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The bacterial endophytic microbiome promotes plant growth

and health and beneficial effects are in many cases mediated

and characterized by metabolic interactions. Recent advances

have been made in regard to metabolite production by plant

microsymbionts showing that they may produce a range of

different types of metabolites. These substances play a role in

defense and competition, but may also be needed for specific

interaction and communication with the plant host.

Furthermore, few examples of bilateral metabolite production

are known and endophytes may modulate plant metabolite

synthesis as well. We have just started to understand such

metabolic interactions between plants and endophytes,

however, further research is needed to more efficiently make

use of beneficial plant-microbe interactions and to reduce

pathogen infestation as well as to reveal novel bioactive

substances of commercial interest.
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Introduction
Living organisms are the source for a vast diversity (>1

million) of different metabolites. The majority of these

metabolites have been discovered in plants, but micro-

organisms are a particular rich source of more than 20 000

biologically active compounds, influencing the perform-

ance and survival of other organisms [1]. Of these active

compounds the majority are derived from bacteria, mostly

from the well investigated genus Streptomyces [1,2], which
§ This is an open-access article distributed under the terms of the
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author and source are credited.

Current Opinion in Biotechnology 2014, 27:30–37 
represents the microbial genus most thoroughly investi-

gated for secondary metabolite production. Secondary

metabolites are without known specific function in the

organisms’ primary metabolism, but their high diversity

reflects the biological role particularly in the interactions

between organisms in their environment and shows their

importance as signals and toxins.

In spite of the decreasing rate of discovery of active

metabolites (e.g. antibiotics) in the last decades [3], the

genomic revolution of the recent past clearly revealed that

our knowledge on the structures and occurrence of metab-

olites of bacteria is far from saturated. Genome analysis of

even well-known bacteria has revealed genes potentially

involved in the production of yet unknown metabolites

[4,5] and it is assumed that the metabolites identified so far

encompass only a small fraction of the existing metabolic

repertoire [2]. Another reason why it seems unlikely that

the metabolic potential of bacteria is exhaustively known is

the fact that so far only a small proportion of bacteria has

been cultivated. In soils alone, different studies using

DNA:DNA hybridization, Sanger sequencing of clone

libraries and next generation sequencing suggest that only

a very small percentage of bacteria has been cultivated so

far [6]. Moreover, albeit Actinobacteria, most prominently

the genus Streptomyces, proved to be an extremely rich

source of secondary metabolites [7,8�], the potential of

more ‘exotic’ and ‘rare’ actinobacterial taxa is less estab-

lished [9,10,11] and similar considerations might also hold

true for the large fraction of other far less well characterized

bacterial taxa. Finally, certain niches, among others the

bacteria living in association with plants and in particular

inside plants (endophytes), are less well investigated for

their metabolic potential than cultivable soil bacteria.

Endophytes are also of special interest for their high

number of microbial niches and environments they may

inhabit and provide therefore a high potential as a less

exploited resource. In the current review we understand

endophytes as non-phytopathogenic organisms, which

colonize plant tissues at least part of their lifetime [12].

Nevertheless, to discuss the potential and function of

metabolites we briefly also take into account plant patho-

genic microorganisms, which may be very closely related to

non-pathogenic species.

Endophytes as a source of secondary
metabolites
Considerable amount of information exists on the

metabolic potential of endophytic fungi and exciting
www.sciencedirect.com
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possibilities for exploiting endophytic fungi for the pro-

