalva 2009)
GFP-SsoA pyrG89 pyroA4 DnkuA::bar ssoA::[ssoAp-gfp-ssoA]

AfpyrG (Taheri-Talesh et al. 2008)
SlaB-GFP pyrG89 pyroA4 argB2 DnkuA::argB slaB-gfp-AfpyrG (Araujo-Bazán et al. 2008)
SlaB-GFP UapA-mRFP pabaA1 DnkuA::argB slaB-gfp-AfpyrG argB2[uapA-mrfp]argB This study
AbpA-GFP yA2 pabaA1 pyrG89[abpA-mrfp-AfpyrG] (Araujo-Bazán et al. 2008)
UapA-K572R-GFP pabaA1 DuapA DuapC DazgA argB2::argB alcAp-K572R-gfp (Gournas et al. 2010)
GFP-TpmA fwA1 pyrG89 pyroA4 nicA2 DnkuA::argBAfpyG-mcherry-synA

yA::AfpyroA tpmAp-gfp-tpmA
(Taheri-Talesh et al. 2008)

Saccharomyces cerevisiae
Fur4p-GFP BY4742 MATa his3D1 leu2D0 lysD0 ura3D0/URA3 GAL-FUR4-GFP (Dupré and Haguenauer-Tsapis 2003)
Jen1p-GFP MATa ura3-52 JEN1-GFP (Paiva et al. 2009)
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processing, contrast adjustment and color combining
were made using Adobe Photoshop CS2 V9.0.2.
Images were converted to 8-bit greyscale or RGB
and annotated using Photoshop CS2 before being
saved to TIFF. At CIB-CSIC (Madrid), an inverted
Leica DMI6000B microscope with motorized z-focus
and a Leica EL6000 external light source was used
for epifluorescence excitation. The microscope was
driven by Metamorph (Invitrogen, Carlsbad, CA,
USA) software using a DMI6000-specific driver.
Images were acquired using HCX �63 1.4 numerical
aperture (NA) or �100 1.4 NA objectives and a
Hamamatsu ORCA ER-II cooled-charge coupled
device camera (Hamamatsu Photonics, Massy,
France). The microscope was equipped with Semrock
Brightline GFP-3035B and TXRED-4040B filter sets
(Semrock, Rochester, NY, USA). Maximal intensity
projections were obtained from z-stacks using the
Metamorph 3D plugin. Images were converted to
8-bit greyscale or RGB and annotated using Photo-
shop CS2 before being saved to TIFF. When indi-
cated (Figure 4), images were deconvoluted using
the blind deconvolution algorithms of ImageJ 1.37
http://rsb.info.nih.gov/ij. For Laser Confocal Micro-
scopy at the Medical School of Universidade do
Minho, we used an inverted FLUOVIEW confocal
laser scanning microscope, version FV1000 Viewer
(Ver.2.0b) as described by the manufacturer (http://
www.olympusfluoview.com/).

Transport assays

Radiolabelled xanthine (33.4 Ci/mmol) was from
Moravek Biochemicals (Brea, CA, USA). [3H]-
xanthine uptake was assayed in conidiospores at
37�C as described previously (Koukaki et al. 2005,
Papageorgiou et al. 2008). All experiments were car-
ried out in triplicate. Initial velocities were corrected
by subtracting background uptake values, measured
in the uapA-uapC- mutant (Koukaki et al. 2005). The
Km (concentration for obtaining Vm/2) of UapA for
xanthine was determined from full dose-response
curves with a minimum of eight points spread
over the relevant range. In all cases, the Hill coeffi-
cients were close to �1, consistent with competitive
inhibition.

Western blot analysis

Protein extracts were prepared as in Pantazopoulou
et al. (2007). In particular, liquid cultures were
incubated for 12 h at 25�C before the addition of
substrates or ammonium, or induction for the alcAp-
driven UapA expression. Protein concentrations were

determined by the method of Bradford. In each case,
50 mg of protein were loaded for SDS PAGE. Samples
were fractionated on a 10% SDS-page gel and electro-
blotted (Mini PROTEANTM Tetra Cell, BIO-RAD)
onto a PVDFmembrane (Macherey-Nagel) for immu-
nodetection. The membrane was treated with 2%
non-fat dry milk or according to the manufacturer
instructions and immunodetection was performed
using a primary mouse anti-GFP monoclonal antibody
(Roche) and a secondary goat anti-mouse IgG HRP-
linked antibody (Cell Signaling). Blots were developed
by the chemiluminescent method using the West Pico
SuperSignal reagent (Pierce).

Determination of detergent resistance

This is basically as described in Grossmann et al.
(2007). In brief, aliquots corresponding to 50 mg of
membrane protein in 100 ml 50 mM Tris-HCl, pH
7.5, 150 mM NaCl, 5 mM EDTA, were treated with
increasing concentrations of Triton X-100 (0–0.8%)
at room temperature for 30 min. Non-solubilized
material was pelleted by centrifugation (14,000 rpm
at 4�C for 30 min) and washed by 100 ml of the
corresponding buffers under the same conditions.
The pellets were resuspended in 30 ml of sample
buffer, dissociated at 37�C for 15 min and then
resolved by SDS-PAGE, and UapA-GFP was
detected by a specific anti-GFP antibody on a
Western blot.

Results

Hypertonic media elicit a cortical patchy appearance of
A. nidulans transporters

Using functional GFP-tagged versions of seven per-
meases belonging to four evolutionary distinct protein
families (NAT/NCS2, NCS1, AzgA-like, APC; http://
www.membranetransport.org/), we have found that
after transcriptional activation of the corresponding
genes during conidiospore germination, transporter
polypeptides show a rather uniform distribution
along the plasma membrane of germlings and
developing mycelia. A similar picture of uniform
plasma membrane partitioning was also observed in
other Aspergillus transporters studied using GFP
(Forment et al. 2006, Apostolaki et al. 2009, Ramon
and Scazzocchio, personal communication). This
contrasts the case of several S. cerevisiae transporters
that appear to form discrete cortical foci, correspond-
ing to MCCs or MCPs (see Introduction). A repre-
sentative picture of transporter cellular expression in
A. nidulans is shown in the upper panel of Figure 1a.
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In this Figure, UapA is a carrier specific for uric acid-
xanthine (Gorfinkiel et al. 1993) (NAT family),
AzgA (Cecchetto et al. 2004) is a carrier specific
for adenine-guanine-hypoxanthine (AzgA-like fam-
ily), PrnB (Tazebay et al. 1997) is a proline permease
(APC family) and FurD (Amillis et al. 2007) is a uracil
permease (NCS1 family).
The cellular expression of the A. nidulans GFP-

tagged transporters was also examined in samples
treated for 1–5 min with NaCl or sucrose. Under
these conditions, we observed the rapid appearance of
cortical fluorescent patches, as those shown in the
lower panels of Figure 1a and 1b. By using a strain
simultaneously expressing two of these transporters,

UapA and AzgA, tagged with mRFP and GFP res-
pectively, we showed that at least these permeases
co-localize in the same patches (Figure 1c).
The kinetics of appearance of patches and most

subsequent work were performed using a fully func-
tional UapA-GFP transporter expressed from a strong
controllable promoter (alcAp) (Gournas et al. 2010).
Patch appearance depended on the concentration
of NaCl or sucrose (Figure 2a). The minimum con-
centrations of sucrose or NaCl eliciting the appear-
ance of patches were determined to be >400 mM
and > 200 mM, respectively, in agreement with the
relative hypertonic strength of these two solutes.
Patches formed by the two solutes looked identical

a b c

Figure 1. (a) Hypertonic media elicit a cortical patchy appearance of A. nidulans GFP-tagged transporters observed by epifluorescence
microscopy. Upper panel: Control samples (–) were grown for 13 h in MM (urea 5 mM, glucose 1%) at 25�C, which permit the induction of
transporters during conidiospore germination (Pantazopoulou andDiallinas 2007). Lower panels: Samples grown similarly as control samples,
but then transferred to the same media containing 0.8 M Sucrose (Suc) or 0.5 M NaCl. Here and in several subsequent Figures, images were
converted to 8-bit inverted grayscale. (b) Confocal laser scanning microscopy of UapA-GFP cellular expression in control media (–) or after
1 min exposure to 0.8 M Sucrose (Suc). (c) Epifluorescence microscopy of a strain expressing simultaneously UapA-mRFP and AzgA-GFP in
control (–) or hypertonic (Suc, NaCl) media. Notice the overlap of red and green fluorescence (merge). Scale bars shown here and in
subsequent figures correspond to 5 mm unless otherwise stated.

a b c

Figure 2. (a) Kinetics of appearance of cortical patches in a strain expressing UapA-GFP from the alcA promoter (alcAp-UapA-GFP) in
hypertonic media (1 min) in response to tonicity strength. Samples were grown for 14–15 h in mM (urea 5 mM, fructose 0.1%), at 25�C, which
permits the induction of UapA-GFP from alcAp (Gournas et al. 2010). (b) Disassembly of alcAp-UapA-GFP fluorescent patches after
prolonged growth (2, 4 or 16 h) in hypertonic media (Suc or NaCl). (c) Wash-out of alcAp-UapA-GFP fluorescent patches (NaCl) after 10 min
transfer to control (–) media. The figure shows epifluorescence microscopy images. Scale bars shown are 10 mM.
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and their number and size depended on tonicity
strength. The hypertonic effect imposed on mycelia
was more evident at higher concentrations where
hyphae became thinner, apparently due to water
loss. The size of patches ranged from 0.5 through
2.3 mm. Patches were shown to appear transiently, as
they disappeared in overnight cultures in hypertonic
media (see Figure 2b). We estimated this recovery
from the patchy appearance to take place after 4–8 h
in sucrose (800 mM) or 2–4 h in NaCl (500 mM)
(Figure 2b and not shown). Finally, patches disap-
peared rapidly (15 min) when sucrose or NaCl was
washed-out (Figure 2c).
Several other hypertonic media (LiCl, KCl,

Na2PO4, NH4Cl, sorbitol or mannitol) led to patchy
distribution of UapA, whereas other stress conditions
such as the presence of most divalent ions or heavy
metals, protein synthesis blockage (cycloheximide),
proton gradient uncouplers or extreme pH, had no
effect (Figure 3).

Patches correspond to plasma membrane invaginations
rather than lipid raft-like microdomains specific for
transporters

Some patches, especially those produced under stron-
ger tonicity, although clearly plasma membrane-
associated, seem to extend beyond the membrane
towards the cytoplasm. This was more clearly seen in
deconvolutedZ-stack images,which strongly supported
that patches correspond to membrane invaginations
(Figure 4). This observation is in full agreement with
two reports in S. cerevisiae (Slaninová et al. 2000) and
Aspergillus repens (Kelavkar et al. 1993) directly show-
ing, using TEM, that hypertonic media lead to plasma
membrane invaginations, that can be extended deeply
in the cytoplasm (see also later).
We obtained independent evidence that fluorescent

patches, initially observed using GFP-tagged trans-
porters, are plasma membrane invaginations rather
than specific transporter microdomains. This evi-
dence is based on the following observations. Firstly,
similar patches were observed using two other GFP-
tagged plasma membrane associated polypeptides
(Figure 5a). These are the pleckstrin homology (PH)
domain of PLC-d1, specifically recognizing the
plasma membrane PI(4,5)P2 lipids (Pantazopoulou
and Penalva 2009) and the SsoA t-Snare, a protein
that serves as a membrane-specific tag in the docking
of transport vesicles to the plasma membrane (Taheri-
Talesh et al. 2008). Secondly, similar patches were
also observed in hypertonic conditions, using the
lipophilic markers FM4-64 (Penalva 2005) or Filipin
(Takeshita et al. 2008) (also Figure 5a). Importantly,

FM4-64 patches co-localized with transporter (UapA)
patches (see later in Figure 6f). Thirdly, as known
plasma membrane microdomains have a distinct raft-
like lipid composition, we tested the extractability of
UapA by Triton X-100 from membranes. This bio-
chemical approach is a standard assay used to detect
partitioning of transporters in detergent resistant mem-
branes (DRMs), which seems to be the biochemical
equivalentof lipid-raftmicrodomains (Grossmannet al.
2007). Figure 5b shows that UapA extractability was
identical in standard and hypertonic media. Fourthly,

Figure 3. Examination by epifluorescence microscopy of UapA-
specific fluorescent cortical patches after treatment with various
salts (0.5M), sugars (0.8M), cycloheximide (chx, 20 mg/ml, 15 min
prior to examination), different pH or the proton gradient uncou-
pler CCCP (30 mM, 15 min prior to examination). UapA-GFP is
expressed from the the alcA promoter (alcAp-UapA-GFP) as
described in Figure 3. Sor and Man stand for Sorbitol and
Mannitol, respectively. Notice that only monovalent ions and
sugars (mostly Sor), which are known to produce hypertonic stress,
lead to fluorescent patches.
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direct transport measurements of radiolabeled 3H-xan-
thine performed under hypertonic conditions (0.8 M
sucrose or 0.5 NaCl) showed that UapA-GFP remains
fully functional, showing a Km value (8 mM) and

transport capacity nearly identical to the one obtained
in standardmedia (Figure5c).Finally, usingCalcofluor
white staining, a marker of cell wall material such as
chitin or b-1,3-glucan (see Material and methods), we
showed that control samples exhibited a uniform blue
fluorescence on their surfaces, whereas cells shifted to
hyperosmoticmedium (0.8M sucrose) showed cortical
fluorescent patches (Figure 5a, right panel). Several
CalcofluorpatchesoverlappedwithUapA-GFPpatches
(highlightedwitharrows).Theseresultsstrongly suggest
that invaginated areas of the plasma membrane are
rapidly filled with cell wall material, either through
de novo synthesis or reorganization of pre-existing peri-
plasmicmaterial. Similar observations were reported in
yeast (Slaninová et al. 2000) and plants (Komis et al.
2002). The simplest explanation of all the above
results is thatfluorescentpatchesobtainedwithdifferent
markers represent plasma membrane invaginations,
rather than specific microdomains with distinct lipid
composition.

a

b

c

Figure 5. (a) Fluorescent patches detected with membrane-associated molecular markers other than transporters in hypertonic conditions.
‘PH domain’ is a GFP-tagged duplication of the PLC-d1 PH domain which acts as an exclusive marker for the plasma membrane through its
high affinity binding of PI(4,5)P2 lipids. SsoA is a GFP-tagged t-Snare exocytic protein that attaches to the inner leaflet of the plasma
membrane. Filipin and FM4-64 are fluorescent lipophilic markers labeling the plasma membrane under specific conditions (see Experimental
section). Calcofluor white staining (see Materials and methods) showing overlap of UapA-GFP patches with deposition of cell wall material
(highlighted with arrows). (b) Extractability of UapA-GFP by Triton X-100 from plasma membranes is identical in standard media and after
exposure to hypertonic treatment (0.8M sucrose, 10 min). (c) UapA-mediated (alcAp-UapA-GFP) 3H-xanthine transport capacity in standard
media and after exposure to hypertonic treatment (0.8 M sucrose, 10 min). The Km value of UapA-GFP (alcAp-UapA-GFP) for xanthine,
established in hypertonic media, is also shown (8 mM). For details of uptake studies, see Experimental section.

