

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΑΝΕΠΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ

«Μελέτη - διαστασιολόγηση αυτόνομων Φ/Β συστημάτων»

Ιωάννης Κατσίγιαννης

ΠΡΟΓΡΑΜΜΑ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗΣ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ

«ΦΩΤΟΒΟΛΤΑΪΚΑ ΕΝΕΡΓΕΙΑΚΑ ΣΥΣΤΗΜΑΤΑ»

Το πρόγραμμα συνδιοργανώνεται από:

Το Τμήμα Ηλεκτρολόγων Μηχανικών του Τ.Ε.Ι. Κρήτης

Το Τμήμα Χημείας του Πανεπιστημίου Κρήτης

Η ΠΡΑΞΗ ΥΛΟΠΟΙΕΙΤΑΙ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ «Εκπαίδευση και Δια Βίου Μάθηση» ΚΑΙ ΣΥΓΧΡΗΜΑΤΟΔΟΤΕΙΤΑΙ ΑΠΟ ΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ – ΕΚΤ) ΚΑΙ ΑΠΟ ΕΘΝΙΚΟΥΣ ΠΟΡΟΥΣ ΕΣΠΑ 2007-2013

Στοιχεία επικοινωνίας

Εισηγητής:	Ιωάννης Κατσίγιαννης
Εργαστήριο	
Ίδρυμα:	Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης
Τηλ:	2821023046
Fax:	
Email:	katsigiannis@chania.teicrete.gr

Περιεχόμενα

Κεφάλαιο 1. Κατηγορίες Φ/Β συστημάτων	2
Κεφάλαιο 2. Εξαρτήματα αυτόνομων Φ/Β συστημάτων	5
2.1 Εισαγωγή	5
2.2 Μπαταρίες	5
2.3 Μετατροπέας συνεχούς τάσης σε συνεχή τάση	6
2.3.1 Μετατροπέας DC/DC υποβιβασμού τάσης	7
2.3.2 Μετατροπέας DC/DC ανύψωσης τάσης	8
2.4 Ελεγκτής φόρτισης	9
2.4.1 Προστασία από υπερφόρτιση	9
2.4.2 Προστασία από υπερεκφόρτιση	10
2.4.3 Σχεδιασμοί ελεγκτών φόρτισης	11
2.4.3α Παράλληλος ελεγκτής φόρτισης	11
2.4.36 Σε σειρά ελεγκτής φόρτισης	12
2.4.4 Σχεδιασμοί ελεγκτών φόρτισης	13
2.4.5 Διαστασιολόγηση των ελεγκτών φόρτισης	13
2.4.6 Λειτουργία χωρίς ελεγκτή φόρτισης	14
2.5 Αντιστροφέας	14
2.6 Μετατροπέας AC/DC	16
2.7 Ηλεκτροπαραγωγό ζεύγος (Η/Ζ)	17
Κεφάλαιο 3. Διαστασιολόγηση αυτόνομου Φ/Β συστήματος	18
3.1 Εισαγωγή	18
3.2 Φορτία	19
3.3 Επιμέρους τμήματα αυτόνομου Φ/Β συστήματος	20
3.3.1 Φ/Β συστοιχία	20
3.3.2 Μπαταρίες και αυτονομία	21
3.3.3 Ηλεκτροπαραγωγό ζεύγος (Η/Ζ)	22
3.3.4 Υπόλοιπα τμήματα Φ/Β συστήματος	23
3.4 Παράδειγμα εφαρμογής	23
Παράρτημα 1. Δεδομένα ηλιακής ακτινοβολίας στην Ελληνική Επικράτεια	27

Κεφάλαιο 1. Κατηγορίες Φ/Β συστημάτων

Τα Φ/Β συστήματα μπορούν να ταξινομηθούν σε τέσσερις βασικές κατηγορίες:

- 1. Αυτόνομα Φ/Β συστήματα με συστοιχία απευθείας συνδεδεμένη σε DC φορτίο
- Αυτόνομα Φ/Β συστήματα με αποθήκευση ηλεκτρικής ενέργειας και τροφοδοσία φορτίων DC και AC
- 3. Αυτόνομα Φ/Β υβριδικά συστήματα
- 4. Φ/Β συστήματα συνδεδεμένα στο εθνικό ή τοπικό δίκτυο

Κάθε μία από τις παραπάνω κατηγορίες μπορεί να περιλαμβάνει επιπλέον χαρακτηριστικά λειτουργίας, τα οποία εμφανίζονται στο Σχήμα 1.1.

Σχήμα 1.1: Κατηγορίες και λειτουργία Φ/Β συστημάτων

Η 1^η κατηγορία (απευθείας συνδεδεμένα αυτόνομα Φ/Β συστήματα σε DC φορτίο – Σχήμα 1.2) είναι και η απλούστερη, αλλά χρησιμοποιείται σε έναν μικρό αριθμό αυτόνομων Φ/Β συστημάτων με μικρές απαιτήσεις ισχύος.

Σχήμα 1.2: Απευθείας συνδεδεμένα αυτόνομα Φ/Β συστήματα σε DC φορτίο

Η 2^η κατηγορία (αυτόνομα Φ/Β συστήματα με αποθήκευση και φορτία DC και AC – Σχήμα 1.3) περιλαμβάνει συσσωρευτές και αντιστροφέα (inverter), ενώ μπορεί να εξυπηρετήσει τόσο φορτία DC, όσο και AC.

Σχήμα 1.3: Αυτόνομα Φ/Β συστήματα με αποθήκευση και φορτία DC και AC

Το βασικό επιπλέον χαρακτηριστικό της 3^{ης} κατηγορίας (αυτόνομα Φ/Β υβριδικά συστήματα – Σχήμα 1.4) είναι η προσθήκη περισσότερων τεχνολογιών παραγωγής ενέργειας στο αυτόνομο σύστημα (συνήθως ηλεκτροπαραγωγά ζεύγη – Η/Ζ), έχοντας ως στόχο τη βελτίωση της αξιοπιστίας και τη μείωση του συνολικού κόστους.

