OZONATION OF RANITIDINE UNDER VARIOUS PHYSICOCHEMICAL CONDITIONS. DEGRADATION KINETICS AND INTERMEDIATE BY-PRODUCTS

Christophoros Christophoridis, Nikolaos Thomaidis

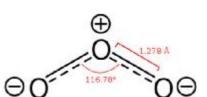
Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 15771, Greece, ntho@chem.uoa.gr

5th EuCheMS Chemistry Congress

Presentation overview

- Pharmaceuticals Ranitidine
- Ozonation
- Experimental part
- Effect of various parameters on the degradation of Ranitidine
- By-product determination workflow
- Main intermediate byproducts
- Conclusions

Pharmaceuticals - Ranitidine


- Numerous pharmaceuticals, personal care products and endocrine disrupting compounds have entered the environment.
- Levels of ng to several µg/L
- according to water solubility, physicochemical characteristics, local consumption rates and biodegradability

Ranitidine (Zantac) H₃C P CH₃ CH₃

- common pharmaceutical (treatment of ulcer, gastrointestinal hypersecretory conditions and gastroesophageal refluxes)
- histamine H2-receptor antagonist with a furan ring structure
- mainly excreted in urine as an untransformed compound and its main metabolites formed in the liver (30-70%) are ranitidine N-oxide, N-desmethyl ranitidine and ranitidine Soxide
- The presence of ranitidine in surface waters and wastewaters in the US has been determined and identified in several studies in the past
- contains multiple reactive sites that may be labile to ozone oxidation (e.g. conjugated diene, sulphide and electron-rich alkene group)

Ozonation

- effective, robust and widely accepted oxidation technique
- degradation occurs mainly through direct reaction with aqueous ozone and ozone decay products (mainly hydroxyl radicals).
- total mineralization is not entirely achieved for many pollutants, often leading to the production of more by-products with higher or increased toxicity levels.
- O_3 selectively attacks organic compounds with high electron density functional groups
 - double bonds C=C
 - activated aromatic rings with Electron donating groups like
 - -NH₂
 - -NR₂ -OH
 - deprotonated amines

Objectives of this study

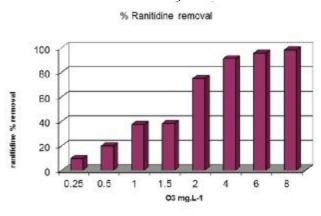
- to assess the effects of various operational parameters (pH, ozone concentration, presence of hydroxyl radical scavengers, matrix effects and natural organic matter) on the kinetics of the ozonation process
- to identify the intermediate oxidation byproducts of ranitidine

Experimental

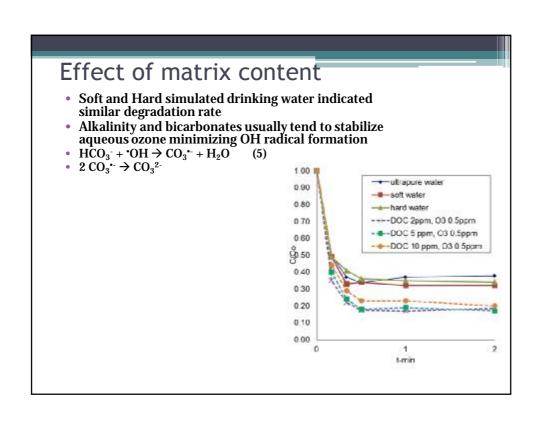
Ozonation experiments

- saturated ozone solution at 4^oC using ozone AZCOZON apparatus
- Aqueous solutions of ranitidine under various pH adjusted (ammonium acetate buffer)
- sealed bottles aqueous solution of ranitidine in the selected buffer was injected with various amounts of saturated ozone solution
- Samples withdrawn in predefined time frames