Control

Suc

Figure 4. Fluorescent, UapA-GFP specific (alcAp-UapA-GFP),
patches correspond to plasma membrane invaginations visible
(highlighted with arrow heads) in deconvoluted images obtained
with an inverted Leica microscope withmotorized z-focus. Maximal
intensity projections obtained from z-stacks using the Metamorph
3D are shown (see Experimental section). Two samples treated with
sucrose (0.8 M) are shown compared with an untreated control.
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Hypertonic media elicit transient blockage of endocytosis
and growth arrest

Sucrose has been reported to be a specific clathrin-
dependent inhibitor of receptor and transporter endo-
cytosis in mammalian cells (Heuser and Anderson
1989). We tested whether sucrose or other hypertonic
media have an effect on endocytosis of UapA-GFP.
We have recently showed the existence of two distinct,
but converging endocytic pathways concerning the
turnover of UapA in response to the presence of
NH4

+ ions or substrates (uric acid or xanthine).
The process of endocytosis can be easily monitored

by epifluorescence or confocal microscopy and West-
ern blot analysis using an anti-GFP antibody.
We observed that the addition of sucrose (0.8M) or

NaCl (0.5 M) prior to ammonium or uric acid abol-
ished the endocytosis and turnover of UapA-GFP
(Figure 6a, 6b). As expected, we also observed that
in the presence of sucrose or NaCl, UapA-GFP
molecules appeared in plasma membrane patches
described earlier. The block in transporter endocyto-
sis and turnover was confirmed by Western blot
analysis, which showed the absence of free GFP in
samples grown for the last hour in the presence of
ammonium ions (NH4) or uric acid (UA) under

a b

c

e f

d

Figure 6. (a) Hypertonic media elicit a blockage of UapA-GFP endocytosis. In control samples UapA-GFP (alcAp-UapA-GFP) endocytosis is
elicited upon transfer for 1h to standard media with either 1 mM uric acid (UA) or 20 mM ammonium ions (NH4) (Gournas et al. 2010).
Under these conditions, UapA-GFP is internalized and degraded in the vacuoles (appearing as prominent fluorescent granules in the
cytoplasm) through sorting in the MBV pathway. Here and in all subsequent Figures, unless otherwise stated, hypertonic conditions are
imposed by transfer to standard media with 0.8 M sucrose or 0.5 MNaCl. Notice that after hypertonic treatment there are UapA-GFP cortical
fluorescent patches but no vacuoles visible in conditions that normally lead to UapA-GFP turnover. (b) UapA-GFP (alcAp-UapA-GFP)
endocytosis by ammonium in a control sample and blockage of UapA-GFP endocytosis by ammonium after hypertonic treatment, as seen with
inverted confocal laser microscopy in a single hypha. (c) Western blot analysis of membrane protein fractions corresponding to 2 h addition of
UA or NH4 and controls (–), probed with anti-GFP. The lowmobility band corresponds to intact UapA-GFP (alcAp-UapA-GFP) and the high
mobility band to free GFP produced through vacuolar degradation of UapA (see text). (d) Recovery of NH4-elicited endocytosis of UapA-
GFP (alcAp-UapA-GFP) after prolonged growth (16 h) in hypertonic media. (e) Minimal concentrations of sucrose or NaCl blocking
endocytosis. (f) Effect of hypertonic treatment on FM4-64 internalization. The strain used is alcAp-UapA-GFP. Control and hypertonic
samples were treated as previously. Upon 15 min of staining on ice and 30 sec transfer to 25�C, FM4-64 labels only the plasma membrane,
which appears uniform in control media but patchy after sucrose treatment. A practically identical labeling was obtained with UapA-GFP (left
panels). After 30 min of incubation at 25� in untreated samples, FM4-64 still labeled the plasma membrane but was mostly localized in
endosomal compartments. In sharp contrast, in sucrose treated samples, FM4-64 still labeled cortical patches associated with plasma
membrane and no sign of internalization was evident. The cortical fluorescent patches labeled with FM4-64 are identical with those labeled
with UapA-GFP (right panels).
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hypertonic treatment (Figure 6c). The appearance of
free GFP is a well-established marker of endocytosis
and vacuolar turnover of UapA-GFP and other GFP-
tagged transporters (Gournas et al. 2010). The block-
age in UapA-GFP endocytosis is transient, as its
internalization recovers with kinetics practically iden-
tical to those of patch disassembly after longer expo-
sures to hypertonic media (Figure 6d). In addition,
the minimal concentration of hypertonic solutes
blocking UapA-GFP endocytosis was practically
identical to that leading to plasmolysis (~0.45
sucrose, ‡0.2 M NaCl) (Figure 6e).
Interestingly, Figure 6f shows that sucrose also

blocked the constitutive internalization of the lipo-
philic marker FM4-64, strongly suggesting that
tonicity has a global negative effect on both
clathrin-mediated and fluid-phase endocytosis (dis-
cussed later).
In the course of the experiments described above,

we noticed a significant delay in growth rate in sam-
ples exposed to hypertonicity. Figure 7a shows that
this delay is maximal in media containing a non-
catabolic carbon source such as fructose (0.1%)
(40% reduction in colony radius), while it is more
moderate in carbon catabolite repressing (1% glu-
cose) media (20% reduction). Figure 7b shows a
quantification of this growth arrest expressed as
reduction in average hyphal length after hypertonic
treatment (20–40% reduction in germ tube length).
The delay in growth recovered after longer exposures
to hypertonic media, as did the appearance of fluo-
rescent patches and the block in endocytosis (not
shown).

Hypertonicity affects actin dynamics and thus blocks
endocytosis

A block in endocytosis can occur at several steps
concerning the formation and internalization of the

endocytic vesicle. To address this question we exam-
ined how basic elements of this process are affected by
tonicity. In particular, we examined the cellular orga-
nization of well-characterized upstream (SlaB) and
downstream (AbpA) endocytic factors, as well as that
of tropomyosin (TpmA), tagged with either GFP or
mRFP, under standard or hypertonic growth condi-
tions. SlaB (Araujo-Bazán et al. 2008) is a Sla2p
S. cerevisiae orthologue (Wesp et al. 1997), which
acts as a well-characterized endocytosis regulator
involved in the formation of early actin patch com-
ponents (Newpher et al. 2005). In particular, Sla2p
regulates the association of the clathrin endocytic
machinery with actin polymerization (Newpher and
Lemmon 2006). AbpA (Araujo-Bazán et al. 2008) is
true homologue of Abp1p in S. cerevisiae, which
is a late endocytic vesicle formation component. It
appears near the end of Sla2p lifetime, is localized
exclusively at cortical endocytic actin filaments/
patches (Huckaba et al. 2004, Quintero-Monzon
et al. 2005) and does not associate with actin cables
(Huckaba et al. 2004). In A. nidulans, AbpA and SlaB
are strongly polarized in hyphae, forming a ring that
embraces the hyphal tip, leaving an area of exclusion
at the apex (Araujo-Bazán et al. 2008). AbpA localizes
at highly motile and transient peripheral foci over-
lapping with actin patches, which predominate in the
tip (Taheri-Talesh et al. 2008). SlaB also localizes at
peripheral foci, but these are markedly more abun-
dant and cortical than those of AbpA (Araujo-
Bazán et al. 2008). Based on SlaB and AbpA cellular
dynamics, it has been proposed that spatial associa-
tion of exocytosis with endocytosis at the fungal
tip underlies hyphal growth. Interestingly and unlike
the case in S. cerevisiae, SlaB is an essential gene
revealing a major role of endocytosis in filamen-
tous fungal growth. Tropomyosin (TpmA) is a major
actin-binding protein that regulates actin mechanics
(Stewart 2001). A GFP-TpmA fusion has been used
to image actin cables, which was not feasible with
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Figure 7. Hypertonic media elicit growth arrest of A. nidulans. (a) Growth tests of two isogenic strains expressing UapA-GFP from either its
native promoter (used for Figure 1) or from the alcA promoter (used for all other Figures). 0.5 NaCl was used for hypertonic treatment and tests
were carried out in MMwith fructose (0.1%) or glucose (1%), as carbon sources. NaCl led to a reduction of both the diameter of colonies and
conidiospore production. The reduction of growth was stronger in fructose media. (b) Reduction of hyphal length upon addition of either
0.8 M sucrose or 0.5 M NaCl for 4 h in the strain expressing alcAp-UapA-GFP grown in fructose media.
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GFP-actin fusions, inA. nidulans (Pearson et al. 2004,
Taheri-Talesh et al. 2008). GFP-TpmA is con-
centrated near the apex and at forming septa
(Pearson et al. 2004, Taheri-Talesh et al. 2008),
labels actin cables along the hyphae, but does not
seem to co-localize with endocytic actin patches.
Figure 8a (upper panels) shows that, as expected,

SlaB and AbpA form cortical foci which are mostly
concentrated at the tip of hyphae, whereas TpmA has
a rather diffuse localization in the cytosol, but also
clearly labels actin cables along the hyphal axis and the
tip region. The lower panels in Figure 8a show that
neither sucrose nor NaCl affected the cortical and
polar appearance of SlaB-GFP or AbpA-mRFP foci,
whereas hypertonic media dramatically modified the

cellular localization of GFP-TpmA.More specifically,
fluorescence is not any longer associated with actin
cables and the tips of hyphae, but is now apparent as
diffuse cytosolic fluorescence and in scattered cortical
foci along the axis of hyphae. This picture constitutes
strong evidence that hypertonic media modify actin
dynamics, rather than the formation of cortical endo-
cytic complexes per se, probably through immediate
actin depolymerization followed by rapid localized
re-polymerization. A similar conclusion has been pro-
posed for the effect of tonicity in plants (Komis et al.
2002).
We also tested how actin depolymerization trig-

gered by Latrunculin B (Lat-B) (Taheri-Talesh
et al. 2008) affects plasmolysis and transporter

a

b

Figure 8. Hypertonicity and Lat-B effects on actin dynamics and the endocytic machinery. (a) Cellular localization of SlaB, AbpA and of
TpmA, tagged with either GFP or mRFP, under standard or hypertonic growth conditions. Samples were treated as previously described.
SlaB-GFP and AbpA-mRFP form cortical foci which predominate at the tip of hyphae under all conditions. GFP-TpmA in standard conditions
(–) labels diffusely the cytocol andmore strongly actin-like cables along the hyphal length and the tip. In hypertonic conditions (Suc) labeling of
the actin cables and the tip disappears and scattered cortical patches appear along the hyphal length. (b) Effect of Lat-B (50 mM) on the cellular
localization of UapA (-GFP or -mRFP tagged) in standard (–), endocytic (NH4) or hypertonic (Suc) conditions. The effect of Lat-B on AbpA-
GFP and SlaB-GFP was also examined as a control. Lat-B leads to the disassembly of all AbpA patches as expected (Araujo-Bazán et al. 2008),
but has a minor effect on SlaB, as only the patches at the tip seem to disassemble. Lat-B has no effect on either the normal uniform localization
of UapA in the plasma membrane in standard media (–) or on the appearance of UapA-specific fluorescent patches (plasmolysis) in hypertonic
media (Lat-B + Suc and Lat-B + NaCl). In contrast, Lat-B blocked the internalization of UapA by NH4. Note that in the latter case, UapA
cortical foci are also visible (highlighted with arrows).
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endocytosis. As a control of Lat-B action, we followed
its effect on AbpA, but also on SlaB. Figure 8b shows
that Lat-B led to complete disassembly of AbpA
patches, as expected (Pantazopoulou and Penalva
2009), but had a moderate apparent effect on SlaB
patches, more evident at the tip. This might be due to
the fact that, unlike AbpA, SlaB regulates F-actin
polymerization but contains a PI(4,5)P2 binding
domain that contributes to its plasma membrane
localization. Lat-B had no effect on either the local-
ization of UapA-GFP in the plasma membrane, or on
the appearance of UapA-GFP cortical patches (plas-
molysis), but blocked UapA-GFP endocytosis by
ammonium (Figure 8b). Therefore, both hypertonic-
ity and Lat-B blocked endocytosis, suggesting that
hypertonicity, similarly to Lat-B, might act through an
effect on actin dynamics.