Σχήμα 1.4: Αυτόνομα Φ/Β υβριδικά συστήματα

Σχήμα 1.5: Φ/Β συστήματα συνδεδεμένα στο εθνικό ή τοπικό δίκτυο

Η 4^η κατηγορία (Σχήμα 1.5) είναι τελείως διαφορετικής αρχιτεκτονικής και περιλαμβάνει Φ/Β συστήματα συνδεδεμένα στο εθνικό ή τοπικό δίκτυο. Οι σημειώσεις της Ενότητας αυτής αφορούν τις τρεις πρώτες κατηγορίες Φ/Β συστημάτων.

Κεφάλαιο 2. Εξαρτήματα αυτόνομων Φ/Β συστημάτων

2.1 Εισαγωγή

Τα βασικά εξαρτήματα των αυτόνομων Φ/Β συστημάτων, τα οποία θα αναλυθούν παρακάτω, είναι τα ακόλουθα:

- Μπαταρίες (συσσωρευτές)
- Μετατροπείς συνεχούς τάσης σε συνεχή τάση (DC/DC converters)
- Ελεγκτές φόρτισης
- Αντιστροφείς (inverters)
- Μετατροπείς AC/DC
- Ντηζελογεννήτριες (Η/Ζ)

2.2 Μπαταρίες

Οι μπαταρίες αποτελούν τη συνηθέστερη μέθοδο αποθήκευσης ενέργειας σε αυτόνομα Φ/Β συστήματα. Λεπτομέρειες για τον τρόπο λειτουργίας και τα χαρακτηριστικά των μπαταριών έχουν δοθεί στην *Ενότητα 3.1: Συστήματα αποθήκευσης ενέργειας*. Σε αυτό το σημείο θα αναφερθούν συνοπτικά κάποια βασικά στοιχεία που είναι απαραίτητα για την κατανόηση των όσων αναλύονται στη συνέχεια.

Σχήμα 2.1: Φόρτιση μπαταρίας

Ο συνηθέστερος τύπων μπαταριών σε Φ/Β συστήματα είναι οι μπαταρίες μολύβδου-οξέος λόγω του μικρότερου κόστους και της αξιοπιστίας τους. Σε μια μπαταρία λαμβάνουν χώρα οι διαδικασίες της *φόρτισης* και της *εκφόρτισης*. Κατά τη φόρτιση γίνεται μετατροπή της ηλεκτρικής ενέργειας σε χημική, ενώ κατά την εκφόρτιση γίνεται μετατροπή της χημικής ενέργειας σε ηλεκτρική, κατά το πέρασμα του (συνεχούς) ρεύματος από την μπαταρία. Τα δύο πιο βασικά μεγέθη σε μια μπαταρία είναι η χωρητικότητα *C* (σε Ah) που αντιπροσωπεύει την ποσότητα φορτίου που μια μπαταρία μπορεί να παρέχει κατά τη διάρκεια μιας εκφόρτισης, και η τάση ναξάνεται η τάση της μπαταρίας (Σχήμα 2.1), ενώ κατά την εκφόρτιση μειώνεται η τάση

της μπαταρίας (Σχήμα 2.2). Η λειτουργία της μπαταρίας επηρεάζεται και από το ρυθμό εκφόρτισης/φόρτισης, που αντιπροσωπεύει το ρεύμα στο οποίο φορτίζονται/εκφορτίζονται οι μπαταρίες για συγκεκριμένο αριθμό ωρών (π.χ., *C*/10 για 10 ώρες, *C*/100 για 100 ώρες, κλπ).

Σχήμα 2.2: Εκφόρτιση μπαταρίας

2.3 Μετατροπέας συνεχούς τάσης σε συνεχή τάση

Σε ένα Φ/Β σύστημα η παραγόμενη τάση από τα Φ/Β στοιχεία δεν έχει σταθερή τιμή, αλλά μεταβάλλεται γύρω από μια μέση τιμή. Για να σταθεροποιηθεί η τάση εξόδου της Φ/Β γεννήτριας και να υπάρχει βέλτιστη εκμετάλλευση της παραγόμενης ενέργειας, χρησιμοποιούνται μετατροπείς συνεχούς τάσης σε συνεχή τάση (DC/DC converters). Οι μετατροπείς μπορούν να χωριστούν σε κατηγορίες ανάλογα με το αν η τάση εξόδου που βγάζουν είναι μεγαλύτερη ή μικρότερη από την τάση εισόδου και ακόμα ανάλογα με την περιοχή.

Ένας μετατροπέας DC/DC, μόνος του ή σε συνδυασμό με άλλους τύπους (DC/AC ή AC/DC), μπορεί να αποτελεί χωριστή μονάδα ή να αποτελεί τμήμα του ελεγκτή φόρτισης. Στην τελευταία περίπτωση, η λειτουργία του έγκειται στο να προσαρμόζει την τάση του συστήματος παραγωγής ηλεκτρικής ενέργειας στην τάση του συστήματος αποθήκευσης, ώστε να εκμεταλλευόμαστε πλήρως την παραγόμενη Φ/Β ενέργεια.

Η μετατροπή μιας συνεχούς τάσης V_i , σε συνεχή V_o ($V_o \neq V_i$), βασίζεται στη χρήση υψίσυχνων διακοπτικών στοιχείων κυκλωμάτων (π.χ., transistors, thyristors), με τα οποία μπορούμε να διαχειριζόμαστε μεγάλη ισχύ με ελάχιστες απώλειες. Η μονάδα μετατρέπει συνεχή τάση σε συνεχή, μεγαλύτερης ή μικρότερης τιμής, ανάλογα με τις απαιτήσεις, συμβάλλοντας στη μείωση στη γραμμή μεταφοράς. Στο χώρο του Φ/Β πεδίου, τα Φ/Β πλαίσια συνδέονται σε σειρά και αν απαιτείται παράλληλα, ώστε η παραγόμενη σε αυτά ηλεκτρική ενέργεια να μεταφέρεται με όσο γίνεται υψηλότερη τάση, πάντα μέσα στα επιτρεπτά όρια, ώστε το ρεύμα (DC) στη γραμμή μεταφοράς να είναι χαμηλό και αντίστοιχα χαμηλές οι απώλειες μεταφοράς ενέργειας. Σε συστήματα μεγαλύτερα των μερικών kW_p η τάση εξόδου συστοιχίας βρίσκεται συνήθως περί τα 300V, με όριο τα 600V. Ο μετατροπέας DC/DC προσαρμόζει την τάση της συστοιχίας ώστε να υπάρχει πλήρης εκμετάλλευση της ενέργειας και επιπλέον να μη δημιουργηθούν συνθήκες υπέρτασης στην έξοδό του.