duction of a plethora of known and novel biologically

active secondary metabolites (reviewed by [13,14]). Bac-

teria can also thrive as endophytes in various plants and

plant parts, but are less investigated for their metabolic

potential. Various studies have shown that endophytic

bacteria may, following rhizosphere soil colonization, be

detected inside the endorhiza, in stems, leaves as well as

inside plant reproductive organs of different host plants

[15,16,17]. Endophytes have to be adapted to the specific

plant environment, which they colonize and therefore,

the metabolic potential of endophytes is likely to differ

from their soil dwelling counterparts. As the resource-rich

environment of the rhizosphere is extremely competitive,

and bacteria need to survive in a competitor-rich and

predator-rich environment, the rhizosphere microflora is

likely to produce a rich arsenal of antibiotic and anti-

nematodal compounds. In contrast, obligate endophytic

bacteria face a lot less competition reflected in a less

metabolite-rich arsenal [18], but they may produce other

specific metabolites supporting the or needed for the

interaction with the host. However, many endophytic

bacteria are facultative plant colonizers and have to

compete well in the rhizosphere before entering the plant

[16] and might be therefore equipped with a rich arsenal

of metabolites involved in defense as well as in inter-

action with the plant. In this context it has to be stated

that the term ‘antibiotic’ as ‘defense weapon’ to other

microbes may reflect a rather anthropocentric point of

view and that the real function of these compounds in

nature is not only the antibiotic function, but the com-

pounds may also play a role in intraspecies and inter-

species signalling processes [6,19,20,21].

Many bacteria with the capacity of colonizing plants

utilize the nutrient niche of root surfaces in the rhizo-

sphere and most of them might even actively switch from

root surface to endophytic lifestyles [15,16]. These bac-

teria comprise several well characterized species of Bacil-
lus and Pseudomonas and a number of metabolites,

particularly lipopeptides synthesized by non-ribosomal

peptide synthesases, have been described to be important

for rhizosphere bacteria for antibiosis and for inducing

plant defense mechanisms. The structures and functions

of Bacillus and Pseudomonas lipopeptides have been

recently thoroughly reviewed (e.g. [6,22,23]). Neverthe-

less the rich repertoire of metabolites found in endophytic

Actinobacteria [8�] suggests that a large fundus of second-

ary metabolites produced by endophytic bacteria remains

to be discovered. This is underlined by recently

described multicyclic indolosesquiterpenes (Figure 1)

found in the endophytic Streptomyces sp. HKI0595 of

the mangrove tree Kandelia candel [24], antitrypanosomal

alkaloids spoxazomicins A-C (Figure 1) produced by the

endophytic actinomycete Streptosporangium oxazolinicum
K07-0450T found in orchids [25,26] with structural sim-

ilarities to siderophores from Pseudomonas aeruginosa and
www.sciencedirect.com 
a series of NRPS (non-ribosomal peptide synthases) and

PKS (polyketide synthases) gene clusters with unchar-

acterized metabolites were found to be produced by

endophytes of Chinese medicinal plants [27,28]. The

rich metabolic repertoire of endophytic bacteria is also

shown in more than 100 actinobacterial isolates found as

endophytes in Australian trees [29] and in more than 300

diverse actinobacterial strains found in the medicinal

plant Maytenus austroyunnanensis [8�]. Furthermore, culti-

vation-independent analysis of bacterial endophytes of

Chinese medicinal herbs based on the analysis NRPS and

PKS gene fragments suggested the production of so far

unknown metabolites [28]. Overall, only a tiny fraction of

plant-associated Actinobacteria has been described so far

representing a promising source of novel secondary

metabolites.

Function of metabolites in plant-bacteria
interactions
Many bacteria closely interacting with plants produce

secondary metabolites as agents needed for nutrient

uptake (for a schematic overview see Figure 2), in particu-

lar siderophores involved in iron acquisition (reviewed by

[30]). Recently, in the diazotrophic endophyte Herbaspir-
illum seropedicae colonizing many grass crops, the struc-