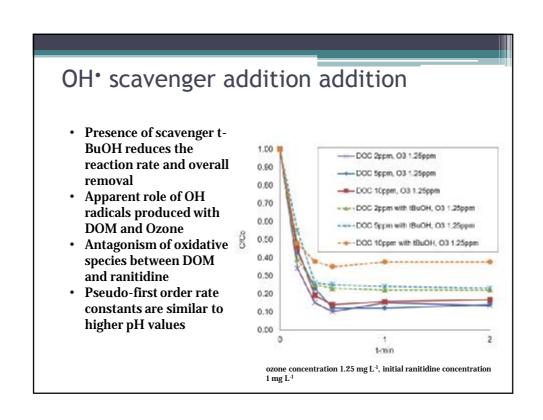
Effects studied

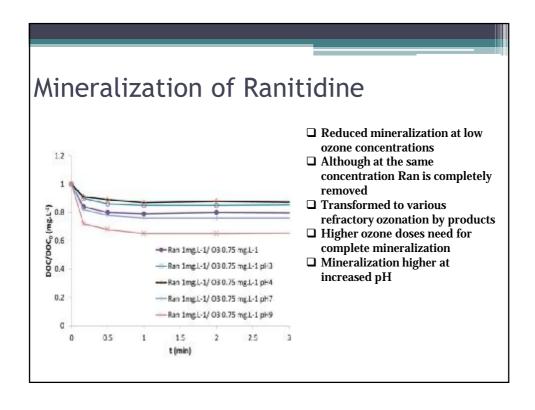

- Solution pH
- matrix
- Hydroxyl radical scavenger t-BuOH

Analysis


- Kinetics using HPLC UV
- TPs using Bruker qTOFMS

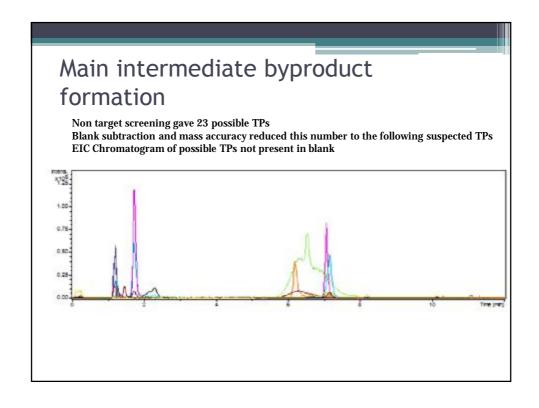
Effect of ozone concentration

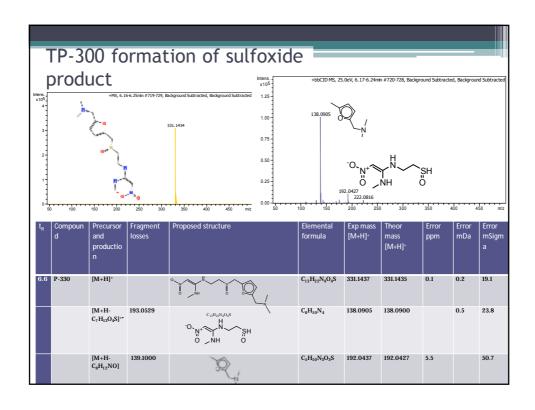

- $\bullet\,$ 5 mg $L^{\text{--}1}$ is enough to degrade more than 85% of the compound
- Fast reaction in first minutes
- Total removal with O3 > 4 mg L⁻¹
- Pseudo first order rates vary $0.19-6.06 \text{ min}^{-1} (R^2 > 0.956)$

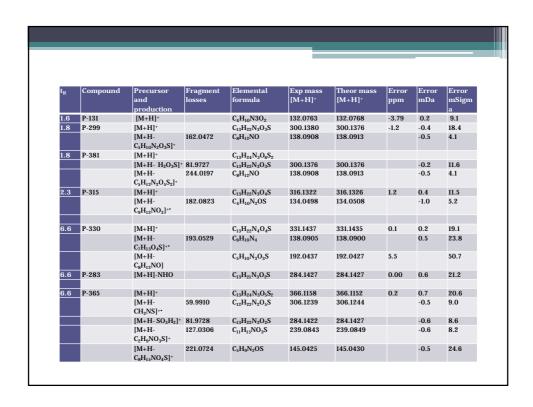


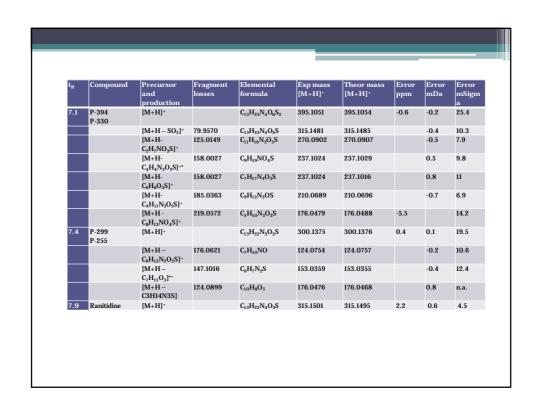
Effect of pH · Ranitidine removal is enhanced at higher pH Amine – ozone reactivity at non-protonated forms pH>7 ozone decomposed to hydroxyl radicals $O_3^{\bullet} D O^{\bullet} + O_2$ Pseudo first order reaction rates $0^{\bullet} + H_2O \rightarrow \bullet OH + OH^{\bullet}$ 0.250-5.533min⁻¹ $\bullet OH + O_3 \rightarrow HO_2 \bullet + O_2$ 3.00 y = 5.5000k RP = 0.9588 0.80 0.70 y = 1,5342x H1 = 0,7888 2.00 0.50 1.50 y=0.5855m R* = 0.5744 0.40 1,00 0.30 0.20 y = 0.0017x R1 = 0.9546 0.50 0.10 •pH 3 ■pH 7 C_0 ranitidine 5 mg L^{-1} , ozone initial concentration 1 mg L^{-1}