Στη διάταξη μπορεί να ενσωματωθεί μικροελεγκτής, ο οποίος συνεχώς ελέγχει και επιβάλει προσαρμογή του σημείου λειτουργίας τους συστήματος παραγωγής ενέργειας, με το σημείο μέγιστης ισχύος, που καθορίζουν οι επικρατούσες συνθήκες φωτισμού και θερμοκρασίας περιβάλλοντος. Η πρόσθετη αυτή διάταξη ονομάζεται ανιχνευτής σημείου μέγιστης ισχύος (maximum power point tracker – MPPT).

2.3.1 Μετατροπέας DC/DC υποβιβασμού τάσης

Ένας μετατροπέας DC/DC υποβιβασμού τάσης παράγει μια μέση τάση εξόδου χαμηλότερη από τη DC τάση εισόδου V_d. Η τάση εξόδου κυμαίνεται μεταξύ 0 και V_d, για τις διακυμάνσεις της τάσης χρησιμοποιείται ένα χαμηλοπερατό φίλτρο το οποίο αποτελείται από ένα πηνίο και έναν πυκνωτή (Σχήμα 2.3).

Σχήμα 2.3: Μετατροπέας DC/DC υποβιβασμού τάσης

Σχήμα 2.4: Συμπεριφορά της τάσης σε μετατροπέα DC/DC υποβιβασμού τάσης

Όταν ο διακόπτης είναι κλειστός (ON), το ρεύμα ρέει μέσω του πηνίου και η δίοδος είναι ανάστροφα πολωμένη. Τότε το πηνίο αποθηκεύει ενέργεια. Όταν ο διακόπτης είναι ανοικτός (OFF) το ρεύμα του πηνίου πολώνει ορθά την δίοδο. Η τάση στην έξοδο *V*_{load} δίνεται στο Σχήμα 2.4, με βάση τις παραδοχές ότι:

- 1. ο διακόπτης είναι ιδανικός
- 2. η τάση στη είσοδο είναι συνεχής
- 3. στην έξοδο έχουμε ένα καθαρά ωμικό φορτίο

2.3.2 Μετατροπέας DC/DC ανύψωσης τάσης

Σε ένα μετατροπέα ανύψωσης τάσης, η τάση εξόδου είναι πάντα μεγαλύτερη από την τάση εισόδου. Όταν ο διακόπτης είναι κλειστός, η δίοδος είναι ανάστροφα πολωμένη, απομονώνοντας έτσι τη βαθμίδα εξόδου. Η είσοδος παρέχει ενέργεια στο πηνίο. Όταν ο διακόπτης είναι ανοιχτός η βαθμίδα εξόδου απορροφά ενέργεια από το πηνίο και από την είσοδο (Σχήμα 2.5). Στη μόνιμη κατάσταση ισορροπίας ο πυκνωτής εξομάλυνσης θεωρείται πολύ μεγάλος ώστε να εξασφαλίζεται μια σταθερή τάση εξόδου. Στο Σχήμα 2.6 παρουσιάζεται η συμπεριφορά της τάσης σε έναν μετατροπέα DC/DC ανύψωσης τάσης.

Σχήμα 2.5: Μετατροπέας DC/DC ανύψωσης τάσης

Σχήμα 2.6: Συμπεριφορά της τάσης σε μετατροπέα DC/DC ανύψωσης τάσης

2.4 Ελεγκτής φόρτισης

Η κύρια λειτουργία ενός ελεγκτή φόρτισης σε ένα αυτόνομο Φ/Β σύστημα είναι να διατηρήσει την μπαταρία στην υψηλότερη δυνατή στάθμη φόρτισης ενώ ταυτόχρονα θα την προστατεύει από την υπερφόρτιση και από την υπερεκφόρτιση. Παρόλο που μερικά Φ/Β συστήματα μπορούν να σχεδιαστούν αποδοτικά χωρίς τη χρήση ελεγκτή φόρτισης, σε κάθε σύστημα που έχει απρόβλεπτα φορτία, ανθρώπινη παρέμβαση, βελτιστοποιημένη ή κατώτερου μεγέθους μπαταρία αποθήκευσης (για ελαχιστοποίηση του αρχικού κόστους) είναι τυπικά απαραίτητος ένας ελεγκτής φόρτισης της μπαταρίας. Ο αλγόριθμος ή η στρατηγική ελέγχου ενός ελεγκτή φόρτισης της μπαταρίας καθορίζει την αποδοτικότητα της φόρτισης της μπαταρίας και της αξιοποίησης της Φ/Β συστοιχίας και, τελικά, της ικανότητας του συστήματος να ικανοποιήσει τις απαιτήσεις του φορτίου. Επιπλέον χαρακτηριστικά όπως είναι η αντιστάθμιση της θερμοκρασίας, συναγερμοί, μετρητές, απομακρυσμένοι αισθητήρες τάσης και ειδικοί αλγόριθμοι μπορούν να ενισχύσουν την ικανότητα ενός ελεγκτή φόρτισης να διατηρεί την καλή υγεία και να επιμηκύνει τη διάρκεια ζωής της μπαταρίας, καθώς και να παρέχουν μια ένδειξη της λειτουργικής κατάστασης στον επιμελητή του συστήματος.

Για την επιλογή του ελεγκτή φόρτισης, η ονομαστική του ισχύς καθορίζεται μεγαλύτερη ή ίση με αυτή της Φ/Β γεννήτριας, ενώ οι τιμές τάσεως εισόδου και εξόδου αντιστοιχούν στην τιμή της τάσεως της Φ/Β γεννήτριας και της συστοιχίας των συσσωρευτών. Σε περιπτώσεις απαίτησης μεγάλης έντασης ηλεκτρικού ρεύματος επιλέγεται η λύση περισσότερων μονάδων συνδεδεμένων εν παραλλήλω.