tures of the amphiphilic lipopeptides serobactin A, B and

C produced by NRPS (Figure 1) acting as siderophores

have been described [31]. Moreover, metabolites acting

as agents in biofilm formation and as toxins, virulence

factors [6] or interfering with hormone signalling in plants

[32,33] have been reported. The latter functions may be

also important for plant pathogens. Generally, the

boundary between pathogens and endophytes or phyto-

hormones and toxins are not always clear-cut and especi-

ally hormone production is a widely spread characteristic

of phytopathogens and plant growth-promoting bacteria

(for a review see [32]). Plants produce several classes of

phytohormones including auxins, cytokinins, brassinos-

teroids, gibberellins, abscisic acid, ethylene, jasmonates

and strigolactones playing roles in development and stress

responses. Cross talk and fine tuning of the different

phytohormone pathways is essential for plant develop-

ment, stress and defense responses ([34]; reviewed by

[35]) and associated bacteria can interfere with plant

signalling. In beneficial bacterial endophyte — plant

interactions the production and modulation of auxins

and ethylene play an essential role in plant development

[32,36], but also stress (e.g. drought) tolerance has been

reported to be influenced by endophyte-derived hor-

mones. For example, abscisic acid and gibberellins pro-

duced by the endophyte Azospirillum lipoferum have been

shown to be involved in alleviating drought stress symp-

toms in maize [37]. Interestingly, plant-associated bac-

teria do not only produce genuine plant hormones but also

compounds mimicking the effect of the natural plant

hormones as structural analogues (Figure 1). This is

the case for coronatine produced by several plant
Current Opinion in Biotechnology 2014, 27:30–37
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Figure 1
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Metabolites of plant associated bacteria. Sespenine is derived from indolosesquiterpenes found in an endophyte (Streptomyces sp.) of mangrove

trees. Spoxazomicins from an orchid endophyte (Streptosporangium oxazolinicum) with structural similarities to pyochelin, a siderophore from

Pseudomonas aeruginosa, serobactin A, a siderophore from the grass endophyte Herbaspirillum seropedicae. Valienamine, as illustration of

aminocyclitols, which might be produced by the endophytic C. Burkholderia kirkii. Pavettamine is the active toxic principle of South African Rubiaceae,

where endophytic Burkholderia spp. are crucial for the biosynthesis in planta. The partial structure of thanamycine has been elucidated without

isolation from bacterial colonies. Coronatine as an example of a plant hormone acting agent from the plant pathogenic Pseudomonas syringae and the

structure of the actual plant hormone (+)-7-iso-jasmonoyl-L-isoleucine.
pathogenic Pseudomonas species mimicking the active

natural (+)-7-iso-jasmonoyl-L-isoleucine [38]. Coronatine

acts as very active jasmonate finally showing phytotoxi-

city [33] and plays a role in suppressing stomatal closure
Current Opinion in Biotechnology 2014, 27:30–37 
and defense responses [39]. It will be interesting to see if

plant hormone mimicry encoded by NRPS and PKS gene

clusters with so far unknown function is a common feature

in plant-associated bacteria.
www.sciencedirect.com
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Figure 3
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Average numbers of metabolite gene clusters predicted by antiSmash

2.0 [40��]. The numbers are the mean of 6 Pseudomonas fluorescens

(plant-associated) strains, 5 P. syringae (plant pathogens) and 9 P.

putida strains (no association with plants) and contain all fully sequenced

and published genomes in the given category.

Figure 2
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Schematic overview showing the different types of plant-endophyte interactions leading to the synthesis of metabolites, which are in many cases not

produced by the macro- or microsymbiont alone or in different quantities. Furthermore, the different known functions of endophyte-associated

metabolites are presented.

www.sciencedirect.com 
Adaptation to endophytic lifestyle and the
potential to produce secondary metabolites
When comparing the amounts of predicted secondary

metabolites of all completely sequenced Pseudomonas
strains by antiSmash [40��], a prediction software for

secondary metabolite production, it can be seen that

pseudomonads associated with eukaryotes as plant patho-

gens (P. syringae) or as endophytes or epiphytes (P.
fluorescens) host a higher number of gene clusters encoding

for secondary metabolites, in particular NRPS and other

metabolites (predicted quorum sensing signals, not

further characterized metabolites) than free living P.
putida strains (Figure 3). In the latter strains the number

of bacteriocins potentially involved in competition with

closely related species is higher [41]. It might be that the

plant-associated lifestyle requires adaptation to several

niches, in which different metabolites are required. On

the other hand, specialized endophytes such as obligate

endophytes or endophytes colonizing only specific niches

may produce a lower number of potential secondary

metabolites. Metabolites furthermore act as signals for

interaction (communication) with the plant and host-

specific signal exchange may occur as reported for

plant–fungal interactions [42].
Current Opinion in Biotechnology 2014, 27:30–37
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Although genome reduction is a general mechanism of