Hypertonic conditions elicit similar phenomena in
S. cerevisiae as in A. nidulans

We tried the effect of similar conditions and studied
the response of S. cerevisiae to hypertonicity. In these
studies, we used a strain expressing a functional GFP-
tagged version of the lactate (Jen1p) permease, a
transporter that in standard media labels uniformly
the plasma membrane. Jen1p is endocytosed and
degraded through the MVB pathway in response to
the presence of a preferred carbon source such as
glucose.
Figure 9 shows that both sucrose and NaCl lead

to the appearance of prominent Jen1p-specific fluo-
rescent patches. These patches are clearly distinguish-
able from the Fur4p-specific MCC foci observed in
the standard media (see Introduction), the former
being larger and extended towards the cytoplasm as
expected for plasma membrane invaginations. In
addition, Figure 9 also shows that under hypertonic
conditions, the endocytosis of Jen1p by glucose is
totally blocked. As in A. nidulans, patch appearance
and blockage of endocytosis show similar kinetics and
both phenomena recover after 10–14 h in hypertonic
media (not shown). Finally, similarly to A. nidulans,
hypertonic media elicited a growth arrest, which has
also been observed by others (Slaninová et al. 2000,
Hohmann et al. 2007). A notable difference between
the response of the two fungi to hypertonicity was that
S. cerevisiae proved more resistant than A. nidulans to
tonicity, that is, two-fold higher concentrations of
sucrose (1.6 M) or NaCl (1 M) were needed to elicit
plasmolysis, blockage of endocytosis and growth
arrest. Similar results were also obtained with a
second S. cerevisiae transporter (Fur4p) (results not
shown).

Discussion

Using several transporters and other membrane-
associated markers tagged with GFP or mRFP, but
also fluorescent lipophilic probes, we directly showed
that various moderate (within the osmoregulatory
range) hypertonic media lead to rapid localized plas-
molysis, growth arrest and blockage of endocytosis in
A. nidulans and S. cerevisiae. These phenomena are
reversed within minutes when the hypertonic media
are washed-out. If the hypertonic media persist,
deplasmolysis and recovery of endocytosis initiate
after 2–8 h, depending on tonicity strength, although
full reversal might take up to 14 h. Recovery to normal
growth rate is slower, but this depends on the fungus
and the agent used to elicit hypertonicity (not shown).
The effects of hypertonic treatment on fungi have

been extensively studied before. Yeast cells respond to
increased tonicity by water loss, cell shrinkage, ces-
sation of growth associated with diminished transla-
tional capacity, rapid closure of the glycerol export
channel Fps1, remodeling of the actin cytoskeleton

Figure 9. Hypertonic conditions elicit similar phenomena in
S. cerevisiae as in A. nidulans. Epifluorescence microscopy images
of a S. cerevisiae strain expressing a functional Jen1p-GFP chimeric
transporter are shown. Jen1p-GFP is expressed uniformly in the
plasmamembrane under standard conditions of induction (–) but is
rapidly internalized (20 min) and eventually degraded in the vac-
uole (60 min) upon addition of 1% glucose (Paiva et al. 2009).
Hypertonic treatment (1.6 M sucrose or 1 MNaCl) for 1 min leads
to the appearance of mostly cortical fluorescent patches and shows
no evidence of internalization or degradation of Jen1p-GFP by
glucose. The last panel shows the growth arrest elicited by addition
of 1 M NaCl in the Jen1p-GFP strain at an OD640 nm of 0.5. For
more technical details, see the Experimental section.
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and a loss of cell polarity (for review, see Hohmann
et al. 2007). The phenomena are transient and
recover through gradual accumulation of solutes,
mostly glycerol, as a consequence of the activation
of genes of the so-called high-osmolarity glycerol
(HOG) pathway. Similar responses have been
observed in filamentous fungi, mostly Neurosporra
crassa (Lew and Nasserifar 2009), but also in plants
(Komis et al. 2002). A recent publication has shown
that under extreme and persisting osmotic conditions
(out of the osmoregulatory range) the plasma mem-
brane of S. cerevisiae is functionally and structurally
reorganized irreversibly, which in turn leads to cell
death (Dupont et al. 2010). This work and two
other publications in fungi (Kelavkar et al. 1993,
Slaninová et al. 2000) have shown that responses to
different degrees of hypertonic treatment include the
rapid formation of deep plasma membrane invagina-
tions or localized plasmolysis.
Our work strongly supports, by in vivo direct

approaches, the previous findings concerning two
major responses of fungi to moderate hypertonic
media: first, the partial or localized plasmolysis and
shrinkage of cells due to water loss, and second, growth
arrest. It further investigates the specificity and kinetics
of these effects, showing that plasmolysis is prac-
tically immediate (<1 min), tonicity-dependent rather
than solute-dependent, never complete, reversible and
transient, whereas growth arrest is also transient, but
slower to recover than plasmolysis. Furthermore, we
show for the first time, that the invaginated part of
the membrane does not seem to have a distinct lipid
composition, and that transporters embedded in it
are fully functional. The first conclusion arises from
in vivo microscopic evidence using specific lipophilic
markers (Filipin, FM4-64 and the PI(4,5)P2-binding
marker (a duplication of the PH domain of PLC-d1)
and biochemical evidence showing that transporter
membrane-extractability is not affected by hypertonic
treatment. The second conclusion came from direct
transport kinetics measurements using radiolabelled
substrates. Furthermore, transporter-mediated uptake
assays showed that there is no diffusion of radiolabelled
substrates within the cells, a strong indication that the
A. nidulans plasma membrane and lipid composition
remain intact under the hypertonic treatment used.
Thus, although the originally observed patches using
GFP-tagged transporters resembled specific plasma
membrane microdomains, such as the yeast MCC
or MCP compartments, which all host transporters,
they proved not to be so. The simplest explanation of
the apparent fluorescence accumulation detected by
using FM4-64, filipin, SsoA or the PHdomainmarkers
is an increase in plasma membrane surface due to
infoldings.

We also directly showed that hypertonicity totally
but transiently blocks the endocytosis of transporters.
Several lines of evidence strongly support that this is
due to a rapid effect of hypertonicity on actin dynam-
ics, rather than due to the direct abolishment of
clustering of cargoes in coated pits or the initial
formation of membrane-associated endocytic com-
plexes. Firstly, hypertonicity altered dramatically
and rapidly the cellular localization of tropomyosin
(GFP-TpmA), but not that of the endocytic cortical
markers SlaB and AbpA, which act upstream from the
pinching-off of endocytic vesicles. Using the GFP-
TpmA marker, we detect the rapid disassembly of
actin cables, which constitute the major machinery for
the internalization of endocytic vesicles. Secondly,
hypertonicity blocked the endocytosis of FM4-64, a
marker of bulk fluid-phase endocytosis which, to
our knowledge, operates by an actin-dependent but
also a coated pit-independent mechanism (Vida and
Emr 1995). In line with this observation, Dupont
et al. (2010) have shown a similar block of
FM4-64 endocytosis in yeast cells exposed to mod-
erate hypertonic media. Thirdly, the abolishment
of ammonium-elicited UapA-GFP endocytosis by
Lat-B is also in line with an effect on actin dynamics.
Despite the fact that this drug has a global effect on
actin filament polymerization and thus the endocytic
machinery, we noticed that in Lat-B treated cells
exposed to ammonium ions, UapA-GFP, in addition
to a uniform labeling of the plasma membrane, also
appears in cortical foci. This observation suggests that
UapA-GFP might well be clustered in upstream
endocytic complexes/pre-vesicles, but these cannot
be internalized. Thus, the simplest interpretation
of our results is that hypertonicity elicits the modifi-
cation of actin mechanics, rather than interfering
with cargo clustering in cortical endocytic complexes.
The observation that upon hypertonic treatment
cables disappear and the actin patches redistribute
over the cortex of hyphae has also been observed in
S. cerevisiae (Slaninová et al. 2000) and plants
(Komis et al. 2002). Evidently, the blockage of
Jen1p endocytosis by hypertonic treatment in yeast,
shown in Figure 9, should also take place through
modification of actin dynamics.
Previous reports in vertebrate cells have shown that

hypertonic media inhibit receptor-mediated endocy-
tosis (Daukas et al. 1983, Larkin et al. 1986, Heuser
and Anderson 1989). In polymorphonuclear leuko-
cytes, hypertonic media inhibited receptor-mediated
uptake of the chemotactic peptide N-formylnorleu-
cylleucylphenylalanine. Furthermore, it was shown
that hypertonic medium prevented the clustering
of surface molecules as indicated by the inhibi-
tion of capping of fluorescent concanavalin A
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(Daukas et al. 1983). In human and chicken fibro-
blasts, TEM analysis has shown that hypertonic cells
display empty clathrin ‘microcages’ rather than nor-
mal coated pit lattices, with concomitant loss of
normally clustered low density lipoprotein (LDL)
receptors observed in untreated cells. Upon return
to normal medium, these changes reverse. The
authors propose that hypertonic treatment causes
coated pits to disintegrate, while clathrin becomes
unavailable and endocytosis is blocked (Heuser and
Anderson 1989). Clathrin is important for normal
actin dynamics and progression of SlaB/Sla2p-
containing patches during endocytosis in yeast
(Newpher and Lemmon 2006). Thus, we cannot
formally exclude that hypertonic media also have a
negative effect on clathrin function in fungi. However,
unlike vertebrate cells where fluid-phase endocytosis
and endosome turnover, detected by FM4-64, is not
blocked by hypertonicity, in A. nidulans FM4-64
internalization is totally blocked by both sucrose
and NaCl, a result incompatible with a sole effect
on clathrin. Of course, our results might also reflect
differences in the molecular mechanisms employed by
fungal (or plant) cells, compared to animal cells, to
respond to hypertonicity.
Last but not least, this work establishes that

moderate hypertonic treatment (within the osmo-
regulatory range) constitutes a transient and revers-
ible physiological inhibitor of fungal endocytosis.
A similar block in endocytosis seems to occur in
vertebrates and we predict that a similar situation
might take place in plants. This is of primary impor-
tance for research in systems, such as A. nidulans and
other filamentous fungi or even more complex cells,
where genetic blocks in endocytosis and in cargo
trafficking are usually lethal. Blocking endocytosis
by sucrose or NaCl will permit us to ask novel ques-
tions on transporter trafficking, recycling and turn-
over through alternative pathways. We are currently
using this approach for studying the direct sorting of
transporters from the Golgi to the vacuole and how
this is affected by lipid composition.
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Η ομοιάζουσα με αρρεστίνες πρωτεΐνη ArtA είναι απαραίτητη για την 

ουβικουιτινίωση και την ενδοκύτωση του μεταφορέα UapA ως 

απόκριση σε σήματα ευρέου φάσματος και εξειδικευμένα σήματα 

Καραχάλιου Μ*., Αμίλλης Σ.*,Ευαγγελινός Μ., Κοκοτός Α, Γιαλελής Β. & Διαλλινάς Γ. 

*Ισάξια συνεισφορά 

Περίληψη 

Στην εργασία αυτή μελετήσαμε το ρόλο όλων των πρωτεϊνών που ομοιάζουν με αρρεστίνες στον Aspergillus 

nidulans, σε σχέση με την ανάπτυξη, τη μορφολογία, την ευαισθησία σε φάρμακα και κυρίως την 

ενδοκύτωση του μεταφορέα ουρικού οξέος-ξανθίνης, UapA. Όλα τα στελέχη με απενεργοποιημένα τα 

γονίδια των αρρεστινών ήταν βιώσιμα και η ανάπτυξη και η μορφολογία τους ήταν αντίστοιχη με αυτή του 

στελέχους αγρίου τύπου, με εξαίρεση ένα, το οποίο παρουσίασε πρόβλημα στην παραγωγή κονιδιοσπορίων. 

