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Stochasticity in Colonial Growth Dynamics of Individual Bacterial
Cells

Konstantinos P. Koutsoumanis, Alexandra Lianou

Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki,
Thessaloniki, Greece

Conventional bacterial growth studies rely on large bacterial populations without considering the individual cells. Individual
cells, however, can exhibit marked behavioral heterogeneity. Here, we present experimental observations on the colonial growth
of 220 individual cells of Salmonella enterica serotype Typhimurium using time-lapse microscopy videos. We found a highly
heterogeneous behavior. Some cells did not grow, showing filamentation or lysis before division. Cells that were able to grow
and form microcolonies showed highly diverse growth dynamics. The quality of the videos allowed for counting the cells over
time and estimating the kinetic parameters lag time (�) and maximum specific growth rate (�max) for each microcolony origi-
nating from a single cell. To interpret the observations, the variability of the kinetic parameters was characterized using appro-
priate probability distributions and introduced to a stochastic model that allows for taking into account heterogeneity using
Monte Carlo simulation. The model provides stochastic growth curves demonstrating that growth of single cells or small micro-
bial populations is a pool of events each one of which has its own probability to occur. Simulations of the model illustrated how
the apparent variability in population growth gradually decreases with increasing initial population size (N0). For bacterial pop-
ulations with N0 of >100 cells, the variability is almost eliminated and the system seems to behave deterministically, even though
the underlying law is stochastic. We also used the model to demonstrate the effect of the presence and extent of a nongrowing
population fraction on the stochastic growth of bacterial populations.

All the physical and chemical laws that are known to play
an important part in the life of organisms are of statistical
kind.
—Erwin Schrödinger, What Is Life? The Physical Aspect of the Living Cell (1)

Erwin Schrödinger, with his outstanding book, What is Life?,
published in 1944 (1), provided the spark that ignited an ex-

plosion in biology research at the single-cell level. Much of the
focus of this research has been to investigate the diversity at the
molecular level also known as “molecular noise” (2). The noise at
the molecular level refers to stochastic variations associated with
each of the processes along the path of genomic information flow
such as gene activation, transcription, and translation (3–6). Some
studies have further extrapolated heterogeneity from the underly-
ing molecular source right up to the cellular phenotype, reporting
a significant phenotypic variability among single cells, including
cell division and growth behavior (2, 7, 8).

The findings on the variability in single-cell growth re-
sponses received the attention of researchers working in the
field of predictive microbiology. Traditional predictive micro-
biology uses deterministic mathematical models that describe
the growth of large microbial populations as a whole without
considering the individual cells. The importance of single-cell
variability was raised after the recent developments in quanti-
tative microbial risk assessment (9). Deterministic models that
provide point estimates are generally not sufficient to satisfac-
torily manage microbial safety risks (10–12). Indeed, if, for
instance, the consequences of unacceptable levels of patho-
genic microorganisms in a food are grave, knowledge of only
the mean population growth is unlikely to be a sufficient basis
for management decisions on the safety risk. Since contamina-
tion with pathogens usually occurs with very low numbers, the
development of stochastic approaches that can describe the

variability of single-cell behavior is necessary for realistic esti-
mations of safety risks (13).

The available information on the heterogeneity in the growth
behavior of single cells is in general limited, due mainly to the
technical difficulties in monitoring the growth of individual cells.
Recently, some studies focused on the development of specific
devices for the observation of individual cell division. Elfwing et
al. (14) designed a flow chamber mounted on a microscope
equipped with a digital camera in which the cells attached to a
transparent solid surface. The shear force of the flow removed the
daughter cells, making it possible to monitor the consecutive di-
visions of a single cell. Wakamoto et al. (15) and Siegal-Gaskins
and Crosson (16) developed microfluidic devices to monitor elon-
gation rates and interdivision times of single cells. All the above
methods allow for monitoring one cell alone, with the daughter
cell being removed after division. On solid substrates (i.e., solid
foods), however, bacterial growth is colonial, in which case inter-
actions among cells of a forming colony may occur (17–20).

In this study, we developed a quantitative experimental inves-
tigation using an automated time-lapse microscopy method to
monitor the colonial growth of single cells of Salmonella enterica
serotype Typhimurium. The method allows for the evaluation of
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the heterogeneity in the growth dynamics of microcolonies origi-
nating from single cells and for the quantitative description of
stochasticity in bacterial growth using Monte Carlo simulation.