Οι βασικές λειτουργίες των ελεγκτών φόρτισης μπαταρίας σε Φ/Β σύστημα είναι οι ακόλουθες:

- Αποτροπή της υπερφόρτισης της μπαταρίας: περιορισμός της ενέργειας με την οποία τροφοδοτείται η μπαταρία από τη Φ/Β συστοιχία όταν η μπαταρία γίνει πλήρως φορτισμένη
- Αποτροπή της υπερεκφόρτισης της μπαταρίας: αποσύνδεση της μπαταρίας από τα ηλεκτρικά φορτία όταν αυτή φτάνει σε χαμηλή στάθμη φόρτισης
- Παροχή λειτουργιών ελέγχου του φορτίου: αυτόματη σύνδεση και αποσύνδεση ενός ηλεκτρικού φορτίου σε συγκεκριμένο χρόνο, για παράδειγμα, λειτουργία ενός φορτίου φωτισμού από τη δύση έως την ανατολή του ηλίου

2.4.1 Προστασία από υπερφόρτιση

Ένα απομακρυσμένο αυτόνομο Φ/Β σύστημα με μπαταρίες αποθήκευσης σχεδιάζεται έτσι ώστε να ικανοποιεί τις απαιτήσεις του ηλεκτρικού φορτίου κάτω από τις ευλόγως καθορισμένες χειρότερες συνθήκες, συνήθως για το μήνα του χρόνου με τη μικρότερη αναλογία ηλιακής ακτινοβολίας – φορτίου. Όταν η συστοιχία λειτουργεί κάτω από καλές έως εξαιρετικές καιρικές συνθήκες (τυπικά κατά τη διάρκεια του καλοκαιριού), η ενέργεια που παράγεται από τη συστοιχία, συχνά υπερβαίνει τις απαιτήσεις του φορτίου. Για να αποφευχθεί βλάβη της μπαταρίας από υπερφόρτιση, χρησιμοποιείται ένας ελεγκτής φόρτισης για να την προστατέψει. Ο ελεγκτής φόρτισης θα πρέπει να προστατεύει το σύστημα από υπερφόρτιση ανεξάρτητα από το σχεδιασμό/διαστασιολόγηση του συστήματος και τις εποχιακές αλλαγές στο προφίλ του φορτίου, τις θερμοκρασίες λειτουργίας και την ηλιακή ακτινοβολία.

Η ρύθμιση του φορτίου είναι η πρωταρχική λειτουργία ενός ελεγκτή φόρτισης μιας μπαταρίας και ίσως το πιο σημαντικό θέμα που συνδέεται με τις επιδόσεις και τη ζωή της μπαταρίας. Ο σκοπός ενός ελεγκτή φόρτισης είναι να τροφοδοτεί τη μπαταρία με ισχύ, με έναν τρόπο που να επαναφορτίζει πλήρως την μπαταρία αλλά να μην την υπερφορτίζει. Χωρίς έλεγχο της φόρτισης, το ρεύμα από τη συστοιχία θα ρέει μέσα στη μπαταρία ανάλογα με την ηλιακή ακτινοβολία, είτε η μπαταρία χρειάζεται φόρτιση είτε όχι. Εάν η μπαταρία είναι πλήρως φορτισμένη, άναρχη φόρτιση θα έχει ως αποτέλεσμα η μπαταρία να φτάσει υπερβολικά υψηλά επίπεδα που θα προκαλέσουν σοβαρή αεριοποίηση, απώλεια ηλεκτρολύτη, εσωτερική θέρμανση και επιταχυνόμενη διάβρωση του πλέγματος. Στις περισσότερες περιπτώσεις, εάν μια μπαταρία δεν προστατεύεται από υπερφόρτιση σε ένα Φ/Β σύστημα, πρώιμη αποτυχία της μπαταρίας και απώλεια φορτίου είναι πιθανό να συμβούν.

Οι ελεγκτές φόρτισης αποτρέπουν την υπέρμετρη υπερφόρτιση της μπαταρίας διακόπτοντας ή περιορίζοντας τη ροή ρεύματος από τη συστοιχία στη μπαταρία όταν αυτή φτάνει στην κατάσταση πλήρους φόρτισης. Η ρύθμιση της φόρτισης επιτυγχάνεται συνήθως με τον περιορισμό της τάσης της μπαταρίας σε μια μέγιστη τιμή, που συχνά αναφέρεται ως σημείο ρύθμισης της τάσης (voltage regulation set point – VR). Κάποιες φορές, χρησιμοποιούνται άλλες μέθοδοι όπως η ενσωμάτωση των Ah μέσα και έξω από τη μπαταρία. Ανάλογα με τη μέθοδο ρύθμισης, το ρεύμα μπορεί να περιορίζεται καθώς διατηρείται η τάση ρύθμισης, ή να παραμένει αποσυνδεδεμένο μέχρι η τάση της μπαταρίας πέσει στο σημείο τάσης επανασύνδεσης της συστοιχίας (array reconnect voltage – ARV).

2.4.2 Προστασία από υπερεκφόρτιση

Σε περιόδους που η ηλιακή ακτινοβολία είναι κάτω από το μέσο όρο και/ή σε περιόδους υπερβολικής χρήσης ηλεκτρικού φορτίου, η ενέργεια που παράγεται από τη Φ/Β συστοιχία μπορεί να μην επαρκεί για να διατηρεί την μπαταρία πλήρως επαναφορτισμένη. Όταν μια μπαταρία εκφορτίζεται βαθειά, η αντίδραση στη μπαταρία συμβαίνει κοντά στα ηλεκτρόδια και αποδυναμώνει το δεσμό μεταξύ ενεργών υλικών και ηλεκτροδίων. Όταν μια μπαταρία υπόκειται σε επαναλαμβανόμενη υπερβολική εκφόρτιση, θα υπάρξει απώλεια χωρητικότητας και ζωής τελικά. Για την προστασία των μπαταριών από την υπερεκφόρτιση, οι περισσότεροι ελεγκτές φόρτισης περιλαμβάνουν μια προαιρετική λειτουργία αποσύνδεσης των φορτίων του συστήματος όταν η μπαταρία φτάνει σε μια χαμηλή τάση ή σε μια χαμηλή στάθμη φόρτισης.