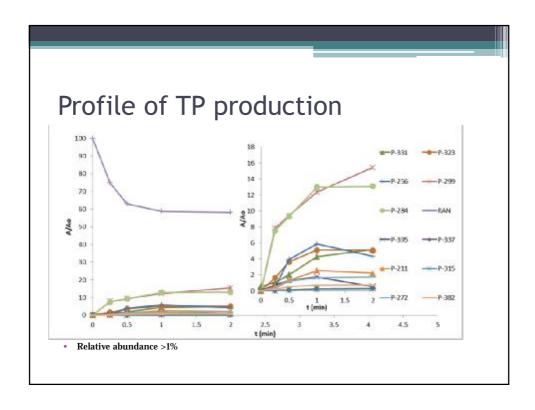

Effect of matrix content **DOM presence** -ultrapure water Direct ozone reaction OH radical 0.90 -soft water creation 080 hard water Consuming ozon faster 0.70 -- DOC 2ppm, O3 0.5ppm ---- DOC 5 ppm, O3 0.5ppm 0.60 -- DOC 10 ppm, C3 0.5ppm 90.50 0.40 0.30 O_3^{-} $D O_2 + O^{-}$ 0.20 $0^{-} + H_2OD + OH + OH$ 0.10 Nevertheless Increased kinetic rates were determined regardless of DOC concentration indicating t-min a role of hydroxyl radicals in the degradation of ranitidine

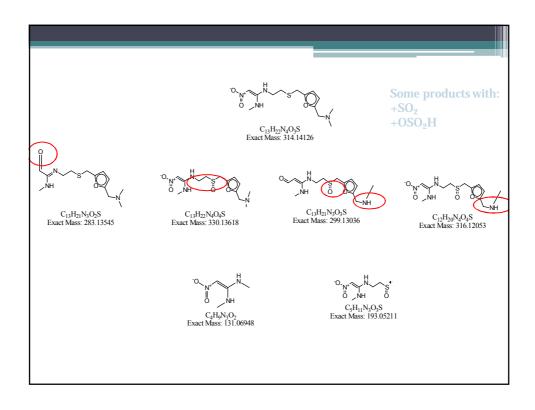





Overall kinetics									
CO ₃ (mg.L ⁻¹)	C _o Ran (mg L ⁻¹)	pН	t-BuOH (mM)	matrix	k _{obs} (min ⁻¹)	${ m R}^2$			
0.5	5	5.8	-	Ultrapure water	0.52	0.797			
1	5	5.8	-	Ultrapure water	0.92	0.846			
2	5	5.8	-	Ultrapure water	1.70	0.969			
4	5	5.8	-	Ultrapure water	4.13	0.980			
6	5	5.8	-	Ultrapure water	5.15	0.981			
8	5	5.8	-	Ultrapure water	6.06	0.973			
1	5	3	-	Acetate buffer	0.25	0.993			
1	5	4	-	Acetate buffer	0.83	0.800			
1	5	7	-	Acetate buffer	0.99	0.974			
1	5	9	-	Acetate buffer	1.53	0.955			
1	5	10	-	Acetate buffer	5.53	0.944			
1	1.5	5.8	-	Ultrapure water	2.01	0.901			
1	2	5.8	-	Ultrapure water	1.44	0.912			
1	5	5.8	_	Ultranure water	0.92	0.846			


C O ₃ (mg.L ⁻¹)	C _o Ran (mg.L ⁻¹)	pН	t-BuOH (mM)	matrix	k _{obs}	R ²
0.5	1	7.6	-	Drinking Water (medium hardness)	1.27	0.734
0.5	1	7.6	-	Drinking Water (increased hardness)	1.72	0.669
1.25	1	5.8	-	DOC 2mg.L ⁻¹	5.05	0.951
1.25	1	5.8	-	DOC 5mg.L ⁻¹	4.35	0.993
1.25	1	5.8	-	DOC 10 mg.L ⁻¹	4.29	0.961
1.25	1	5.8	20μΜ	DOC 2mg.L ⁻¹	3.69	0.964
1.25	1	5.8	20 μM	DOC 5mg.L ⁻¹	3.19	0.903
1.25	1	5.8	20 μM	DOC 10 mg.L-1	2.50	0.767





Conclusions

- Ranitidine readily reacts with ozone producing various intermediate by products
- Reaction is enhances under increased pH and initial ozone concentration
- Pseudo first order K_{obs} reaches 6.06 min⁻¹
- DOM role as producer of OH radicals and ozone depleting agent
- 4 possible different TPs from the beginning of oxidation reaction
- Mass balance not closed
- Other ozone concentrations and differences in pH are needed

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) – ARISTEIA 624 (TREMEPOL project).

Thank you for your attention!