MATERIALS AND METHODS
Bacterial strain and growth media. The bacterial strain used in the study
was Salmonella enterica serotype Typhimurium FSL S5-520 (bovine iso-
late), kindly provided by Martin Wiedmann (Cornell University, Ithaca,
NY). A stock culture of the strain was stored frozen (�70°C) onto Micro-
bank porous beads (Pro-Lab Diagnostics, Ontario, Canada). A working
culture of the strain was stored refrigerated (5°C) on tryptone soy agar
(TSA; Lab M Limited, Lancashire, United Kingdom) slants and was re-
newed bimonthly. The strain was activated by transferring a loopful from
the TSA slant into 10 ml of tryptone soy broth (TSB; Lab M Limited) and
incubating it at 37°C for 24 h. Twenty microliters of a 24-h culture of the
strain, after two 10-fold serial dilutions in one-quarter-strength Ringer’s
solution (Lab M Limited), was added to 500 �l of TSA solidified on a glass
slide, and the 20-�l volume was left to dry in a biological safety cabinet for
5 min. The inoculated agar was covered by a coverslip and sealed with
silicone to avoid dehydration. The inoculum size was approximately 106

to 107 CFU/ml.
Time-lapse microscopy. The colonial growth of single cells was mon-

itored by phase-contrast time-lapse microscopy using a z-motorized mi-
croscope (Olympus BX61; Olympus, Tokyo, Japan) equipped with a
100� objective (Olympus) and a high-resolution device camera (Olym-
pus DP71). The sample was maintained at 25°C using a temperature-
controlled stage (Linkam PE60; Linkam Scientific Instruments, Surrey,
United Kingdom). An in-house program was developed with the Sco-
pePro module of the ImageProPlus image analysis software version 6.3
(MediaCybernetics Inc., Bethesda, MD), which allows the system to be
automatically turned on and off before and after the capture of an image.
Images of the field of view were acquired every 5 min for 6 to 8 h. The
quality of the images was improved by developing an autofocus procedure
with an extended depth of focus (EDF) system. The above procedure
allows for multiple (20 to 30) serial images in different z-axis planes to be
captured and then combines the best focal areas of the serial images into a
single in-focus image (z-stack). Individual final images were compiled to
give a sequence of frames for the field of view, which was further trans-

formed into a video showing the behavior of the same cell over time
throughout the experiment.

Data analysis and modeling. The behavior of a total of 220 S. Typhi-
murium single cells on TSA at 25°C was monitored. The high quality of
the images allowed for monitoring the cell size, the division times, and the
number of cells in each microcolony with time using the ImageProPlus
image analysis software. Cell counting was performed for up to 100 cells
per microcolony using the manual tag of ImageProPlus. After counting,
data were transformed to the respective growth curves showing the exact
number of cells in each microcolony originating from a single cell over
time. The obtained growth curves were then fitted to the primary model of
Baranyi and Roberts (21) for the estimation of lag time (�) and maximum
specific growth rate (�max). In order to describe the abrupt transition
from the lag to the exponential phase characterizing the observed growth,
the values of the parameters m and n of the model were fixed to 0 and 20,
respectively.

The data of � and �max were fitted to various distributions using the
@Risk 4.5 for Excel software (Palisade Corporation, Newfield, NY). The
goodness of fit was compared using three different methods: �2, Ander-
son-Darling (A-D), and Kolmogorov-Smirnov (K-S). The best-fitted dis-
tributions based on the above criteria were further introduced into an
exponential model with lag (see equation 1 below) to describe the growth
of individual cells using Monte Carlo simulations.

RESULTS AND DISCUSSION
Heterogeneity in the colonial growth dynamics of single cells.
We present a detailed quantitative experimental investigation on
the behavior of 220 S. Typhimurium single cells on TSA at 25°C
using automated time-lapse microscopy. In Fig. 1, we show rep-
resentative examples of the observed behavior of single cells in-
cluding (i) cell division and formation of a microcolony, (ii) fila-
mentation, and (iii) cell lysis before division. In 213 cells (96.8%),
an increase in cell length followed by division and colony forma-
tion was observed (Fig. 1A; see Movie S1 in the supplemental
material). Seven cells (3.2%) were not able to divide. Among
those, six cells showed a filamentous phenotype with an extensive
increase in cell length leading to the formation of unusually long