Αρκετά όμως από αυτά παρουσίασαν τροποποιημένους φαινοτύπους σε σχέση με την χρήση διαφορετικών 

πηγών άνθρακα ή αζώτου, καθώς και με την ευαισθησία σε φάρμακα. Μία αρρεστίνη, η ArtA, βρέθηκε να 

είναι απαραίτητη για την εξαρτώμενη από τη HulA
Rsp5

 ουβικουιτινίωση και ενδοκύτωση του UapA, ως 

απόκριση στην παρουσία αμμωνιακών ιόντων ή υποστρωμάτων. Περαιτέρω γενετική ανάλυση έδειξε ότι τα 

κατάλοιπα 545-563 του καρβοξυτελικού άκρου του UapA, που περιλαμβάνουν και ένα δισόξινο μοτίβο, 

είναι απαραίτητα για την ενδοκύτωση του UapA. Ανάλυση μέσω μεταλλαγών της ArtA έδειξε ότι η 

αμινοτελική περιοχή (κατάλοιπα 2-123), καθώς και τα δύο στοιχεία PY είναι απαράιτητα για τη λειτουργία 

της. Η ArtA ουβικουιτινιώνεται από τη HulA στη λυσίνη 343 και αυτή η τροποποίηση είναι σημαντική για 

την ουβικουιτινίωση και την ενδοκύτωση του UapA, ιδιαιτέρως ως απόκριση στην παρουσία αμμωνιακών 

ιόντων. Τέλος, δείχνουμε ότι η ArtA είναι απαραίτητη για την ενδοκύτωση και άλλων μεταφορέων, ειδικών 

για πουρίνες (AzgA) και προλίνη (PrnB), αλλά όχι για ασπαρτικό/γλουταμικό (AgtA). Τα αποτελέσματά μας 

σχολιάζονται στα πλαίσια πρόσφατα προταθέντων μηχανισμών για το πώς οι αρρεστίνες ενεργοποιούνται 

και στρατολογούνται για την ουβικουιτινίωση των μεταφορέων, ως απόκριση σε σήματα ευρέου φάσματος, 

αλλά ταυτόχρονα βάζουν τα θεμέλια για την κατανόηση του τρόπου με τον οποίο οι αρρεστίνες, όπως η 

ArtA, ρυθμίζουν τη ενδοκύτωση συγκεκριμένων μεταφορέων, ως απόκριση στην παρουσία των 

υποστρωμάτων τους. 



 



The arrestin-like protein ArtA is essential for ubiquitination
and endocytosis of the UapA transporter in response to both
broad-range and specific signals

Mayia Karachaliou,† Sotiris Amillis,†

Minoas Evangelinos, Alexandros C. Kokotos,
Vassilis Yalelis and George Diallinas*
Faculty of Biology, University of Athens,
Panepistimiopolis 15784, Athens, Greece.

Summary

We investigated the role of all arrestin-like proteins of
Aspergillus nidulans in respect to growth, morpho-
logy, sensitivity to drugs and specifically for the
endocytosis and turnover of the uric acid-xanthine
transporter UapA. A single arrestin-like protein, ArtA,
is essential for HulARsp5-dependent ubiquitination and
endocytosis of UapA in response to ammonium or
substrates. Mutational analysis showed that residues
545–563 of the UapA C-terminal region are required for
efficient UapA endocytosis, whereas the N-terminal
region (residues 2–123) and both PPxY motives are
essential for ArtA function. We further show that ArtA
undergoes HulA-dependent ubiquitination at residue
Lys-343 and that this modification is critical for UapA
ubiquitination and endocytosis. Lastly, we show that
ArtA is essential for vacuolar turnover of transporters
specific for purines (AzgA) or L-proline (PrnB), but not
for an aspartate/glutamate transporter (AgtA). Our
results are discussed within the frame of recently
proposed mechanisms on how arrestin-like proteins
are activated and recruited for ubiquitination of trans-
porters in response to broad range signals, but also
put the basis for understanding how arrestin-like pro-
teins, such as ArtA, regulate the turnover of a specific
transporter in the presence of its substrates.

Introduction

Plasma membrane transporters constitute primary targets
of cellular regulatory circuits controlling cell communica-
tion and signalling (Dupré et al., 2004; Sorkin and von
Zastrow, 2009). Most transporters traffic to the plasma

membrane embedded in exocytic vesicles, but under
certain physiological conditions, stress stimuli, or in
response to development signals, they can be re-routed
to the vacuole/lysosome for degradation, either directly or
through the MVB pathway (late endosome), or recycle
between the Golgi, the endosome and the plasma mem-
brane (Dupré et al., 2004; Sorkin and von Zastrow, 2009;
Foley et al., 2011). Signals triggering transporter endocy-
tosis include shifts in the nitrogen or carbon source avail-
ability of the growth medium, stress or the presence of
excess substrate, (Hicke and Dunn, 2003; Dupré et al.,
2004; Sorkin and von Zastrow, 2009). Transporter endo-
cytosis, recycling and direct sorting into the MVB/vacuolar
pathway depend on alternating cycles of different types of
ubiquitination and deubiquitination, named the ‘ubiquitin
code’ (Belgareh-Touzé et al., 2008; Risinger and Kaiser,
2008; Lauwers et al., 2010).

In S. cerevisiae, in response to various physiological
signals, several plasma membrane transporters are
ubiquitinated by the HECT domain E3 ligase Rsp5 and
subsequently removed from the cell surface, or directly
diverted from the Golgi to the endovacuolar system
(Hicke and Dunn, 2003; Dupré et al., 2004; André
and Haguenauer-Tsapis, 2004; Risinger et al., 2006;
Rubio-Texeira and Kaiser, 2006; Cain and Kaiser, 2011).
Recent studies have contributed in the understanding of
how Rsp5 recognizes a wide variety of substrates under
various physiological signals. Rsp5 contains three WW
domains, which recognize PY motives with the typical
sequence PPxY or LPxY. Several adaptor proteins contain-
ing such motives have been shown to facilitate the ubiqui-
tination of particular proteins or sets of proteins (Léon and
Haguenauer-Tsapis, 2009). These adaptors include the
membrane proteins Bsd2 (Hettema et al., 2004), Tre1/2
(Stimpson et al., 2006), Ear1 and Ssh4 (Léon et al.,
2008) or members of a family of soluble a-arrestins
or arrestin-like proteins (Lin et al., 2008; Léon and
Haguenauer-Tsapis, 2009; Nikko and Pelham, 2009; Nikko
et al., 2009; Hatakeyama et al., 2010; O’ Donnell et al.,
2010; MacGurn et al., 2011; Becuwe et al., 2012) and their
distant homologues Bul1 and Bul2 (Helliwell et al., 2001;
Soetens et al., 2001; Merhi and André, 2012). All yeast
a-arrestins, including Bul1 and Bul2, have been studied
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systematically in respect to their role on the ubiquitination
and endocytosis of several transporters and the general
model emerging is that different arrestin-like proteins rec-
ognize different transporters, or the same transporter in
response to different stimuli.

Recently, three reports (MacGurn et al., 2011; Becuwe
et al., 2012; Merhi and André, 2012) put the basis on how
arrestin-like proteins are post-translationally regulated in
response to nutrient signalling. In the absence of pre-
ferred carbon or nitrogen sources, arrestin-like proteins
Art4/Rod1, Bul1/2 or Art1, which control the ubiquitina-
tion and turnover of the acetate transporter Jen1p, the
arginine transporter Can1p or the general amino acid
permease Gap1p, respectively, are phosphorylated and
remain inactive. In the case of Art4/Rod1 and Bul1/2, it
was shown that under such poor nitrogen conditions the
relevant arrestin-like proteins bind to 14-3-3 proteins,
which inhibit their capacity to elicit Jen1p or Gap1p down-
regulation. Upon a shift to rich carbon or nitrogen sources,
Art4/Rod1, Art1 or Bul1/2 are dephosphorylated, probably
released from 14-3-3 proteins and recruited for catalysing
the ubiquitination of Jen1p, Can1p or Gap1p respectively.
In the case of the Art1 and Bul1/2, phosphorylation of
the arrestin adaptors involves the Npr1 kinase, which is
itself negatively regulated by the TOR pathway (MacGurn
et al., 2011), whereas in the case of Art4/Rod1, the AMPK
homologue Snf1 seems to be implicated. Still, another
arrestin-like protein, Aly2/Art3, which might localize in the
endosomes, was recently found to be phosphorylated
by Npr1 (Hatakeyama et al., 2010). In the case of Bul1/2
and Art4, dephosphorylation of the arrestin-like proteins
depends on the Sit4 and the PP1 phosphatases Glc7/
Reg1 respectively.

Another aspect of the emerging mechanism underly-
ing the control of transporter ubiquitination by specific
arrestin-like protein adaptors is that the arrestins them-
selves are ubiquitinated, and this seems to be part of the
mechanism regulating their action. In all cases tested
(Art1, Art2, Art3/Aly2, Art4/Rod1, Art8/Rim8 and Art9),
arrestin-like protein ubiquitination is Rsp5-dependent and
essential for their function (Kee et al., 2006; Nikko et al.,
2009; Hatakeyama et al., 2010; Herrador et al., 2010;
MacGurn et al., 2011; Becuwe et al., 2012; Merhi and
André, 2012; O’Donnell, 2012). Ubiquitination of PalF,
an arrestin-like protein involved in pH sensing in the fila-
mentous ascomycete Aspergillus nidulans, has been
proposed to be the sole molecular trigger required for
transmitting the alkaline pH signal to the downstream
elements of the pathway (Hervás-Aguilar et al., 2010).
Studies on Art1, Art4/Rod1 and Bul1 revealed that this
ubiquitination is required for proper permease downregu-
lation and that there seems to be a cross-talk between the
phosphorylation–dephosporylation status and the ubiqui-
tination levels of arrestin-like proteins, but the mecha-

nisms controlling the ubiquitination of Art proteins and its
exact role in transporter downregulation remain poorly
known.

In some cases, specific transporters appear unaffected
in single arrestin-like protein mutants, possibly because
of functional redundancy of the arrestins (Léon and
Haguenauer-Tsapis, 2009; Nikko and Pelham, 2009). In
addition, it seems that not all a-arrestins regulate endocy-
tosis, as described in a recent study, where two arrestin-
like proteins,Aly1 andAly2, regulate intracellular trafficking
of the general amino acid permease Gap1 (O’ Donnell
et al., 2010). Notably, Aly1 and Aly2 co-purify with clathrin
and clathrin-adaptor protein (AP) complexes (McMahon
and Boucrot, 2011) in vivo and interact directly with the
g-subunit of AP-1 in vitro, suggesting that, like their
b-arrestin relatives (Goodman et al., 1996), a-arrestins
promote cargo incorporation into clathrin-coated vesicles
(O’ Donnell et al., 2010).

Our lab has used the extensively studied uric acid-
xanthine transporter UapA (reviewed in Diallinas and
Gournas, 2008; Gournas et al., 2008; Amillis et al., 2011;
Kosti et al., 2011) of A. nidulans to approach questions
concerning the mechanisms underlying endocytosis, trig-
gered by ammonium or excess substrate (Gournas et al.,
2010). We have shown that either ammonium or substrates
elicit the ubiquitination, by the HulARsp5 E3 ligase, of a
single Lys residue (Lys-572) in the C-terminal region of
plasma membrane-localized UapA. Ubiquitinated UapA is
internalized and is directed to the MVB/vacuolar pathway
for degradation. We further showed that ammonium- and
substrate-triggered UapA endocytosis recruit or activate
distinct mechanisms, since the latter, unlike ammonium-
elicited internalization, operates only for transport-active
molecules. Using UapA mutants with modified function
or altered substrate affinities and/or specificities, we
showed that transport-dependent UapA endocytosis
occurs through a mechanism which senses subtle confor-
mational changes associated with the transport cycle
(Gournas et al., 2010). Interestingly, we have also demon-
strated that in the presence of substrates, non-functional
UapA versions can be endocytosed in trans if expressed in
the simultaneous presence of active UapA versions, a
result that suggests that UapA oligomerizes (Gournas
et al., 2010).

In this work we systematically knock-out all arrestin-like
genes of A. nidulans and identify a single protein (ArtA) as
being essential for the HulARsp5-dependent ubiquitination
and subsequent endocytosis of UapA in response to
apparently different signals. We provide strong evidence
that ArtA interacts with a C-terminal region of UapA and
show that the ArtA N-terminal region and both PPxY
motives are necessary for its function. Furthermore, we
show that ArtA is itself ubiquitinated at a single Lys residue
and that ArtA ubiquitination is critical for UapA endocyto-
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sis. Finally, we show that ArtA is specific for the turnover
of some transporters but not of others. Our results are
discussed in relation to how a single arrestin-like protein,
ArtA, recognizes different substrates in response to
broad-range or/and specific signals.

Results

Identification and in silico analysis of genes encoding
arrestin-like proteins in A. nidulans

We investigated whether arrestin-like proteins have an
analogous role in A. nidulans and if so, which proteins are
specific for selected transporters and under which condi-
tions. In this direction, we wanted to identify the arrestin-
like protein(s) responsible for UapA endocytosis in
response to different signals. A BlastP analysis showed
that A. nidulans has 10 genes coding for putative arrestin-
like proteins, most of which contain PY elements (see
Fig. 1B). Three of them, palF, creD and apyA, have been
previously described. PalF (gene: ANID_01844.1) is a
positive-acting arrestin-like protein which, together with
the seven-transmembrane receptor PalH, acts as a key
molecular sensor that mediates activation of an intracellu-
lar signalling cascade by alkaline ambient pH in A. nidu-
lans and other ascomycete fungi (Herranz et al., 2005;
Hervás-Aguilar et al., 2010). PalF ubiquitination suffices to
trigger alkaline pH signalling to downstream elements of
the pathway (Hervás-Aguilar et al., 2010). The creD gene
(ANID_04170.1) has been genetically defined by a muta-
tion (creD34) that suppresses the phenotypic effects of
mutations in creC and creB, two genes encoding a
de-ubiquitinating enzyme and a WD40-motif-containing
protein, respectively, which form a complex essential for
carbon catabolite regulation (Boase and Kelly, 2004).
Finally, the apyA gene (ANID_03265.1) has been recog-
nized as an arrestin-like protein through BlastP analysis,
but its physiological role has not been studied. CreD and
ApyAhave been shown by a bacterial two-hybrid system to
interact with the HulA ubiquitin ligase (Boase and Kelly,
2004). Seven more arrestin-like genes were identified
herein and named artA (ANID_00056.1), artB (ANID_
01089.1), artC (ANID_01743.1), artD (ANID_09105.1),
artE (ANID_02447.1), artF (ANID_03302.1), artG
(ANID_05453.1). The genomes of other Aspergilli have
7–12 arrestin-like proteins (http://www.broadinstitute.org/
annotation/genome/aspergillus_group/).

