

ΕΘΝΙΚΟΝ & ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

Sofia Vasilakaki,^a Efrosini Barbayianni,^a Thomas M. Mavromoustakos,^a Michael H. Gelb,^b George Kokotos^{*,a}

^aLaboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece; ^bDepartment of Chemistry and Biochemistry, University of Washington, USA

INTRODUCTION

Phospholipases A₂ (PLA₂) are a superfamily of enzymes involved in various biochemical processes -such as arachidonic acid (AA) metabolism- and therefore are pharmaceutical targets. They catalyze the hydrolysis of the sn-2 ester bond of glycerophospholipids, producing free fatty acids including arachidonic acid and lysophospholipids.¹

The secreted PLA₂ (sPLA₂) family (groups IB, IIA, IIC, IID, IIE, IIF, III, V, X and XII) are mainly small secreted proteins of 14-18 kDa. GIIA was among the first groups of sPLA₂ identified and was found in the synovial fluid of patients with rheumatoid arthritis. It has also been detected in human atherosclerotic lesions and is believed to enhance lipid accumulation in arterial intima.²

The domain of GIIA sPLA₂ contains three long α-helices, two-stranded β-sheets referred as β -wings, and a conserved Ca²⁺ binding loop. Most of the residues of the GIIA sPLA₂ surface are basic, which may cause the selectivity of the enzyme of binding to anionic vesicles. The active site consists of the catalytic dyad His47/Asp91, the Ca²⁺ion and a long lipophilic tunnel which tends to enfold the aliphatic parts of substrates when they occur.

The discovery of potent and selective PLA₂ inhibitors is of great pharmaceutical importance.³ Kokotos and cowokers have developed a novel class of inhibitors (1a, 1b) for cytosolic phospholipase A2 (GIVA cPLA2).4 Most recently, it was found that the long chain 2oxoamide GK126 based on the amino acid (S)-leucine displayed inhibition of human and mouse GIIA sPLA₂ (IC₅₀ 300 nM and 180 nM, respectively).⁵ Here, we present a series of docking experiments of long chain 2-oxoamide derivatives based on the proteinogenic a-amino acids and the synthesis of the most promising molecules according to the docking results.

SIMULATED DOCKING

Simulated docking was used to calculate possible binding modes of new structures at the active site of GIIA sPLA₂. Based on previous work,⁵ Sybyl 8.0 by TRIPOS was used for the design, the energy minimisation and the simulated annealing of the structures. The ligands were sketched taking into account the correct ionization and tautomeric states of the molecules, and the Powell algorithm was used for the energy minimisation. The programme Gold 5.1 by Gold was used for the docking.

For the docking process the crystal structure of GIIA sPLA₂ was retrieved from the Brookhaven Protein Databank (PDB code: 1KQU). From this structure, water molecules within a distance of 5Å from the active site were set to 'Toggle' and 'Spin' state and all water molecules in a greater distance were deleted. Setting up the active site, all the protein residues within 6.0Å distance of the bound ligand were marked with their charge in physiological pH in order to form sensible interactions with the substrate. The calcium ion was treated in order to have the correct geometry and formal charge. Table 1 summarizes the docking results of the 2oxoamide derivatives of all the proteinogenic α -amino acids plus some non-natural amino acids as well.

According to the docking results, derivatives based on polar and amide groups of (S)-amino acids showed poor calculations and no desirable conformations for a successful binding and therefore were not part of our synthetic goal. Derivative based on (S)-pheylalanine had given poor *in vitro* results in an earlier study⁶ and so aromatic group was out of our synthetic interest, as well. Derivatives based on non polar group of (S)-amino acids had some promising computational results. In addition, given the previous good in vitro results of (S)-leucine derivative GK126,⁵ we decided to synthesise derivatives based on amino acids with similar to (S)-leucine side chain and polarity (Table 2).

Table 1. Docking results of 2-oxoamides derivatives based on (S)-amino acids.

Table 2. 2-Oxoamides synthesized in this study.