(intracellular) pathogens [43], and also highly adapted

symbiotic and obligate endophytic bacteria like Candida-
tus Burkholderia kirkii show clear reduction of their

genome compared to free living relatives [44�], this does

not necessarily lead to a complete loss of the potential to

produce secondary metabolites. Quite on the contrary, it

has been speculated that C. Burkholderia kirkii produces

metabolites to protect its host plant Psychotria kirkii
(Rubiaceae) against pathogens or herbivores. The gen-

ome of C. Burkholderia kirkii contains several biosyn-

thetic genes responsible for secondary metabolite

production and especially two clusters for the biosyn-

thesis and transport of sugar analogues of the C7N family

of aminocyclitols (Figure 1). Several members of the C7N

aminocyclitols display antibiotic, antifungal or insectici-

dal activity [45]. Several Psychotria species harbor Bur-
kholderia spp. within specialized leaf nodules. It remains

to be seen how far these endophytes contribute to the

metabolic potential of Psychotria. Such specialized endo-

phytes may play a role in plant defense by producing

toxins active against herbivores as it is well known for

endophytic fungi, especially for the genera Epichloe and

Neotyphodium (see e.g. [13,46]). Also, bacteria living in

association with marine eukaryotes are made responsible

for the production of various toxins involved in the

defense mechanism of the eukaryotic host, which include

dinoflagellates and tunnicates [47]. Interestingly, the

saprotrophic fungus Rhizopus microsporus produces rhi-

zoxin and is responsible for rice seedling blight, but the

actual producer of the toxin is the bacterium Burkholderia
endofungorum [48–50]. It is remarkable that related Bur-
kholderia spp. live in close association with Psychotria
plants and it remains to be elucidated if plant toxin

production might be in more cases related to bacterial

endophytes. Other Rubiaceae plants, namely Fadogia,

Pavetta and Vangueria, which can all cause a disease

(called ‘gousiekte’) in ruminants feeding on these plants

host different Burkholderia spp. suspected to play a role in

production of the toxin causing the disease, the polya-

mine pavettamine (Figure 1) [51,52�].

Endophytes as contributors to plant
metabolite production
So far we discussed the direct metabolic potential of

endophytic bacteria. However, two other indirect ways

exist, how endophytic bacteria play a role for the meta-

bolic potential of plants (for a schematic overview see

Figure 2). First, bacterial endophytes may strongly influ-

ence the performance, growth and stress tolerance of

plants [16,53,54]. In this respect, it is remarkable that

an endophytic actinobacterium, Pseudonocardia sp. strain

YIM 63111, is able to enhance the production of the

antimalarial compound artemisinin (Figure 1) in its host

plant Artemisia annua [55�]. The induction of secondary

metabolite production by endophytes might be a much

more widespread phenomenon in aromatic and medicinal
Current Opinion in Biotechnology 2014, 27:30–37 
plants. Second, some metabolites are not only produced

by a single organism, but might be produced by a plant in

combination with associated bacteria. This has been

discussed for the flavour of strawberries, where furanoids

are responsible for the typical fragrant [56] and where it

has been shown that plant-associated methylobacteria

influence the quality and quantity of the flavour [57].

Also, for the biosynthesis of the polyamine pavettamine

(Figure 1) of South African Rubiaceae, it has been dis-

cussed that the production might be because of bilateral

biosynthesis as only nodulating plants produce the toxin.

Furthermore, nodulating plants void of pavettamine pro-

duction have been found and plant cell cultures without

bacteria do not produce pavettamine but more common

polyamines [58�].