We compared the A. nidulans arrestin-like proteins with
the arrestin-like proteins of S. cerevisiae and among them-
selves (Tables S2 and S3).ArtA is significantly more similar
to the Art1p/Ldb19p/Cvs7p (21.4% identity) than to any
other arrestin-like protein of S. cerevisiae. Art1p is an
arrestin-like protein that is necessary for the endocytosis of
several nitrogen-containing compounds, such as amino

acids and uracil (Lin et al., 2008; Léon and
Haguenauer-Tsapis, 2009; Nikko et al., 2009; Nikko and
Pelham, 2009; MacGurn et al., 2011). CreD is mostly
similar to Art4p/Rod1p and Art7p/Rog3p (24.1–26.7%
identity), the former being involved in the endocytosis of
the glucose transporter Htx6p and of the lactate permease
Jen1 (Nikko and Pelham, 2009; Becuwe et al., 2012). The
remaining Art proteins of A. nidulans share less clear-cut
similarities with the S. cerevisiae arrestin-like proteins
(identities up to 19.1%). A. nidulans arrestin-like proteins
share low similarity among themselves (< 18.9%), with a
single exception being CreD and ApyA (26.3% identity).
This contrasts the case in S. cerevisiae, where six out of
the ten arrestin-like proteins can be classified in pairs
(Art2-Art8, Art3-Art6, Art4-Art7), an indication of redun-
dancy due to relatively recent duplication events. Thus,
A. nidulans might prove to employ arrestin-like proteins in
processes not present in yeasts.

Construction and phenotypic analysis of null mutants of
genes encoding arrestin-like proteins

Using a standard gene knock-out procedure (see Experi-
mental procedures), we constructed knock-out alleles of
nine genes encoding arrestin-like proteins (artA, artB,
artC, artD, artE, artF, artG, apyA, creD). The knock-out
mutant of the tenth arrestin-like protein, palFD, was a gift
from Prof. H. Arst. All knock-out null mutants were viable
and could thus be tested directly for their morphology and
rate of growth in different temperatures (25°C and 37°C),
pH values, nitrogen or carbon sources and toxic ana-
logues of purines, pyrimidines and amino acids. High-
lights of this analysis are shown in Fig. 1A. Increased
sensitivity towards toxic compounds has been used to
identify arrestin-like genes in S. cerevisiae (Lin et al.,
2008; Nikko et al., 2009). Among the ten arrestin-like
protein knock-outs, artED showed an inability to produce
coloured asexual conidiospores decorating the surface of
the colony. Several of the knock-out mutants showed dif-
ferent growth rates on various nitrogen or carbon sources
and especially in respect to resistance or sensitivity to the
toxic analogues tested.

In regard to UapA, which is the primary subject of this
work, artAD showed increased sensitivity to allopurinol, a
well established substrate of this transporter (Diallinas
and Scazzocchio, 1989). artAD also showed increased
sensitivity to 8-azaguanine, a substrate of the AzgA purine
transporter (Cecchetto et al., 2004). As will be shown
below, ArtA is indeed responsible for the endocytic turno-
ver of both UapA and AzgA, in full accordance with the
increased sensitivity observed for the artAD mutant to
allopurinol and 8-azaguanine (see Fig. 1A).

Based on the results shown in Fig. 1A, we also pre-
dicted possible relationships between arrestin-like
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Fig. 1. Arrestin-like proteins in A. nidulans.
A. Growth phenotypes of arrestin null mutants. Complete genotypes are shown in Table S1. Supplemented minimal medium (MM) with 1%
glucose as carbon source and 10 mM ammonium tartrate (NH4

+) as nitrogen source was used as a growth rate control. Supplemented glucose
MM with 10 mM sodium nitrate as nitrogen source was used with each of the following toxic analogues: allopurinol (Allop), 8-azaguanine
(8-Azg), 5-fluorouracil (5-FU), 5-fluorocytosine (5-FCyt), 5-fluorouridine (5-FUr), p-fluorophenylalanine (FPA), 2-thiourea (2-TU). Growth tests
were at 37°C and pH 6.8. In the lowest panel, vegetative microscopic samples of hyphal cells growing on MM with glucose as carbon source
and ammonium tartrate as nitrogen source (16 h at 25°C) are shown after staining with Calcofluor white.
B. Upper panel: schematical representation of the actual positions of putative PY elements in the A. nidulans arrestin-like protein sequences.
Noticeably, ArtC has no canonical PY elements. Lower panel: superimposition of the ArtA predicted structure, modelled on the crystal
structure of the mouse vacuolar protein sorting-associated protein Vps26B (2r51_A), obtained from the RCSB PDB Protein Data Bank
(http://www.pdb.org/pdb/home/home.do) and plotted with the SwissPdbViewer 4.0.1 software.
C. UapA subcellular localization in arrestin-like protein null mutants. Epifluorescence microscopy of UapA-GFP subcellular localization under
non-endocytic (-) or endocytic conditions [NH4

+ or uric acid (UA)] in isogenic arrestin-like protein null mutants. Growth conditions are described
in Experimental procedures.
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proteins and different transporters, summarized in Table
S4. For example, the FurD (Amillis et al., 2007) and FcyB
(Krypotou et al., 2012) nucleobase transporters, which
belong to the NCS1 family (Pantazopoulou and Diallinas,
2007), might interact with arrestin-like proteins ArtB and
ArtD, a conclusion based on the increased sensitivity
of artBD and artDD mutants to 5-fluorouracil (5-FU) or
5-fluorocytosine (5-FC), respectively. The resistance/
sensitivity phenotypes on p-fluorophenylalanine (FPA)
and 5-fluoruridine (5-FUd) or 2-thiourea (2-TU), which
very probably reflect the apparent transport activities of a
putative general amino acid permease, the unique A. ni-
dulans nucleoside transporter CntA (Hamari et al., 2009)
and the major urea transporter UreA (Abreu et al., 2010),
respectively, seem to be affected by several arrestin-like
proteins. It is also noticeable that creDD, palFD and mostly
the artBD mutants show pleiotropic phenotypes. Further-
more, in some cases, some transporters seem to be
affected negatively or positively by different arrestin
knock-out mutations, such as the nucleoside transporter
CntA. A similar situation has been observed before in
S. cerevisiae and might be explained by the hypothesis
that increased accumulation of some transporters might
indirectly lead to reduced translocation of other transport-
ers to the plasma membrane (Lin et al., 2008). Finally,
none of the arrestin-like protein knock-outs showed
altered polar growth or hyphal morphology (Fig. 1A lowest
panel).

A single arrestin-like protein, ArtA, is necessary for
UapA endocytosis and vacuolar turnover in response to
ammonium or excess substrate

In order to investigate the role of all arrestin-like proteins in
the endocytosis and/or MVB sorting of UapA, we crossed
all relevant null mutants with a strain expressing a fully
functional UapA-GFP version from its endogenous pro-
moter (Gournas et al., 2010). The strain expressing
UapA-GFP was deleted for the homologous uapC gene,
encoding a secondary uric acid/xanthine transporter
(Diallinas et al., 1995), so that uric acid or xanthine uptake
was solely mediated by UapA. Isogenic progeny was
selected and analysed for UapA-GFP subcellular localiza-
tion and endocytosis by epifluorescence microscopy.
Results are summarized in Fig. 1C. None of the arrestin-
like protein knock-out deletions had any effect on the
expression or localization of UapA-GFP in the plasma
membrane, visible in the hyphal periphery and in the septa,
under control conditions. Under endocytic conditions,
imposed by the presence of ammonium or excess sub-
strate (uric acid), where UapA-GFP is normally internalized
and sorted in MVBs/vacuoles (see wild-type control in
Figs 1C and 2A), a single arrestin-like protein null mutant,
artAD, showed no UapA-GFP vacuolar turnover. In all other

arrestin-like protein knock-out deletion mutants UapA-
GFP was turned-over similarly to the wild-type control in
the presence of ammonium or excess substrate. Given that
we have previously concluded that UapA-GFP vacuolar
turnover occurs exclusively via endocytosis and not
through direct delivery to the vacuole from the Golgi
(Gournas et al., 2010), our results strongly suggest that
lack of a functional ArtA blocks UapA internalization from
the plasma membrane.

To show more rigorously that ArtA controls UapA endo-
cytosis and vacuolar turnover, we constructed artA+ and
artAD isogenic strains expressing UapA-GFP from the
strong controllable alcAp promoter (Gournas et al., 2010;
for details see Experimental procedures). These strains
lack the genomic copies of uapA and uapC (i.e. uapAD
uapCD) so that uric acid or xanthine uptake takes place
through the plasmid borne alcAp-UapA-GFP, expressed
solely under de-repressed conditions (fructose as sole
carbon source). In the presence of glucose (repressing
carbon source) no UapA-GFP expression or transport
activity can be detected. Using the alcAp system had two
advantages. First, we could uncouple ammonium-elicited
repression of uapA transcription from UapA endocytic
turnover (Pantazopoulou et al., 2007), and second, we
could regulate UapA de novo synthesis prior or after
imposing endocytic conditions (Gournas et al., 2010).

We examined the effect of ammonium or excess sub-
strate into already synthesized UapA-GFP or to de novo
made UapA-GFP in artA+ and artAD isogenic strains. In the
first case, alcAp-UapA-GFP expression was induced
(4–6 h) in the presence of fructose/ethanol, then repressed
by addition of glucose (1 hour), prior to ammonium or
substrate addition. In the second case, ammonium or
substrate was added to cultures in which alcAp-UapA-GFP
expression was repressed by glucose, and then (> 30 min)
UapA-GFP expression was induced by shifting the cells in
fructose/ethanol (4–6 h). In both conditions the result was
identical, showing that lack of a functional ArtA blocked
UapA-GFP sorting into early endosomes and abolished
vacuolar turnover (Fig. 2A). Early endosomes marked with
UapA-GFP were identified by their unique bidirectional
motility observed in an inverted microscope and colocali-
zation with FM4-64, whereas vacuoles marked with UapA-
GFP were identified by FM4-64 and CMAC (not shown). A
Western blot analysis confirmed that under both endocytic
conditions UapA-GFP vacuolar turnover is significantly
reduced in the artAD mutant (Fig. 2B).

Further evidence for the involvement of ArtA in UapA
turnover was obtained by direct transport assays with
radiolabelled xanthine. Figure 2C shows that, under endo-
cytic conditions (presence of ammonium), in the wild-type
control (artA+), the apparent xanthine uptake drops to 60%,
whereas in the isogenic strain lackingArtA(artAD) xanthine
uptake remains close to 100%. We also obtained inde-
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pendent in vivo evidence for an apparent increase in UapA
activity in an artAD genetic background under endocytic
conditions by a simple growth test using 2-thioxanthine.
This xanthine analogue is taken-up by UapA and is
metabolized to 2-thiouric acid, which inhibits a laccase
necessary for the conversion of yellow to green pigment in
conidiospores (Darlington and Scazzocchio, 1967). As a
result, strains expressing UapA from its native promoter
produce yellow conidiospores in media containing 2-
thioxanthine and a non-repressing nitrogen source (e.g.
nitrate, L-proline). In the presence of NH4

+ however, UapA
transcription is repressed and thus 2-thioxanthine is not
taken up by the cells, and consequently conidiospores
remain green. In media containing NH4

+ as a nitrogen
source, a strain expressing UapA from the alcAp promoter,
which is not repressible by ammonium, shows a leaky
phenotype (i.e. mixture of green and yellow spores), appar-
ently due to NH4

+-elicited UapA turnover by endocytosis.
Figure 2D shows that in an artAD genetic background the
effect of 2-thioxanthine is very strong (non-leaky appear-
ance of yellow conidiospores) even in NH4

+-containing
media, strongly suggesting that lack of ArtA reduces dra-
matically the turnover of UapA by endocytosis.

ArtA is essential for UapA ubiquitination

We investigated whether ArtA is involved in the ubiquitina-
tion of UapA, as all evidence predicted. For that, we
performed Western blot analyses under conditions inhibit-
ing the rapid de-ubiquitination of cargoes (see Experimen-
tal procedures). Figure 3Ashows that in the artA+ strain the
anti-GFP antibody detects a less motile form of UapA-GFP
only after a relatively short shift in media containing NH4

+ or
substrate (uric acid), whereas in the isogenic artAD mutant
such a form is not visible. Similar less motile UapA-GFP-
specific molecules have been previously detected and
shown to correspond to UapA-GFP/ubiquitin conjugates
(Gournas et al., 2010). To further confirm this, we purified
UapA-His molecules, through Ni2+ affinity chromatography,
expressed in isogenic strains artA+ and artAD (see Experi-
mental procedures) and the purified UapA-His fraction was
immunoblotted with anti-His- and anti-ubiquitin-specific
antibodies (Fig. 3B). Our results confirm that a functional
ArtA is necessary for the formation of UapA-ubiquitin con-
jugates, similar to the need for a fully functional HulA
ubiquitin ligase or the presence of Lys-572 in the tail of
UapA (Gournas et al., 2010).