Σε μερικές περιπτώσεις, τα ηλεκτρικά φορτία σε ένα Φ/Β σύστημα πρέπει να έχουν επαρκώς υψηλή τάση για να λειτουργήσουν. Εάν οι μπαταρίες εκφορτίζονται πολύ βαθειά, η τάση πέφτει κάτω από το λειτουργικό εύρος των φορτίων και επομένως μπορεί να υπολειτουργούν ή ακόμα να μη λειτουργούν και καθόλου. Αυτός είναι ένας ακόμα σημαντικός λόγος για τον οποίο πρέπει να περιορίζεται η υπερεκφόρτιση της μπαταρίας στα Φ/Β συστήματα.

Η προστασία από υπερεκφόρτιση στους ελεγκτές φόρτισης συνήθως επιτυγχάνεται ανοικτοκυκλώνοντας τη σύνδεση μεταξύ της μπαταρίας και του ηλεκτρικού φορτίου όταν η μπαταρία φτάνει σε ένα προκαθορισμένο ή ρυθμιζόμενο σημείο χαμηλής τάσης αποσύνδεσης φορτίου (low voltage load disconnect set point– LVD). Οι περισσότεροι ελεγκτές φόρτισης έχουν μια λυχνία ένδειξης ή έναν ηχητικό συναγερμό για να ειδοποιεί το χρήστη/χειριστή του συστήματος στη

συνθήκη αποσύνδεσης του φορτίου. Όταν η μπαταρία έχει επαναφορτιστεί σε ένα συγκεκριμένο επίπεδο, τα φορτία συνδέονται εκ νέου στην μπαταρία.

Μη κρίσιμα φορτία του συστήματος προστατεύονται γενικά από υπερεκφόρτιση της μπαταρίας με σύνδεση στο κύκλωμα χαμηλής τάσης αποσύνδεσης φορτίου του ελεγκτή φόρτισης. Εάν η τάση της μπαταρίας πέσει σε ένα χαμηλό αλλά ασφαλές επίπεδο, μπορεί να ανοίξει ένα ρελέ και να αποσυνδέσει το φορτίο, αποτρέποντας περαιτέρω εκφόρτιση της μπαταρίας. Τα κρίσιμα φορτία μπορούν να συνδεθούν απευθείας με την μπαταρία, έτσι ώστε να μην αποσυνδέονται αυτόματα από τον ελεγκτή φόρτισης. Ωστόσο, υπάρχει ο κίνδυνος αυτά τα κρίσιμα φορτία να υπερεκφορτίσουν τη μπαταρία. Ένας συναγερμός ή μια άλλη μέθοδος ανάδρασης του χρήστη πρέπει να περιλαμβάνεται για να δίνει πληροφορίες για την κατάσταση της μπαταρίας αν κρίσιμα σημεία είναι απευθείας συνδεδεμένα στη μπαταρία.

2.4.3 Σχεδιασμοί ελεγκτών φόρτισης

Υπάρχουν δύο βασικές μέθοδοι για τον έλεγχο ή τη ρύθμιση της φόρτισης μιας μπαταρίας από ένα Φ/Β πλαίσιο ή συστοιχία: ρύθμιση *σε σειρά* και *παράλληλα*. Και οι δύο μέθοδοι χρησιμοποιούνται αποδοτικά, κάθε μια από αυτές όμως μπορεί να ενσωματώσει έναν αριθμό παραλλαγών που μεταβάλλουν την απόδοση και τη δυνατότητα εφαρμογής τους. Απλοί σχεδιασμοί διακόπτουν ή αποσυνδέουν τη συστοιχία από τη μπαταρία με βάση συγκεκριμένες ρυθμίσεις, ενώ πιο εξελιγμένοι σχεδιασμοί περιορίζουν το ρεύμα στη μπαταρία με γραμμικό τρόπο που διατηρεί μια υψηλή τάση μπαταρίας.

Ο αλγόριθμος ή η στρατηγική ελέγχου του ελεγκτή φόρτισης μιας μπαταρίας καθορίζει την αποδοτικότητα της φόρτισης της μπαταρίας και την αξιοποίηση της Φ/Β συστοιχίας και τελικά την ικανότητα του συστήματος να ικανοποιήσει τις απαιτήσεις του ηλεκτρικού φορτίου. Πιο σημαντικά, ο αλγόριθμος του ελεγκτή ορίζει τον τρόπο με τον οποίο η ισχύς από τη Φ/Β συστοιχία εφαρμόζεται στην μπαταρία του συστήματος.

2.4.3α Παράλληλος ελεγκτής φόρτισης

Εφόσον τα Φ/Β στοιχεία έχουν σχεδιασμό που να περιορίζει το ρεύμα (αντίθετα με τις μπαταρίες), τα Φ/Β πλαίσια και οι συστοιχίες μπορούν να βραχυκυκλωθούν χωρίς να υποστούν καμία ζημιά. Η ικανότητα βραχυκύκλωσης των Φ/Β πλαισίων-συστοιχιών είναι η βάση της λειτουργίας των παράλληλων ελεγκτών.

Ο παράλληλος ελεγκτής (Σχήμα 2.7) ρυθμίζει τη φόρτιση μιας μπαταρίας από τη Φ/Β συστοιχία, βραχυκυκλώνοντάς την εσωτερικά στον ελεγκτή. Όλοι οι παράλληλοι ελεγκτές πρέπει να έχουν μια δίοδο κλειδώματος σε σειρά μεταξύ της μπαταρίας και του παράλληλου στοιχείου για να αποτρέπουν βραχυκύκλωμα στη μπαταρία όταν ρυθμίζεται η συστοιχία. Επειδή υπάρχει μια πτώση τάσης μεταξύ της συστοιχίας και του ελεγκτή και λόγω της καλωδίωσης και της αντίστασης του παράλληλου στοιχείου, η συστοιχία δε βραχυκυκλώνεται ποτέ πλήρως, με αποτέλεσμα να υπάρχουν απώλειες ενέργειας μέσα στον ελεγκτή. Για το λόγο αυτό, οι περισσότεροι παράλληλοι ελεγκτές χρειάζονται μια ψύκτρα για τη μείωση της θερμοκρασίας και η χρήση τους περιορίζεται γενικά σε Φ/Β συστήματα με ρεύματα συστοιχίας μικρότερα των 20 Α. Το στοιχείο ρύθμισης στους παράλληλους ελεγκτές είναι συνήθως ένα transistor ισχύος ή MOSFET, ανάλογα με το σχεδιασμό.