R	Gsc. Fit.	Binding Energy	R	Gsc. Fit.	Binding Energy
Nucleophilic			Aromatic		
Serine	33.13	- 36.75	Phenylalanine	36.35	- 37.36
Threonine	34.81	- 38.29	Tryptophan	37.45	- 39.86
Cysteine	35.15	- 38.94	Tyrosine	34.65	- 35.07
Small			Polar		
Alanine	33.14	- 38.16	Aspartic acid	32.96	- 35.38
Glycine	35.41	- 36.67	Glutamic acid	29.82	- 32.33
NonPolar		1000	Histidine	32.69	- 35.06
Valine	34.36	- 38.40	Lysine	32.75	- 34.42
Leucine	35.18	- 36.42	Arginine	34.12	- 37.15
Isoleucine	36.51	- 38.10	Amide		
Methionine	39.96	- 44.88	Asparagine	29.77	- 30.75
Proline	38.97	- 41.03	Glutamine	30.80	- 32.07

Compound	Structure	
GK241	O H M H O H O H O H	
GK259		
GK260		
GK261	() ₁₃ H OH	
GK262	C C C C C C C C C C C C C C C C C C C	

Not natural	Gsc. Fit.	Binding Energy
tert-Leucine	34.56	- 37.99
2-aminoisobutiric acid	34.60	- 37.92

Scheme 1. Synthesis of 2-oxoamide derivatives based on (S)-Valine and (S)-Alanine. *Reagents and conditions:* (a) CH₃(CH₂)₁₃CHOHCOOH, Et₃N, WSCI, HOBt, CH₂Cl₂; (b) NaOCI, AcNH-TEMPO, NaBr, NaHCO₃, EtOAc, H₂O, toluene, or Dess-Martin, CH₂Cl₂; (c) CF₃COOH, CH₂Cl₂.

Scheme 2. Synthesis of 2-oxoamide derivatives based on (S)-Proline, tert-Leucine, 2-aminoisobutyric acid. Reagents and conditions: (a) CH₃(CH₂)₁₃CHOHCOOH, Et₃N, WSCI, HOBt, CH₂Cl₂; (b) 1N aq. NaOH, MeOH; (c) CH₂Cl₂, Dess-Martin

Table 3. The key interactions between GK241 and the

active site of SPLA2 GIA.					
H bond/aliphatic- aliphatic/ aliphatic-aromatic interactions between					
inhibitor		sPLA ₂ residues			
carboxylic acid group	СОО НОН … О=С СОО НОСО	Asp48 Lys52			
1-carbonyl group	NHCO … HN	Asp48			
2-carbonyl group	NHCOCO HN	Gly29			

SYNTHESIS

The synthesis of the new 2-oxoamides is depicted in Schemes 1 and 2. The methyl or tertbutyl ester of the (S)-amino acid was coupled with 2-hydroxyhexadecanoic acid using 1-(3dimethylaminopropyl)-3-ethyl carbodiimide (WSCI) as a condensing agent in the presence of 1-hydroxybenzotriazole (HOBt). In case of the methyl ester, saponification took place after coupling, followed by oxidation using Dess-Martin periodinane. In the case of tert-butyl ester, oxidation took place (either using Dess-Martin periodinane or NaOCl/AcNH-TEMPO method) after coupling, followed by treatment with trifluoroacetic acid to afford the corresponding acid.

RESULTS AND DISCUSSION

The 2-oxoamide derivatives GK241, GK259, GK260, GK261, GK262 were tested in vitro for their inhibition against GIIA sPLA₂. The so far *in vitro* results reveal (S)-valine derivative **GK241** to have a better IC_{50} record than that of (S)-leucine **GK126**. Based on this result, we could claim a possible successful binding mode for GK241 shown in Figure 1. The key interactions are described in Table 3.

Figure 1. The binding mode of GK241 in the GIIA sPLA₂ active site calculated using GOLD 5.1.

- Dennis, E. A.; Cao, J.; Hsu, Y. H.; Magrioti, V.; Kokotos, G. Chem. Rev. 2011, 111, 6130-6185
- Rosenson, R. S.; Gelb, M. H. Curr. Cardiol. Rep., 2009, 11, 445
- Magrioti, V.; Kokotos, G. *Exp. Opin. Ther. Patents*, **2010**, *20*, 1-18. Kokotos, G.; Six, D. A.; Loukas, V.; Smith, T.; Constantinou-Kokotou, V.; Hadjipavlou-Litina, D.; Kotsovolou, S.; Chiou, A.; Beltzner C. C.; Dennis, E.A. J. Med. Chem., 2004, 47, 3615 and Six, D. A.; Barbayianni, E.; Loukas, V.; Consta Kokotou, V.; Hadjipavlou-Litina, D.; Stephens, D.; Wong, A. C.; Magrioti, V.; Moutevelis-Minakakis, P.; Baker, S. F.; Dennis, E. A.; Kokotos, G. J. Med. Chem., 2007, 50 (17), 4222–4235.
- Mouchlis, V. D.; Magrioti, V.; Barbayianni, E.; Cermak, N.; Oslund, R. C.; Mavromoustakos, T. M.; Gelb, M. H.; Kokotos, G. Bioorg. Med. Chem., 2011, 19, 735.

Section 2015 Section 2015