Fig. 2. ArtA is involved in UapA endocytosis and vacuolar turnover.
A. Confocal laser microscopy of UapA-GFP subcellular localization under non-endocytic (-) or endocytic conditions (NH4

+ or UA) in isogenic
artA+ (wt) and artAD strains expressing UapA-GFP. Growth conditions are described in Experimental procedures.
B. Western blot analysis of total protein extracts from artA+ (wt) and artAD strains, expressing UapA-GFP from the alcAp, using anti-GFP
antibody. Conditions were identical to (A).
C. Uptake rate of 3H-xanthine in artA+ (wt) and artAD strains under non-endocytic (-) or endocytic conditions (NH4

+).
D. The 2-thioxanthine effect in the presence of NH4

+ as nitrogen source in artA+ (wt) and artAD strains (see text).
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The N-terminus and the PPxY motives are essential for
ArtA function

We constructed, by standard oligonucleotide mutagen-
esis, a series of mutations to test the function of specific
regions, motives or residues of ArtA. The mutations made
were the following: (i) a deletion of residues 2–123 corre-
sponding to the ArtA N-terminus, which contains several
putative Ser phosphorylation sites that might have a regu-
latory role analogous to that found for Art1 (Lin et al.,
2008). (ii) Ala substitutions of the two canonical PPxY
motives. (iii) Ala substitutions of two well conserved resi-
dues (Gly185 and Phe191) within the arrestin motif, which
have been shown to be critical for Art1 function in S. cer-
evisiae (Lin et al., 2008). ArtA mutations were inserted to
the genomic artA locus in a strain expressing UapA-GFP,
through standard reverse genetics (see Experimental pro-
cedures). Corresponding mutants were viable showing
wild-type growth and morphology, as expected, given that
the artAD mutant shows no mutant phenotype.

All mutants were analysed microscopically in respect to
alcAp-UapA-GFP endocytosis by ammonium or substrate.
Figure 4A shows that Ala substitutions of Gly185 and
Phe191 had no significant effect on UapA stimulus-
elicited endocytosis, whereas deletion of the N-terminus
or either one of the two PPxY motives (PY1 or PY2) totally
blocked UapA endocytosis, similar to an artAD mutation.
In vivo evidence supporting the functionally essential role

of the two PPxY motives or the N-terminal region of ArtA
was obtained using the 2-thioxanthine sensitivity test (not
shown).

We obtained additional evidence that the PPxY motives
are necessary and sufficient for HulA-dependent ubiquiti-
nation and subsequent turnover of UapA by constructing
and analysing mutants expressing chimeric fusions of
UapA with a conserved 38-amino-acid sequence of ArtA
including the two PPxY motives, either in their wild-type
(UapA-PYwt) or in a mutated version (UapA-PYala).
Figure 4B shows that a UapA-PYwt chimera is not func-
tional (lack of growth on uric acid) due to constitutive
targeting to the vacuole, whereas a UapA-PYala chimera
or UapA-PYwt chimera expressed in a hulADC2 back-
ground are functional (growth on uric acid), showing
normal targeting to the plasma membrane.

The essentiality of the PPxY for ArtA-mediated UapA
endocytosis was directly confirmed by Western blot analy-
sis, which shows that, unlike the result obtained in artA+

genetic background, UapA-GFP protein steady state
levels were not reduced in the presence of either NH4

+ or
uric acid, an observation also associated with low level of
UapA-GFP vacuolar turnover, similar to the level obtained
under non-endocytic conditions, as judged by the low
amount of free GFP detected (Fig. 4C). The requirement
of the PPxY motives for HulA-dependent UapA ubiquiti-
nation was subsequently shown by an independent
western analysis where no UapA-Ub conjugates could be
detected in the strain expressing the artA allele mutated in
its PPxY elements (Fig. 4D).

HulA-dependent ubiquitination of ArtA at Lys-343 is
critical for ArtA function

We investigated whether ArtA itself is ubiquitinated and
whether this has a role on UapA endocytosis. Figure 5A
shows that anti-GFP antibody detects less motile forms of
ArtA-GFP, which probably correspond to ArtA-ubiquitin
conjugates. The steady state levels of ArtA-ubiquitin
conjugates seemed moderately increased in response
to ammonium, compared to control conditions or in
response to substrates. The increase in ArtA ubiquitina-
tion levels in response to the presence of NH4

+ for increas-
ing periods of time was confirmed by quantitative
measurements of the relative ratios of ArtA-Ub/ArtA
(Fig. 5B). We subsequently showed that the less motile
forms of ArtA-GFP, as expected, cross-react with anti-
Ubiquitin antibody (Fig. 5C). Finally, we showed that ArtA
ubiquitination requires an interaction with a fully functional
HulA ligase, as judged by the non-appearance of ArtA-Ub
forms in hulADC2 genetic background or when using an
ArtA version mutated in its PPxY motives (see Fig. 5A).

Based on sequence alignments of ArtA and Art1, we
predicted that Lys-343 might be the residue acting as an

Fig. 3. ArtA is essential for UapA ubiquitination.
A. Western blot analysis of membrane-enriched protein extracts
from artA+ (wt) and artAD strains, expressing UapA-GFP from the
alcAp, using anti-GFP antibody, under conditions detecting
ubiquitination of UapA (see Experimental procedures). Notice the
ArtA-dependent appearance of less motile bands of UapA-GFP
under endocytic conditions in membrane enriched fractions, which
are not detected in the absence of a fully active HulA ubiquitin
ligase (hulADC2) or with a UapA mutant lacking Lys-572 (K572R)
(Gournas et al., 2010).
B. The less motile ArtA-dependent UapA-GFP signals can also be
detected with anti-Ub antibody in purified UapA-His after 20 min
growth in NH4

+ (+).
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acceptor of ubiquitination in ArtA. To test this, we con-
structed a strain expressing ArtA-K343-GFP. Results, also
shown in Fig. 5A, confirm that Lys-343 is indeed the
acceptor residue for ubiquitination. These results show
that HulA-dependent ArtA ubiquitination at a single Lys
residue occurs through the involvement of its PPxY ele-
ments, very probably through a direct interaction with the
WW motives of HulA.

To investigate the role of ArtA ubiquitination, we con-
structed a strain expressing UapA-GFP in an ArtA-K343R

genetic background. In this strain, mutation ArtA-K343R
severely inhibited UapA endocytosis in response to both
in NH4

+ and substrates (Fig. 6A). Western blot analysis
showed that ArtA-K343R is a practically loss-of function
mutation in respect to UapA turnover, as intact UapA-GFP
levels remain high under endocytic conditions. In addition
the ratio of intact UapA-GFP/free vacuolar GFP is signifi-
cantly higher to the ratio found in an artA+ background
(Fig. 6B). Notably, however, some UapA-GFP turnover
was observed in the ArtA-K343R background, suggesting
that ArtA ubiquitination is critical, but not absolutely essen-
tial for some UapA turnover. This observation was in
agreement with a subsequent Western blot analysis
showing that, although UapA ubiquitination is significantly
reduced in an ArtA-K343R mutant, some minor fraction of
UapA can still be ubiquitinated (Fig. 6C).

The C-tail of UapA contains a region essential for
ArtA binding

Previous studies have shown that the UapA C-tail
includes the single Lys residue (Lys-572) necessary for
HulA-dependent ubiquitination under endocytic conditions
(Gournas et al., 2010). This suggested that ArtA might
interact with the C-terminal region of UapA. To investigate
this assumption, the C-terminal region of UapA was fused
into the C-terminal region of AzgA, a purine transporter,
which is fairly insensitive to NH4

+ -triggered endocytosis
(Pantazopoulou et al., 2007), and the resulting chimeric
molecule was used for testing whether the UapA C-
terminal region confers ArtA-dependent internalization
of AzgA. Results in Fig. 7A confirm that the UapA C-
terminal region promotes enhanced ammonium-elicited
AzgA endocytosis and that this phenomenon is depend-
ent on a functional ArtA protein. This strongly suggested
that the C-terminal region of UapA contains a domain
necessary and sufficient for ArtA binding.

Fig. 4. The N-terminus and the PY motives are essential for ArtA
function.
A. Epifluorescence microscopy of UapA-GFP subcellular
localization under non-endocytic (-) or endocytic conditions (NH4

+

or UA) in isogenic artA mutants expressing UapA-GFP driven
under the alcA regulable promoter. PY1 stands for ArtA
P435A/V436A/Y437A and PY2 for ArtA P445A/G446A/Y447A.
D2–123 stands for the N-terminal truncation of amino acids 2–123.
Growth conditions are described in Experimental procedures.
B. Epifluorescence microscopy of UapA-PYwt and UapA-PYala

chimeras under non-endocytic conditions in hulA+ and in a hulADC2
background, and UapA-mediated growth on UA as sole nitrogen
source.
C. Western blot of total protein extracts of a wt (artA+) and an artA
mutant strain carrying both PY1 and PY2 substitutions (2PY),
expressing UapA-GFP under non-endocytic (-) or in the presence
of UA or NH4

+ for 2 h.
D. Western blot analysis of UapA-GFP ubiquitination in membrane
enriched fractions of a wt (ArtA+) and an ArtA-2PY strain, grown
under endocytic (30 min, NH4

+) or control conditions.
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To further identify the region responsible for ArtA
binding, we searched for UapA residues upstream from
Lys-572, which might prove necessary for UapA endocy-
tosis. For this, we constructed several Ala substitutions in
the region 545–571 and two deletions corresponding to
residues 564–571 and 547–571 respectively (see upper
part of panel B in Fig. 7). Microscopic analysis of corre-
sponding mutants showed that solely the longer deletion
(residues 547–571) or Ala substitutions of a di-acidic
motif (E545-V-E547) led to a severe block of ammonium- or
substrate-elicited UapA endocytosis (Fig. 7B). Interest-
ingly, di-acidic motives are known to be involved in mem-
brane cargo trafficking and in particular in ER-exit or
Golgi-to-vacuole transfer (Bonifacino and Traub, 2003;
Renard et al., 2010; Starr et al., 2012), but are not known
to interact with arrestin-like proteins or be related to ubiq-
uitination of cargoes. In this direction, we showed that an
intact E545-V-E547 element was necessary for UapA-GFP
ubiquitination, and thus might be part of a putative
ArtA binding site on the C-tail of UapA (Fig. 7C). On the
whole, our results showed that the region corresponding

to residues 545–563 is required for UapA endocytosis,
which in turn suggested that it might host the ArtA binding
site.

The function of ArtA is a prerequisite for the formation
of UapA-specific, SagA-dependent, pre-endocytic
cortical puncta

Considering that ArtA is involved in ubiquitination of
UapA and that this modification constitutes the molecular
signal for UapA endocytosis, we tested whether the
effect of the artAD mutation is epistatic to a mutation
blocking endocytosis at a step downstream from cargo
ubiquitination.

For this, we decided to knock-out SagA (ANID_
01023.1), the single End3 homologue of A. nidulans
(38% amino acid identity). In S. cerevisiae, End3p
belongs to the family of proteins possessing an EH
domain, members of which are implicated in endocyto-
sis, vesicle transport, and signal transduction. End3p is
part of the coat module protein complex along with

Fig. 5. HulA-dependent ubiquitination of ArtA
at Lys-343 is critical for ArtA function.
A. Western blots of total protein extracts in
isogenic wt, hulADC2 and artA mutants PY1
and K343R under non-endocytic (-) or
endocytic conditions (NH4

+ or UA).
B. Time-course (left) and ImageJ semi-
quantitative estimation (right) of NH4

+-
dependent increase in ArtA ubiquitination.
C. Western blots of immunoprecipitated
ArtA-GFP and ArtA-K343R-GFP under
denaturing conditions in the presence (60 min,
NH4

+ or substrate) or absence (-) of endocytic
stimuli, probed with anti-GFP (left panel) or
anti-ubiquitin (right panel) antibodies.
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Pan1p, Sla1p and Sla2p, otherwise known as the Pan1
complex, which acts downstream of cargo ubiquitination,
but upstream of actin organization at endocytic sites
(Tang et al., 2000). Furthermore, End3p has been shown
to be necessary for the internalization of all transporters
tested up-to date. The sagA gene has been genetically

identified as a gene that only affects sensitivity to DNA-
damaging agents (Jones et al., 1999). An apparent loss-
of-function mutation in sagA has no detectable mutant
phenotype, other than an increase in DNA alkylating
agent sensitivity. A knock-out sagA mutant constructed
for this work (see Experimental procedures) has a mod-
erately delayed rate of growth, increased resistance to
neomycin and enhanced frequency of bipolar emer-
gence of germ tubes (Fig. S1A). Finally, a functional
GFP-tagged SagA protein shows punctuate cortical sub-
cellular localization (Fig. S1B), typical of other endocytic
markers (Araujo-Bazán et al., 2008).