FIG 1 Time-lapse microscopy images of the behavior of Salmonella Typhimurium individual cells over time. (A) Cell able to grow and form a colony; (B) cell
filamentation; (C) cell lysis before division.
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cells, up to 20 times the initial length (Fig. 1B; see Movie S2 in the
supplemental material), while in one cell, lysis before division was
observed (Fig. 1C; see Movie S3 in the supplemental material).
Filamentation and cell lysis were also observed, at a very low fre-
quency, in the daughter cells during colony formation (see Movie
S4 in the supplemental material). Previous studies have reported
that the latter “behavioral noise” is the observable consequence of
the noise in gene expression related to stochastic fluctuations dur-
ing transcription and translation that lead to differences in protein
levels (4, 22, 23). For example, the observed difference among the
cells related to the filamentous phenotype could be attributed to
the noise in the production of protein FtsZ or other proteins in-
volved in altering cell division such as ZipA and SulA (24–26).
Similarly, cell lysis of Salmonella is possibly linked to the bacterial
suicide systems (27) such as the toxin-antitoxin system PezAT
(also known as the epsilon/zeta system), which is expressed in
many pathogenic bacteria to program their own individual death
(28).

The quality of the videos obtained from the time-lapse micros-
copy method allowed us to analyze the behavior of individual cells
through monitoring characteristics such as the division times, the
cell length, and the growth kinetics of a microcolony over time.
The distributions of the first three division times are shown in
Fig. 2A. Both the mean and the spread of division time distribu-
tions decreased with generations. The time to first division, which
includes the lag time, is significantly longer and ranges from 0.1 to
6.2 h with a mean and standard deviation of 2.21 h and 0.96 h,
respectively. For the second and third divisions, the mean de-
creased to 1.10 and 0.65 h and the standard deviation to 0.54 and

0.31 h, respectively. These results are in accordance to the findings
of the studies of Métris et al. (29) and Pin and Baranyi (30), who
reported a similar trend for the generation times of Escherichia coli
cells. In order to investigate if division-related information is in-
herited, the relation between successive division times was evalu-
ated. The poor correlation shown in Fig. 2B indicates no intergen-
erational “memory” related to the time required for division.

The actual source of division time variability is not known.
Some studies have reported cell length as a critical factor for divi-
sion (31, 32). Our results do not support this. The initial length of
the 220 tested cells at time zero ranges from 0.86 to 3.75 �m, with
a mean of 2.21 �m and a standard deviation of 0.57 �m (Fig. 3A).
The correlation coefficient between the initial cell length and the
first generation time is very low (Fig. 3B). Very low correlation
coefficients (r � 0.003 to 0.020) were also observed between the
initial cell length and the second or the third division time, indi-
cating that longer cells do not systematically provide shorter divi-
sion time and vice versa. This can be attributed to the increased
variability of the cell length at the time of division, which can range
from about 2 to 5 times the initial length (see Movie S5 in the
supplemental material).

The limited available studies on individual cell behavioral
noise focus on the division times of a single cell, with the daughter
cells being removed (14–16). The distributions of these division
times can be used to describe the growth of microbial populations
through a birth model (30). This approach, however, does not
take into account potential microbial interactions within a micro-
colony during colonial growth (17–20). The main obstacle in de-
scribing the variability in the colonial growth dynamics of single

FIG 2 Variability in the division times of Salmonella Typhimurium individual cells. (A) Distribution of first, second, and third division times. (B, C) Relation
between successive division times.
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cells is the experimental error related to the methods applied for
monitoring growth. The time-lapse microscopy method applied
in this study allows for counting the actual cells with time in each
microcolony originating from a single cell and thus for eliminat-
ing the experimental error of other indirect methods used for
monitoring microbial growth. Cell counting was performed for
up to 100 cells per microcolony when the growth of the colony was
still two-dimensional. In Fig. 4, we present the growth curves of
representative single cells of S. Typhimurium, demonstrating the
high variability in their growth dynamics. In order to describe this
variability, we fitted the growth data of each microcolony to the
Baranyi and Roberts (21) primary model for the estimation of the
growth kinetic parameters (i.e., � and �max). The kinetic param-
eters were analyzed as a function of the final number of cells in a
microcolony. For this purpose, the number of cells over time in
each microcolony was fitted to the primary model and the kinetic
parameters were estimated for different final cell numbers. The
analysis showed that when the number of cells in a microcolony
exceeded 20 to 25, both kinetic parameters reached constant val-
ues, which varied significantly among microcolonies (Fig. 5). This

can be attributed to the variability in the generation time of single
cells, which decreases with generations (Fig. 2), as well as to po-
tential differences in the so-called “community effect” including
the colony’s microenvironmental factors such as pH (19, 20) and
cell-to-cell communication (quorum sensing) (17, 18, 33).