Σχήμα 2.7: Παράλληλος ελεγκτής φόρτισης

2.4.36 Σε σειρά ελεγκτής φόρτισης

Όπως δηλώνει και το όνομά του, αυτός ο τύπος ελεγκτή λειτουργεί σε σειρά μεταξύ της συστοιχίας και της μπαταρίας και όχι παράλληλα όπως ο παράλληλος ελεγκτής. Υπάρχουν μερικές παραλλαγές σε αυτόν τον τύπο ελεγκτή και όλες χρησιμοποιούν ένα στοιχείο ρύθμισης σε σειρά μεταξύ της μπαταρίας και της συστοιχίας. Παρόλο που αυτός ο τύπος ελεγκτή χρησιμοποιείται σε μικρά Φ/Β συστήματα, αποτελεί επίσης μια πρακτική επιλογή για μεγαλύτερα συστήματα λόγω των περιορισμών του ρεύματος στους παράλληλους ελεγκτές.

Σε ένα σχεδιασμό ελεγκτή σε σειρά (Σχήμα 2.8), ένα ρελέ ή ένας διακόπτης στερεάς κατάστασης είτε ανοίγει το κύκλωμα μεταξύ της συστοιχίας και της μπαταρίας για να διακόψει τη φόρτιση, είτε περιορίζει το ρεύμα με ένα γραμμικό τρόπο για να κρατήσει την τάση της μπαταρίας σε μια υψηλή τιμή. Στον απλούστερο εν σειρά σχεδιασμό, τον διακοπτικό σχεδιασμό, ο ελεγκτής επανασυνδέει τη συστοιχία στη μπαταρία όταν η μπαταρία πέφτει στο σημείο τάσης επανασύνδεσης της συστοιχίας. Καθώς αυτοί οι κύκλοι on – off συνεχίζονται, ο χρόνος "ανοίγματος" γίνεται ολοένα και μικρότερος καθώς η μπαταρία πλησιάζει την πλήρη φόρτιση.

Σχήμα 2.8: Σε σειρά ελεγκτής φόρτισης

Επειδή ο εν σειρά ελεγκτής ανοικτοκυκλώνει τη συστοιχία αντί να τη βραχυκυκλώνει όπως ο παράλληλος ελεγκτής, δεν χρειάζεται δίοδος κλειδώματος για την αποφυγή βραχυκυκλώματος στη μπαταρία όταν ο ελεγκτής ρυθμίζει τη φόρτιση.

2.4.4 Σχεδιασμοί ελεγκτών φόρτισης

Η επιλογή και η διαστασιολόγηση των ελεγκτών φόρτισης στα Φ/Β συστήματα περιλαμβάνει την εξέταση πολλών παραγόντων ανάλογα με την πολυπλοκότητα και τις επιλογές ελέγχου που απαιτούνται. Παρόλο που η πρωταρχική λειτουργία είναι να αποτραπεί η υπερφόρτιση της μπαταρίας, υπάρχουν μερικές ακόμα λειτουργίες όπως είναι η αποσύνδεση φορτίου στη χαμηλή τάση, η ρύθμιση και ο έλεγχος του φορτίου, ο έλεγχος των εφεδρικών πηγών ενέργειας, η εκτροπή της ενέργειας σε βοηθητικά φορτία και η παρακολούθηση του συστήματος. Ο σχεδιαστής καλείται να αποφασίσει ποιες επιλογές χρειάζονται για να καλύπτονται οι ανάγκες μιας συγκεκριμένης εφαρμογής. Παρακάτω παρατίθενται ορισμένα από τα βασικά ζητήματα που λαμβάνονται υπόψη κατά την επιλογή των ελεγκτών φόρτισης για τα Φ/Β συστήματα:

- Η τάση του συστήματος
- Τα ρεύματα της Φ/Β συστοιχίας και του φορτίου
- Ο τύπος και μέγεθος της μπαταρίας
- Ο σχεδιασμός του αλγορίθμου ρύθμισης και του στοιχείου μεταγωγής
- Τα σημεία ρύθμισης και αποσύνδεσης φορτίου
- Οι περιβαλλοντικές συνθήκες λειτουργίας
- Ο μηχανολογικός σχεδιασμός
- Οι δείκτες συστήματος, οι συναγερμοί και οι μετρητές
- Τα υπερρεύματα, οι αποσυνδέσεις και οι συσκευές προστασίας από υπερτάσεις
- Το κόστος, η εγγύηση και η διαθεσιμότητα

2.4.5 Διαστασιολόγηση των ελεγκτών φόρτισης

Οι ελεγκτές φόρτισης πρέπει να διαστασιολογούνται με βάση τις τάσεις και τα ρεύματα που αναμένονται κατά τη διάρκεια της λειτουργίας του Φ/Β συστήματος. Ο ελεγκτής δεν πρέπει μόνο να είναι σε θέση να χειρίζεται τυπικά ή ονομαστικά ρεύματα και τάσεις, αλλά πρέπει επίσης να είναι διαστασιολογημένος έτσι ώστε να χειρίζεται αναμενόμενες συνθήκες αιχμής από τη Φ/Β συστοιχία ή από το ηλεκτρικό φορτίο που μπορεί να συνδέεται στον ελεγκτή. Είναι πάρα πολύ σημαντικό, ο ελεγκτής να είναι επαρκώς διαστασιολογημένος για την εφαρμογή για την οποία προορίζεται. Εάν ένας ελεγκτής κάτω του απαιτούμενου μεγέθους χρησιμοποιείται και αποτύχει κατά τη λειτουργία του, το κόστος επισκευής και αντικατάστασης θα είναι υψηλότερο από ότι θα είχε ξοδευτεί για έναν ελεγκτή που θα ήταν αρχικά μεγαλύτερου μεγέθους από ότι θα χρειαζόταν για την εφαρμογή.