We compared UapA-GFP expression in artAD, sagAD
or artADsagAD null mutants by constructing the appro-
priate isogenic strains (see Experimental procedures).
Figure 8A shows that upon imposing an endocytic
signal, either by NH4

+ or substrates, there was a clear
difference in the plasma membrane localization of UapA-
GFP in the wild-type and in artAD, sagAD or artADsagAD
mutant backgrounds. In wild-type, as expected, UapA-
GFP was internalized into mobile structures, apparently
early endosomes, and sorted to the MVB/vacuole for
degradation. As a consequence the amount of UapA-
GFP remaining in the plasma membrane was reduced.
In the artAD mutant UapA-GFP remained stable in the
plasma membrane, marking the periphery of cells in a
relatively homogeneous manner, similar to the picture
obtained in all three strains under non-endocytic condi-
tions. In the sagAD mutant, under endocytic conditions,
UapA-GFP remained largely in or close to the plasma
membrane, but in contrast to artAD, it also formed very
distinctive cortical foci. Using an inverted fluorescent
microscope we noticed that these puncta, which are
very probably pre-endocytic membrane invaginations,
are relatively static and remain attached to the plasma
membrane, in mark contrast to the mobile early endo-
somes, seen in the wild-type strain. In the double mutant
artAD sagAD, UapA-GFP remained stable in the plasma
membrane, without forming cortical patches, similar to
the single artAD mutant. This result strongly suggested
that ArtA is implicated in UapA endocytosis at a step
taking place in the plasma membrane, upstream of the
action of SagA and the formation of pre-endocytic
invaginations containing UapA-GFP.

To further confirm the above idea, we also tested
whether blocking UapA ubiquitination by mutation K572R
would have an effect on the formation of SagA-
dependent, UapA-GFP-specific pre-endocytic invagina-
tions. Figure 8B shows that blocking UapA ubiquitination
also blocked the formation of pre-endocytic invaginations
containing UapA-GFP in the sagAD background. Our
results confirm that UapA ubiquitination takes place in the
plasma membrane rather than in an early endosomal
compartment, such as early endosomes.

Fig. 6. Role of ArtA ubiquitination in UapA endocysis and
turnover.
A. Epifluorescence microscopy of UapA-GFP subcellular
localization under non-endocytic (-) or endocytic conditions (NH4

+

or UA) in a wt or an ArtA-K343R mutant expressing UapA-GFP.
B. Western blot of total protein extracts of a wt (artA+) and
ArtA-K343R mutant strain, expressing UapA-GFP under
non-endocytic (-) or in the presence of UA or NH4

+ for 2 h.
C. Western blot analysis of UapA-GFP ubiquitination in membrane
enriched fractions of a wt (ArtA+) and an ArtA-K343R strain, grown
under endocytic (30 min, NH4

+) or control conditions.
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Specificity of ArtA in respect to transporter endocytosis

We also investigated the substrate specificity of ArtA by
examining what is the effect of deleting the artA gene
on other transporters. We constructed artAD mutants
expressing GFP-tagged transporters for L-proline (PrnB),
L-glutamate (AgtA) or purines (AzgA), proteins that
undergo ammonium-elicited (PrnB and AgtA; Tavoularis
et al., 2001 and Apostolaki et al., 2009) or substrate-

triggered (AzgA; G. Diallinas, unpubl. obs.) endocytosis.
Notably, all these transporters belong to structurally and
evolutionary distinct transporter families (Diallinas, 2008).
Figure 9 shows that ArtA is necessary for PrnB and AzgA
endocytosis, but does not affect AgtA internalization (see
also Fig. S2).

Discussion

Arrestin-like proteins have proved to be major adaptors of
Rsp5/Nedd4-like ubiquitin ligases controlling the turnover
of transporters through the control of the rate of ubiquiti-
nation, which is the primary molecular signal for cargo
endocytosis (Lin et al., 2008; Nikko et al., 2009; Nikko
and Pelham, 2009; Léon and Haguenauer-Tsapis, 2009;
Hatakeyama et al., 2010; MacGurn et al., 2011; Becuwe
et al., 2012). Here we show that A. nidulans is not an
exception. ArtA is involved in the endocytosis of UapA by
mediating its ubiquitination via the HulA ubiquitin ligase, in
response to the presence of ammonium or substrates. We
further showed that a small fraction of ArtA is constitutively
ubiquitinated and that ArtA ubiquitination is critical for
efficient UapA ubiquitination and internalization from the
plasma membrane. Furthermore, we have detected a
small but repeatable increase in the fraction of ubiquiti-
nated ArtA in response to NH4

+, but not in response to
substrates.

The fact that ArtA controls UapA ubiquitination and
endocytosis in response to both ammonium and sub-
strates leads to an apparent paradox. Ammonium-elicited
endocytosis is a broad range physiological response con-
cerning probably all transporters involved in the uptake of
nitrogenous compounds that can be used as secondary
nitrogen sources, such as purines, amino acids or nitrate
(Dupré et al., 2004; Pantazopoulou and Diallinas, 2007).
The physiological rationale for this is that when ammo-
nium is present in the media as a primary nitrogen source,
there is no need for taking up other nitrogenous com-
pounds through their specific transporters, which are
consequently internalized and turned-over. In contrast to
ammonium-elicited endocytosis, substrate-elicited endo-

Fig. 7. The C-tail of UapA contains a region essential for
ubiquitination and endocytosis.
A. ArtA-dependent, NH4

+-elicited, endocytosis of an AzgA-GFP
version including the C-terminus of UapA, as shown by
epifluorescence microscopy.
B. Upper panel: schematic representation of UapA C-tail mutations
analysed for UapA endocytosis. Lys-572 acting as ubiquitin
acceptor is indicated. Lower panels: Epifluorescence microscopy of
UapA C-terminal truncations (D564–571, D547–571) and mutation
UapA-E545A/V546A/E547A (UapA-EVE/A) under non-endocytic (-)
or endocytic conditions (NH4

+ or UA).
C. Western blot analysis of UapA-GFP ubiquitination in membrane
enriched fractions of a wt and a UapA-EVE/A strain, grown under
endocytic (30 min, NH4

+) or control conditions.
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cytosis is a highly specific signal, which seems to concern
a single transporter in each case (Amillis et al., 2007;
Vlanti and Diallinas, 2008; Gournas et al., 2010; G. Dial-
linas, unpubl. results). The presence of UapA substrates
in the media does not affect the plasma localization of
several transporters (e.g. PrnB, AgtA and AzgA) specific
for other solutes, while UapA has never been observed to
undergo endocytosis in response to other nitrogen-
containing solutes, such as urea, nitrate, proline, aspar-
tate, uracil, adenine, hypoxanthine or allantoin (G.
Diallinas and S. Amillis, unpubl. obs.). The most interest-
ing difference observed when comparing ammonium- to
substrate-elicited UapA endocytosis is that the first oper-
ates on both active and inactive versions of the trans-
porter, whereas the second is absolutely dependent on
UapA activity (Gournas et al., 2010). If arrestins respond
to broad-range signals, like shifts in N or C sources or
stress, through their dephosphorylation, ubiquitination,
activation and recruitment to plasma membrane cargoes,
as reported in a number of recent publications (MacGurn
et al., 2011; Becuwe et al., 2012; Merhi and André, 2012),
then how could this model account for the role of arrestin-
like proteins in specific substrate-elicited endocytosis of a
given transporter?

We have previously presented strong evidence that
substrate-elicited endocytosis of UapA occurs through a
mechanism, which senses subtle conformational changes
associated with the transport cycle in the absence of any
physiological or stress signal (Gournas et al., 2010).
Based on this, and results obtained with arrestin-like pro-
teins in S. cerevisiae and in the present work, we propose
a speculative model on how the same arrestin-like
protein, ArtA, can operate in response to conditions that

generate a broad-range signal concerning several trans-
porters, but can also act specifically on UapA, when this
protein is actively transporting its substrates.

The model proposed is the following. A small fraction of
ArtA is constitutively ubiquitinated under conditions of rela-
tively poor nitrogen supply. The level of ubiquitinated ArtA
might be directly related to the level of cellular primary
pools of nitrogen (e.g. NH4

+) originating from the catabo-
lism of secondary nitrogen sources (e.g. purines, amino
acids, etc.). The ubiquitinated fraction of ArtA has
increased capacity, relative to non-ubiquitinated ArtA, for
recruiting HulA and is responsible for basal level endocy-
tosis of several transporters specific for secondary nitro-
gen sources. Upon addition of a primary nitrogen source
(e.g. NH4

+) an increase in the levels of ubiquitinated ArtA
takes place, probably via a dephosphorylation step as
recent reports on other arrestin-like proteins have pro-
posed (MacGurn et al., 2011; Becuwe et al., 2012; Merhi
and André, 2012), leading to an increase in the rate of
transporter endocytosis. Interestingly however, here we
showed that although artA mutations in either the PPxY
motives or K343 lead to total block of ArtA ubiquitination
(see Fig. 5A), mutations in the former have a more severe
effect on UapA-GFP turnover than K343R (compare
Fig. 4C with Fig. 6C). This last observation suggests that
non-ubiquitinated ArtA molecules, which however retain
intact PPxY elements and thus are in principle able to
interact with HulA, can still lead to moderate UapA
ubiquitination and turnover. In other words, it seems
that maximum ArtA activity, which is probably needed in
response to a broad range physiological signal such as
addition of NH4

+, necessitates ArtA ubiquitination, but non-
ubiquitinated ArtA might still conserve a minor activity in

Fig. 8. SagA and ArtA block UapA internalization at distinct steps of endocytosis.
A. Confocal laser microscopy of UapA-GFP subcellular localization under endocytic conditions (NH4

+ or UA) in isogenic wt, artAD, sagAD and
artAD/sagAD strains expressing UapA-GFP.
B. Confocal laser microscopy of UapA-K572R-GFP subcellular localization under endocytic conditions (NH4

+ or UA) in isogenic wt and sagAD
strains expressing UapA-GFP. Arrows indicate vacuoles. Arrowheads indicate immobile cortical puncta associated with the PM, only visible in
the sagAD genetic background.
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recruiting HulA on transporters. In the absence of a signal
for activation (e.g. absence of NH4

+),ArtAremains probably
phosphorylated and little ubiquitinated, showing very low
affinity for cargoes. In the presence of a substrate however,
when UapA becomes active, conformational changes
associated with transport catalysis might increase the affin-
ity of the transporter for non-ubiquitinated or/and for the
small fraction of constitutively ubiquitinated ArtA, and thus
elicit its enhanced ubiquitination and internalization.

This scenario also predicts that activation of ArtA is
related to its ability to find its cargoes and not to a catalytic
activation per se. In line with this, Lin et al. (2008) showed
that Rsp5-mediated ubiquitination is required for the
‘correct’ plasma membrane subcellular localization of

Art1p in S. cerevisiae, while Hervás-Aguilar et al. (2010)
showed that PalF ubiquitination is a key molecular trigger
required for transmitting the alkaline pH signal from the
plasma membrane to downstream elements of a pH-
responding pathway in A. nidulans. Interestingly, overex-
pression of ArtA using the alcA promoter leads to
relatively increased constitutive UapA endocytosis in the
absence of ammonium or substrate (Fig. S3), an obser-
vation that is also in line with the idea that arrestin-like
proteins can act on their cargoes in the absence of any
physiological or stress signal.

We could not obtain any rigorous evidence of ArtA
recruitment to the plasma membrane upon imposing endo-
cytic conditions for UapA (not shown). We do not have an
explanation on the reasons of the very low and diffuse
fluorescent signal of ArtA-GFP expressed under native or
strong promoters, but it seems that detecting the subcel-
lular localization of arrestin-like proteins is not an easy
task. To our knowledge, there is only a single case, that of
Art1p in S. cerevisiae, where the subcellular localization of
arrestin-like protein has been reported (Lin et al., 2008;
MacGurn et al., 2011). In that case, Art1p was shown to be
present in cytosolic foci colocalizing with a Golgi marker
under control conditions, but associate transiently with the
plasma membrane under endocytic conditions. We failed
to obtain similar evidence for ArtA. However, ArtA ubiquiti-
nation does not take place in a HulA allele missing the C2
domain and thus unable to be recruited to the plasma
membrane (hulADC2). This suggests that ArtA ubiquitina-
tion might occur in the plasma membrane.

At least two other A. nidulans transporters, specific for
the uptake of nitrogenous compounds, PrnB (L-proline)
and AzgA (purines) seem to be substrates of ArtA, either in
response to ammonium (PrnB) or substrate (AzgA). The
observation that overexpression of ArtA leads to reduced
growth rates (not shown) suggests that several other
transporters might also be substrates of this arrestin-like
adaptor. Is there a recognizable common motif in these
transporters that might act as a possible ArtA binding site?
We showed that the ArtA putative binding site in UapA lies
in its C-terminal region (residues 545–561), and interest-
ingly, a di-acidic motif (E545-V-E547) in this region is essential
for ArtA-dependent UapA ubiquitination and endocytosis.
Similar di-acidic motives are present in the C- or N-terminal
regions of other transporters under ArtA control, such as
PrnB or AzgA.