The distributions of � and �max values, estimated by the pri-
mary model for 213 microcolonies originating from single cells,
are shown in Fig. 6A. The � values range from 0 to 5.72 h, with an
average value of 1.72 h and a standard deviation of 0.92 h. For
�max, the range is from 0.30 to 1.33 h�1 and the average value and
standard deviation are 0.77 h�1 and 0.16 h�1, respectively. The
estimated coefficients of variation (%CV � standard deviation/
mean � 100) are 53.7% for � and 20.5% for �max. A poor relation
between � and �max is found with a correlation coefficient (r2) of
0.022 (Fig. 6B).

A stochastic approach in microbial growth. The need for sto-
chastic bacterial growth models has increased since the establish-
ment of quantitative microbial risk assessment (QMRA) as the
basis of food safety management (34). The use of bacterial growth
models in QMRA has different demands from those of “tradi-
tional” deterministic models (13). Deterministic models are de-
veloped and validated to produce point estimates of microbial

FIG 3 Variability in the initial cell length (at time t � 0) of Salmonella Typhimurium individual cells. (A) Probability distribution of the initial cell length; (B)
relation between initial cell length and first division time.

FIG 4 Representative colonial growth curves of Salmonella Typhimurium
individual cells.

FIG 5 Maximum specific growth rate (�max) as affected by the increasing
number of cells in the microcolony over time for five representative individual
cells.

Growth Dynamics of Individual Bacterial Cells

April 2013 Volume 79 Number 7 aem.asm.org 2297

 on M
arch 14, 2013 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org
http://aem.asm.org/


population levels. In QMRA, however, microbial populations
should be expressed in terms of probability (i.e., to predict the
probability distribution of the microbial concentration at the time
of consumption). Considering that food poisoning outbreaks are
usually triggered by contamination of foods with a very low num-
ber of pathogenic cells, the description of the variability of single-
cell behavior has a key role in QMRA.

To interpret the observations, we devised a stochastic model
for microbial growth. For this, we described quantitatively the
variability of the kinetic parameters of single-cell colonial growth.
The distributions with the best fit were the logistic distribution for
�max and the log normal distribution for �. In Fig. 7A, we present
the fitted distributions together with the density data for � and
�max. We also described the variability in the probability of growth
for a single cell using the bootstrap method (35). Based on the
results, which showed that 213 of 220 cells were able to grow and
form colonies, the probability of growth, Pg, for an individual cell
was estimated as Binomial(220, 213/220)/220 and ranged from

0.914 to 1 with a mean value of 0.968 and a standard deviation of
0.0119 (Fig. 7B).

The stochastic model was devised by introducing the distribu-
tions of the kinetic parameters into a simple exponential growth
with lag model as follows:

Nt � �N0 � Ng� � �1
Ng �1 for t � �i

e�max i �t � �i� for t � �i

(1)

where Nt is the total number of cells in a population at time t, N0 is
the initial number of cells in the population at t � 0, Ng�Binomial
(N0, Pg) is the initial number of cells in the population at t � 0 that
are able to grow and form a colony, Pg is the mean probability of
growth (Pg � 0.968), and �max�Logistic(0.754, 0.085) and
��LogNormal(3.355,0.896,shift(�1.628)) are the probability
distributions of �max and �, respectively, of a microcolony origi-
nating from a single cell.

The model describes the growth of a bacterial population, ini-
tially consisting of N0 cells, over time as the sum of cells in each of
the N0 imminent microcolonies originating from a single cell. The
above approach allows for taking into account the heterogeneity
in the growth dynamics of single cells by introducing the kinetic
parameters in the model as probability distributions using Monte
Carlo simulation. In addition to the growth kinetics, the model
also describes the probability of growth for single cells. This is an
important component of the model, since previous studies have
shown that the growth limits of individual cells vary significantly
and this variation can affect the growth behavior of microbial
populations, especially under conditions close to the boundary of
growth (36).

In Fig. 7A, we present the output of the model for N0 of 1 using
Monte Carlo simulation with 10,000 iterations and with a uniform
distribution for t [t�Uniform (0, 8)]. The output of the model is
a stochastic growth curve in which the number of cells in the
population at any time is a probability distribution. For example,
in Fig. 7A the number of cells in a microcolony originating from a
single cell after 8 h of growth can be either 7 (1st percentile) or
2,324 (99th percentile), with a most probable number of 314
(mode). This information is important, since it allows for the
estimation of the risk (probability) that one cell multiplies to reach
an infective dose.

FIG 6 Variability in the kinetic parameters, lag time (�), and maximum spe-
cific growth rate (�max) for 213 microcolonies originating from a single cell.
(A) Probability histograms of �max (top) and � (bottom). Red lines represent
the best-fitted distributions to the data (logistic for �max and log normal for �).
(B) Relation between � and �max.