Γενικά, είναι αναμενόμενο από ένα Φ/Β πλαίσιο ή συστοιχία να μην παράγει περισσότερο από το ονομαστικό μέγιστο ρεύμα σε ακτινοβολία 1000 W/m² και θερμοκρασία πλαισίου 25°C. Ωστόσο, λόγω πιθανών αντανακλάσεων από σύννεφα, νερό ή χιόνι, τα επίπεδα ηλιακού φωτός πάνω στη συστοιχία μπορεί να ενισχυθούν μέχρι και 1.4 φορές της ονομαστικής τιμής 1000 W/m² που χρησιμοποιείται για να εκτιμήσουμε την απόδοση του Φ/Β πλαισίου. Το αποτέλεσμα είναι ότι το μέγιστο ρεύμα αιχμής) της συστοιχίας θα μπορούσε να είναι έως 1.4 φορές του μέγιστου ονομαστικού εάν υπάρχουν συνθήκες αντανάκλασης. Για το λόγο αυτό, οι εκτιμήσεις για το ρεύμα αιχμής της συστοιχίας στους ελεγκτές φόρτισης πρέπει να γίνονται για το 140% περίπου των εκτιμήσεων των μέγιστων ονομαστικών ρευμάτων για τα Φ/Β πλαίσια ή τη Φ/Β συστοιχία.

Το μέγεθος ενός ελεγκτή καθορίζεται πολλαπλασιάζοντας το μέγιστο ονομαστικό ρεύμα μιας συστοιχίας επί τον παράγοντα "ενίχυσης". Το συνολικό ρεύμα από μια συστοιχία δίνεται από τον αριθμό των πλαισίων ή σειρών που είναι συνδεδεμένα παράλληλα, πολλαπλασιαζόμενο με το ρεύμα του πλαισίου. Είναι χρήσιμο να χρησιμοποιείται το ρεύμα βραχυκύκλωσης (*I*_{sc}) αντί για το ρεύμα μέγιστης ισχύος (*I*_m). Με αυτό τον τρόπο, καλύπτονται ασφαλώς οι ελεγκτές παράλληλου τύπου που λειτουργούν τη συστοιχία σε συνθήκες ρεύματος βραχυκυκλώματος.

2.4.6 Λειτουργία χωρίς ελεγκτή φόρτισης

Στις περισσότερες περιπτώσεις, ένας ελεγκτής φόρτισης είναι βασική απαίτηση στα αυτόνομα Φ/Β συστήματα. Ωστόσο, υπάρχουν ειδικές περιπτώσεις όπου ένας ελεγκτής φόρτισης μπορεί να μη χρειάζεται σε μικρά συστήματα με καλά ορισμένα φορτία. Φάροι και βοηθήματα ναυσιπλοΐας είναι μια δημοφιλής Φ/Β εφαρμογή που λειτουργεί χωρίς ρύθμιση φορτίου. Εξαλείφοντας την ανάγκη για ευαίσθητο ηλεκτρονικό ελεγκτή φόρτισης, ο σχεδιασμός είναι απλουστευμένος, με χαμηλότερο κόστος και αυξημένη αξιοπιστία.

Οι απαιτήσεις σχεδιασμού του συστήματος και οι συνθήκες λειτουργίας χωρίς ελεγκτή φόρτισης πρέπει να γίνονται καλά κατανοητές γιατί το σύστημα λειτουργεί χωρίς καμία προστασία από υπερφόρτιση και από υπερεκφόρτιση για τις μπαταρίες. Υπάρχουν δύο περιπτώσεις όπου μπορεί να μη χρειάζεται ρύθμιση της φόρτισης της μπαταρίας: όταν χρησιμοποιείται στο κατάλληλο κλίμα ένα χαμηλής τάσης "αυτορυθμιζόμενο πλαίσιο" και όταν η μπαταρία είναι πολύ μεγάλη συγκριτικά με τη συστοιχία. Ως ενδεικτική τιμή χωρητικότητας μπαταρίας, μεγαλύτερη της οποίας δεν είναι απαραίτητος ο ελεγκτής φόρτισης, είναι τα 25Ah στα 12V μπαταρίας για κάθε W_p Φ/B.

2.5 Αντιστροφέας

Η χρησιμοποίηση εναλλασσόμενου ρεύματος (ΑC) στην πλειονότητα των Φ/Β εφαρμογών οφείλεται στην επικράτηση χρήσης του ΑC σε κάθε είδους οικιακές χρήσεις και εφαρμογές, καθώς και στη βιομηχανία. Υπάρχουν τρεις γενικές μεθοδολογίες με τις οποίες μπορεί να γίνει μετατροπή του DC σε AC:

- 1. Με συνδυασμό κινητήρα DC με γεννήτρια AC
- Με χρήση του κλασικού μηχανικού ή ηλεκτρονικού διακοπτικού συστήματος σε συνεργασία με μετασχηματιστή
- 3. Με χρήση αντιστροφέων (inverters)

Ο αντιστροφέας είναι ένα ηλεκτρονικό σύστημα ισχύος που μετατρέπει συνεχή τάση σε εναλλασσόμενη (μονοφασική ή τριφασική). Η βασική αρχή λειτουργίας μπορεί να περιγραφεί με την βοήθεια του Σχήματος 2.9. Τα S₁, S₂, S₃, S₄ είναι διακοπτικά στοιχεία. Η μετατροπή του συνεχούς ρεύματος σε εναλλασσόμενο επιτυγχάνεται με κλείσιμο-άνοιγμα των διακοπτικών στοιχείων ανά δύο, χιαστί (1,4 και 2,3). Όσο τα S₁, S₄ είναι σε αγωγή και τα S₂, S₃ σε αποκοπή, τα σημεία Α και Β έχουν πρόσημα + και – αντίστοιχα. Όταν συμβαίνει το αντίστροφο, τα Α και Β έχουν πρόσημα – και + αντίστοιχα. Με αυτό τον τρόπο δημιουργείται η εναλλασσόμενη τετραγωνική τάση (βλ. κέντρο Σχήματος 2.9).