Experimental procedures

Strains, classical and reverse genetics, media and
growth conditions

Aspergillus nidulans strains used are listed in Table S1. Newly
made null mutant strains and in locus gene tagging were
constructed by transformation in an nkuA DNA helicase defi-

Fig. 9. Specificity of ArtA in respect to the endocytosis of different
transporter cargoes. Epifluorescence microscopy of PrnB-GFP,
AgtA-GFP, AzgA-GFP in artAD and artA+ (wt) backgrounds under
non-endocytic (-) or endocytic conditions (+). Endocytic conditions
for PrnB and AgtA indicate addition of NH4

+ and for AzgA addition
substrate (Hypoxanthine) for 2 h. AgtA-GFP consistently gives a
lower fluorescent signal compared to the other transporters tested.
Notice that, unlike UapA-GFP or AzgA-GFP, AgtA-GFP and
PrnB-GFP show a degree of constitutive turnover (appearance of
GFP-labelled vacuoles) under non-endocytic conditions. For AgtA,
this was recently shown to occur by direct sorting from the Golgi to
the vacuole (S. Amillis, unpubl. obs.).
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cient strain (TNO2A7; Nayak et al., 2006), allowing only
homologous recombination events, based on the A. fumigatus
markers orotidine-5′-phosphate-decarboxylase (AFpyrG,
Afu2g0836) or GTP-cyclohydrolase II (AFriboB, Afu1g13300),
resulting in complementation of auxotrophies for uracil/uridine
(pyrG89) or riboflavin (riboB2) respectively. Mutants of uapA-
GFP were constructed by transformation of a strain lacking
all major purine transporters uapA, uapC and azgA (DACZ)
based on the A. nidulans ornithine-carbamoyltransferase
(ANID_04409.3), complementing the arginine auxotrophic
mutation argB2. Transformation of A. nidulans was performed
according to Koukaki et al. (2003). Derivatives of mutant
strains were made with standard genetic crossing using auxo-
trophic markers for heterokaryon establishment. Standard
complete (CM) and minimal media (MM) for A. nidulans were
used (http://www.fgsc.net). Auxotrophies were supplemented
at the concentrations given in (http://www.gla.ac.uk/acad/ibls/
molgen/aspergillus/supplement.html). Media and chemical
reagents were obtained from Sigma-Aldrich (Life Science
Chemilab SA) or AppliChem (Bioline Scientific SA). Nitrogen
sources were used at the final concentrations: urea 5 mM,
NaNO3 10 mM, ammonium L-(+)-tartrate 10 mM. Allantoin,
purines and nucleosides were used at 0.5 mM. Amino acids
were used at 5 mM. Nucleobase and nucleoside analogues
were used at the final concentrations: 8-Aza-guanine
0.2-0.4 mM, 5-Fluoro-cytosine 20–50 mM, 5-Fluoro-uracil
40–100 mM, 5-Fluoro-uridine 5–10 mM, in the presence of
NaNO3 as sole nitrogen source. Allopurinol was used at
1–3 mM with hypoxanthine as sole nitrogen source. The amino
acid toxic analogues D-serine and p-Fluoro-DL-phenylalanine
were used at 2–5 mM and 25–50 mM respectively, in the
presence of NaNO3 as sole nitrogen source. 2-Thio-urea was
used at 0.25–0.5 mM in the presence of NaNO3 as sole
nitrogen source. Neomycin sulphate was used at 2 mg ml-1.
Uracil and uridine were used at 5 mM and 10 mM respectively.
Derepression of UapA expression from the alcAp promoter
was achieved after 14 h of growth in MM supplemented with
urea or NaNO3 and 0.1% (w/v) fructose as carbon source.
Repression of UapA expressed was achieved in MM supple-
mented with urea or NaNO3 and 1% (w/v) glucose. Induction of
UapA expression from the alcAp promoter was achieved by
addition of 0.4% (v/v) ethanol in derepressing media.

DNA manipulations

Plasmid preparation from Escherichia coli strains was per-
formed using the Qiagen Plasmid Mini Kit. DNA bands were
purified from agarose gels using the MinElute Gel Extraction
Kit (Qiagen GmbH, Hilden, Germany), or the Nucleospin
Extract II kit (Macherey-Nagel, Lab Supplies Scientific SA)
according to the manufacturer’s instructions. High fidelity
PCR reactions were carried out using the Phusion® Flash
High-Fidelity PCR Master Mix (New England Biolabs GmbH,
Frankfurt, Germany), or the KAPA HiFi HotStart ReadyMix
(Kapa Biosystems, Lab Supplies Scientific SA). Conventional
PCR reactions were carried out using the REDTaq® Read-
yMix™ (Sigma-Aldrich Handels GmbH, Vienna, Austria), or
the KAPATaq DNA polymerase (Kapa Biosystems, Lab Sup-
plies Scientific SA). Restriction enzymes and T4-ligases used
were purchased from Takara (Takara Bio Inc, Lab Supplies
Scientific SA) and Fermentas (Fermentas GmbH, St.

Leon-Rot, Germany). [32P]-dCTP labelled DNA molecules for
Southern blots were prepared by a random hexanucleotide-
primer Kit (New England Biolabs, Bioline Scientific SA) and
purified on MicroSpin™ S-200 HR columns, following the
supplier’s instructions (Roche Diagnostics). Labelled [32P]-
dCTP (3000 Ci mmol-1) was purchased from the Institute of
Isotops Co., Ltd (Miklós, Budapest, Hungary). Primers were
purchased by Sigma-Aldrich (Sigma-Aldrich Handels GmbH,
Vienna, Austria), or VBC-Genomics (Vienna, Austria). DNA
sequences were determined by VBC-Genomics (Vienna,
Austria). Mutations were constructed by site-directed muta-
genesis according to the instructions accompanying the
Quik-Change® Site-Directed Mutagenesis Kit (Agilent Tech-
nologies, Stratagene). Targeted gene deletion and in locus
gene tagging were carried out by transformation with linear
cassettes containing upstream and downstream flanking
regions of the corresponding ORFs and the A. fumigatus
markers AFpyrG or AFriboB (see also Experimental proce-
dures in Supporting Information, DNA manipulations and
Table S5).

Microscopy

Preparations of samples for fluorescence microscopy and
growth conditions are described in Gournas et al. (2010).
Staining with FM4-64 and CMAC (7-amino-4-chloromethyl
coumarin) (Life Technologies, Molecular Probes, Invitrogen,
Antisel SA) was according to Gournas et al. (2010). Cal-
cofluor white (Sigma-Aldrich, Life Science Chemilab SA)
staining was performed according to Bitsikas et al. (2010).
For endocytosis, uric acid (UA) or ammonium L-(+)-tartrate
(NH4

+) were added at concentrations of 0.5 mM or 10–20 mM
respectively for 2 h before observation. Samples were
observed on an Axioplan Zeiss phase-contrast epifluorescent
microscope and the resulting images were acquired with a
Zeiss-MRC5 digital camera using the AxioVs40 V4.40.0 soft-
ware. Image processing, contrast adjustment and colour
combining were made using the Adobe Photoshop CS4
Extended version 11.0.2 software or the ImageJ software.
Images were converted to 8-bit grayscale or RGB and anno-
tated using Photoshop CS4 before being saved to TIFF. A
confocal laser DMR upright microscope and a wide-field time-
lapse Olympus IX-81 Cell-R imaging system for Live Cell
Imaging System were also used (http://www.pasteur.gr). The
Confocal system operates with the Image acquisition and
analysis Leica Confocal Software LCS.

Transport assays

Radiolabelled [3H]-xanthine (33.4 Ci mmol-1) was from
Moravek Biochemicals (Brea, CA, USA). [3H]-xanthine uptake
was assayed as described previously and was carried out in
triplicate (Koukaki et al., 2005; Papageorgiou et al., 2008).

Protein manipulations

Total protein extracts were prepared from mycelium in liquid
cultures incubated for 12–14 h at 25°C before the addition of
substrates or NH4

+, or induction for the alcA driven UapA
expression, as described in Apostolaki et al. (2012). UapA-
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His purification was carried out as in Lemuh et al. (2009)
using Protino Ni-NTA Columns (Macherey-Nagel GmbH, Lab
Supplies Scientific SA). For immunoprecipitation under dena-
turing conditions, total protein extracts were first resus-
pended in extraction buffer, containing 50 mM Tris-HCl,
pH 7.5, 2 mM EDTA, 100 mM NaCl, 2% SDS, protease inhibi-
tor cocktail (PIC) (Sigma-Aldrich, Life Science Chemilab SA)
and 20 mM N-ethylmaleimide (NEM). Immunoprecipitation
buffer (IP: 50 mM Tris-HCl, pH 7.5, 2 mM EDTA, 150 mM
NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, PIC and
20 mM NEM) was added, and lysates were incubated with
4 mg anti-GFP with gentle rotation at 4°C for 2 h, followed by
addition of A-Protein Sepharose CL-4B beads (Sigma-
Aldrich, Life Science Chemilab SA) and incubation with
gentle rotation at 4°C for 12 h. The beads were washed twice
with IP buffer, once with a buffer containing 50 mM Tris-HCl,
pH 7.5, 2 mM EDTA, 250 mM NaCl, 0.5% Triton X-100,
0.05% sodium deoxycholate, PIC and 20 mM NEM, once
with a buffer containing 50 mM Tris-HCl, pH 7.5, 1 mM EDTA,
500 mM NaCl, 0.1% Triton X-100, PIC and 20 mM NEM and
once with a buffer containing 50 mM Tris-HCl, pH 7.5, 1 mM
EDTA, 100 mM NaCl, and PIC and were finally boiled for
5 min at 95°C in protein sample buffer. Detection of ubiquiti-
nated UapA-GFP was achieved in membrane-enriched
protein fractions according to Galan et al. 1996. Protein con-
centrations were determined by the method of Bradford. In
each case 30–50 mg protein were fractionated on 8–10%
SDS-PAGE gel and electroblotted (Mini PROTEANTM Tetra
Cell, BIO-RAD) onto a PVDF membrane (Macherey-Nagel
GmbH, Lab Supplies Scientific SA). Immunodetection was
performed using a primary mouse anti-GFP monoclonal anti-
body (Roche Diagnostics), a mouse anti-actin monoclonal
(C4) antibody (MP Biomedicals Europe, Lab Supplies Scien-
tific SA), an Anti-His (PentaHis HRP Conjugate; Qiagen,
SafeBlood BioAnalytica SA), an Anti-Ubiquitin (Ub-P4D1
HRP Conjugate; Santa Cruz Biotechnology, SafeBlood
BioAnalytica SA) and a secondary goat anti-mouse IgG
HRP-linked antibody (Cell Signaling Technology Inc., Bioline
Scientific SA) and detected by the chemiluminescent method
using the LumiSensor Chemiluminescent HRP Substrate kit
(GenScript USA Inc, Lab Supplies Scientific SA).
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Ένζυμα καταβολισμού πουρινών στην τάξη Eurotiales: Ενδοκυτταρικός 

εντοπισμός, φυλογενετική συντήρηση και απόκλιση 

Γαλανοπούλου Κ., Scazzocchio C., Γαληνού Μ. Ε., Liu W., Μπορμπόλης Φ.,Καραχάλιου 

Μ., Oestreicher N., Χατζηνικολάου Δ.  Γ., Διαλλινάς Γ.* & Αμίλλης Σ.* 

Περίληψη 

Το μονοπάτι καταβολισμού των πουρινών έχει εκτενώς χαρακτηριστεί στον Aspergillus nidulans. Σε αυτή 

την εργασία περιγράφουμε τον υποκυτταρικό εντοπισμό επτά βασικών ενδοκυτταρικών ενζύμων, της 

αφυδρογονάσης της ξανθίνης (HxA), της οξειδάσης του ουρικού (UaZ), της υδρολάσης του 5-υδροξυ-ισο-

ουρικού (UaX), της καρβοξυλάσης της 2-οξο-4-υδροξυ-4-καρβοξυ ουρεϊδο ιμιδαζολίνης (UaW), της 

αλλαντοϊνάσης (AlX), της αλλαντοϊκάσης (AaX), της λυάσης του ουρεϊδογλυκολικού οξέος (UglA) και την 

ειδική για τους μύκητες, σιδηρο Fe(II)-εξαρτώμενη διοξυγενάση του α-κετογλουταρικού οξέος (XanA). Τα 

ένζυμα HxA, AlX, AaX, UaW και XanA έχουν κυτταροπλασματικό εντοπισμό ενώ τα UaZ, UaX and UglA 

εντοπίζονται στα υπεροξεισώματα. Ο εντοπισμός στα υπεροξεισώματα επιβεβαιώθηκε από τη χρήση 

κατάλληλων pex μεταλλαγμένων στελεχών. Το μονοπάτι είναι ευρέως αλλά όχι εντελώς συντηρημένο στην 

κλάση Eurotiomycetes, ενώ σε κάποια είδη η AaX αντικαθίσταται από ένα εναλλακτικό ένζυμο, πιθανώς 

βακτηριακής προέλευσης. Επιπλέον, η UaZ και οι μεταφορείς ουρικού-ξανθίνης UapA και UapC 

εντοπίζονται σε ειδικά κύτταρα των κονιδιοφορέων. Στη παρούσα μελέτη δείχνουμε ότι η συσσώρευση 

μεταβολικά παραγόμενου ουρικού οξέος που παρατηρείται σε στελέχη με μεταλλαγές απενεργοποίησης στο 

γονίδιο uaZ, σχετίζεται με την αυξημένη συχνότητα εμφάνισης μορφολογικώς διακριτών τμημάτων σε 

αποικίες και τη διαφοροποιημένη απόκριση στο οξειδωτικό στρες, στην παραγωγή κονιδιοσπορίων και στην 

ανθεκτικότητα στη υπεριώδη ακτινοβολία, τα οποία πιθανώς αιτιολογούν τον εντοπισμό στους 

κονιδιοφορείς. Τέλος, ο ειδικός για το μονοπάτι μεταγραφικός παράγοντας UaY εντοπίζεται τόσο στο 

κυτταρόπλασμα όσο και στον πυρήνα σε συνθήκες μη-επαγωγής, ενώ υπό συνθήκες επαγωγής με ουρικό 

οξύ συσσωρεύεται άμεσα και κατ’ αποκλειστικότητα στον πυρήνα. 
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