FIG 7 Simulation output of the stochastic model for the colonial growth of an
individual cell. (A) Model prediction for the growth of a single cell using
Monte Carlo simulation with 10,000 iterations and a uniform distribution for
time t [t�Uniform (0, 8)]. (B) Description of probability of growth for an
individual cell using Monte Carlo simulation with 10,000 iterations.
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The proposed model can be used for evaluating the effect of the
initial number of cells (N0) on the variability of population
growth. Figure 8 presents the results of Monte Carlo simulations
with N0 equal to 2, 10, and 100 cells. The simulations show that as
N0 increases, the apparent variability in the growth of the total
population decreases significantly, and it is almost eliminated for
N0 of 100 cells. In addition, an increase in N0 results in a shorter lag
phase of the population. The latter was also observed for E. coli by
Pin and Baranyi (30), who reported that the lag phase decreased
significantly as the inoculum size increased from 1 to 100 cells.
The effect of N0 can be clearly seen in Fig. 9, which shows the
distribution of the number of cells after 8 h of growth for bacterial
populations with different N0 values. As N0 increases from 1 to 100
cells, the distribution of the number of cells in the population
becomes narrower, with the %CV of the number of cells decreas-
ing from 25.1% to 2.78% in a logarithmic scale. The latter simu-
lations explain why variability in microbial growth is usually not
observed in laboratory growth experiments in which large micro-
bial populations, often of hundreds or thousands of cells, are used.

In the case of large microbial populations, variability becomes
negligible through the law of large numbers, and the system seems
to behave in a deterministic manner even though the underlying
laws are probabilistic. This has been reported previously by several
studies, with emphasis on the variability in the lag time of individ-
ual cells (37–40). In this study, we show the overall variability in
the colonial growth of individual cells, including the growth rate,
and how it is affected by N0. In general, analysis of the N0 effect
demonstrates that deterministic models that provide point esti-
mates can describe satisfactorily the growth of microbial popula-
tions consisting of 100 cells or more. For smaller populations,
however, stochastic models are required since a deterministic ap-
proach that misses the information on variability can lead to er-
roneous estimations of safety risks.

The majority of the available growth models focus on the ki-
netics of growth without taking into account the probability of
growth of the cells, assuming that all cells in the population are
able to grow. The results of the present work showed that under
optimum conditions, 213 of 220 single S. Typhimurium cells were
able to grow and form colonies. However, for stressed cells or
under less favorable conditions, the probability of growth may be
significantly lower (36). We used the stochastic model to evaluate
the effect of Pg on stochastic growth. Figure 10 demonstrates a
comparison in the growth of two microbial populations with N0 of
100 and Pg equal to 1.0 (all 100 cells are able to grow) and 0.1 (10
of 100 cells are able to grow). Although the two simulations pre-
sented in Fig. 10 are based on the same probability distributions
for the kinetic parameters � and �max, a decrease in Pg resulted in
a longer � and an increased variability in the population growth.
As previously reported by Koutsoumanis (36), the longer lag
phase is due to an additional “pseudolag” caused by the decreased
ratio between the growing and nongrowing fractions of the pop-
ulation, while the higher variability is attributed to the smaller
number of cells that are able to grow (Fig. 8).

New insight may come from the investigation and the stochas-
tic mathematical description of single-cell behavior. In addition,

FIG 8 Effect of the initial number of cells, N0, on the stochastic growth of a
microbial population. (A) Model predictions for the growth of microbial pop-
ulations initially consisting of 2 cells (A), 10 cells (B), and 100 cells (C). Growth
is predicted by the stochastic model using Monte Carlo simulation with 10,000
iterations and a uniform distribution for time t [t�Uniform (0, 8)].

FIG 9 Effect of the initial population size (N0) on the variability of the number
of cells in the population after 8 h of growth. (A) Predicted probability distri-
butions of the number of cells in a microbial population initially consisting of
1, 2, 10, and 100 cells after 8 h of growth. (B) Effect of N0 on the coefficient of
variation (%CV) of the number of cells in the population after 8 h of growth.
Growth is predicted by the stochastic model using Monte Carlo simulation
with 10,000 iterations for t of 8 h.
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stochastic models can improve significantly the credibility of risk
assessment studies. The next steps in this research are to describe
the effects of factors such as cell physiological state (39), strain
variability (41, 42), and growth environment on single-cell behav-
ior and to develop effective stochastic models for microbial
growth in foods.
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