Detection of metabolites in plant association
The majority of metabolites from endophytic bacteria

have been characterized after isolating bacteria and grow-

ing them in vitro. Novel developments in the in situ
analysis of metabolites might provide new opportunities

to detect and to describe also metabolites specifically

produced during the interaction with living plants. The

overall concentration of compounds produced by plant-

associated bacteria in roots and the rhizosphere is usually

low (usually < 10 mg/g), making the direct structure elu-

cidation challenging. Direct analysis of metabolites in situ
has been achieved for antibiotic lipopeptides from several

Bacillus subtilis and for pyrrolnitrin, 2,4-diacetylphloroglu-

cinol and phenazine-1-carboxylic acid from Pseudomonas
fluorescens strains [6]. Local concentrations might be still

higher and biosensor-based approaches might be import-

ant tools to detect various metabolites in situ such as for

Pseudomonas fluorescens CHA0 lipopeptides [59], but the

detection of unknown compounds remains challenging,

and for a quantitative approach mainly LC–MS based

methods have been successful [6]. Apart from difficulties

in detecting unknown compounds also the composition of

already described metabolites may vary significantly in
vitro and in planta. For example, the comparison of

metabolic profiles produced in growth medium and in
planta showed clear differentiation of lipopeptides pro-

duced by Bacillus amyloliquefaciens S499 with iturin and

fengycin underrepresented in the root samples, while

surfactins were stronger accumulated in roots. Combined

electrospray and imaging mass spectrometry-based

approaches were used to determine the detailed pattern

of surfactins, iturins and fengycins [60]. Novel metab-

olites only produced in specific niches or low concen-

trations within the plant are not easily found, albeit

genomic analysis can point to potential genes and help

in the prediction of those metabolites. A breakthrough

has been achieved here with the description of thanamy-

cin (Figure 1) [61��]. After applying PhyloChip-based

analysis secondary metabolites synthetized by a NRPS

of Pseudomonas sp. strain SH-C52 were identified to be

involved in suppressing sugar beet diseases caused by
www.sciencedirect.com
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Rhizoctonia solani [62�]. On the basis of this discovery

Watrous et al. [61��] could establish the partial structure of

such a metabolite, thanamycin, with nanospray deso-

rption electrospray ionization mass spectrometry (nano-

DESI MS) combined with MS data alignment and

molecular networking. This technology allowed the

direct analysis and partial structure elucidation of a

chlorinated lipopeptide thanamycin on Petri dishes with-

out any sample preparation. NanoDESI MS or related

technologies might in future even allow the detection of

novel metabolites directly in environmental or root

samples [63]. For example, MALDI-FTICR MS imaging

has shown the production of fusaricidin lipopetides of

Paenibacillus polymyxa in interaction with Fusarium oxy-
sporum on plate [64]. These non-invasive methods have

also the additional advantage to allow time-course meta-

bolic analysis and can represent effective tools for the

analysis of intermediate steps including less stable com-

pounds of biosynthetic pathways [63–66].

Conclusions
Evidence is increasing that endophytic bacteria have a

high potential in producing a wide range of so far unde-

scribed metabolites. Partly, the concentration and circum-

stances under which these metabolites are produced are

not well understood but the genomic revolution together

with the steady development of analytic techniques will

certainly accelerate the discovery of such cryptic com-

pounds and the future will show how many novel chemi-

cal structures and compounds are encoded in endophytic

bacterial genomes. Moreover, other known (plant) metab-

olites might turn out to be partly or fully derived from

endophytic or associated bacterial metabolism. It remains

to be seen how widespread this phenomenon might be or

if it is restricted to genera of the Rubiaceae and certain

fragrants. An additional challenge in future research is the

detection and characterization of metabolites formed in

niches on and in plants or under specific circumstances

under natural conditions only, as indicated by the only

partial realization of the metabolic potential of bacteria

grown in vitro.
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