Σχήμα 2.9: Βασική αρχή λειτουργίας αντιστροφέα

Ο αντιστροφέας ευρύτατα σε περιπτώσεις που διατίθεται πηγή συνεχούς ηλεκτρικής τάσεως και καταναλωτές εναλλασσόμενης, όπως συμβαίνει στις Φ/Β εφαρμογές. Αποτελείται από ηλεκτρονικούς διακόπτες (π.χ., διπολικά transistors ισχύος, MOSFETs, thyristors, κλπ), η συνδυασμένη λειτουργία των οποίων έχει ως αποτέλεσμα τη δημιουργία σειράς τετραγωνικών παλμών διαδοχικά ορθών και αντεστραμμένων.

Μια βελτιωμένη έκδοση αντιστροφέα αποτελεί εκείνος του οποίου η τάση εξόδου παρουσιάζεται με τη μορφή του διαμορφωμένου ημιτόνου (modified sine inverter), όπως εμφανίζεται στο Σχήμα 2.10, όπου παρατίθεται σε σύγκριση με μια καθαρή ημιτονοειδή κυματομορφή. Στο Σχήμα 2.10, *V*_ρ είναι το πλάτος τετραγωνικού παλμού και *V*₀ το πλάτος αντίστοιχου θεμελιώδους ημιτονοειδούς κυματομορφής.

Σχήμα 2.10: Η μορφή του διαμορφωμένου ημιτόνου σε σύγκριση με το καθαρό ημίτονο

Επιβάλλοντας περισσότερα κλεισίματα των διακοπτών 1, 4 και στη συνέχεια των 2, 3 και μάλιστα μεταβαλλόμενης διάρκειας, ανάλογα με τις τιμές ενός ημιτόνου, παράγεται ηλεκτρικό σήμα, που πλησιάζει την ημιτονοειδή μορφή. Οι διατάξεις αυτές ονομάζονται αντιστροφείς διαμόρφωσης του εύρους των παλμών της κυματομορφής εξόδου (Modulated Pulse Width Waveform) και η κυματομορφή τους δείχνεται στο Σχήμα 2.11.

Σχήμα 2.11: Κυματομορφή εξόδου ενός αντιστροφέα διαμόρφωσης εύρους των παλμών

Σε ένα αυτόνομο Φ/Β σύστημα, ο αντιστροφέας προδιαγράφεται από την τάση εισόδου συνεχούς ρεύματος και από την τάση εξόδου εναλλασσόμενου ρεύματος του αντιστροφέα, την ποσότητα ισχύος που μπορεί να χειριστεί συνεχώς, και την ποσότητα μέγιστης ισχύος που μπορεί να τροφοδοτήσει για σύντομα χρονικά διαστήματα. Η τάση εισόδου DC του αντιστροφέα, η οποία είναι ίδια με την τάση της συστοιχίας μπαταριών και της εξόδου των Φ/Β, ονομάζεται τάση συστήματος και συνήθως παίρνει τις τιμές 12V, 24V, ή 48V.

Μεγαλύτερες τάσεις χρειάζονται μικρότερο ρεύμα, διευκολύνοντας την ελαχιστοποίηση των απωλειών των καλωδίων. Από την άλλη πλευρά, μεγαλύτερη τάση σημαίνει περισσότερες μπαταρίες καλωδιωμένες στη σειρά, το οποίο επιδρά στον αριθμό των μπαταριών που ίσως να χρειάζονται για την τροφοδοσία του φορτίου. Η απαιτούμενη τάση λειτουργίας των φορτίων της κατανάλωσης προσδιορίζει και την τάση εξόδου του αντιστροφέα.

Στον Πίνακα 2.1 δίνονται οι προτεινόμενες DC τάσεις συστήματος σε σχέση με τη μέγιστη ισχύ AC. Οι παραπάνω προτεινόμενες τάσεις συστήματος βασίζονται στη διατήρηση του μέγιστου ρεύματος μόνιμης κατάστασης κάτω από τα 100 A, έτσι ώστε να μπορεί να χρησιμοποιηθεί εύκολα διαθέσιμος ηλεκτρικός εξοπλισμός και μεγέθη καλωδίων.

Μέγιστη ισχύς ΑC μόνιμης κατάστασης	DC τάση συστήματος
< 1200 W	12 V
1200 – 2400 W	24 V
2400 – 4800 W	48 V

Πίνακας 2.1: Προτεινόμενες DC	τάσεις συστήματος	(μένιστο οεύμο	ι έως 100 A)
πινακάς 2.1. προτοινόμονος σο	ιαθείς θυθιηματός	(μεγιστο μεσμο	

2.6 Μετατροπέας AC/DC

Ο μετατροπέας AC/DC συνδυάζεται με μια ανορθωτική μονάδα, που μετατρέπει την παρεχόμενη AC τάση (μονοφασική ή τριφασική) από την ενεργειακή πηγή (π.χ., ηλεκτροπαραγωγό ζεύγος (H/Z)) σε συνεχή τάση, καθώς και με έναν μετατροπέα DC/DC, χωρίς την παρεμβολή μετασχηματιστή. Στο Σχήμα 2.12 παρουσιάζεται μια τέτοια διάταξη, της οποίας το αριστερό μέρος είναι η ανορθωτική

μονάδα σε διάταξη γέφυρας και το δεξί μέρος είναι ένας μετατροπέας DC/DC. Το σύστημα περιλαμβάνει επιπλέον δύο διακοπτικά συστήματα (S₁ και S₂), μια δίοδο αντεπιστροφής (D) και ένα ελεγχόμενο στοιχείο (Σ) στο οποίο αποδίδεται η πλεονάζουσα ενέργεια.

Σχήμα 2.12: Μετατροπέας AC/DC

2.7 Ηλεκτροπαραγωγό ζεύγος (H/Z)

Το ηλεκτροπαραγωγό ζεύγος (Η/Ζ) είναι μια γεννήτρια, δηλαδή μια συσκευή που καταναλώνει καύσιμο για να παράγει ηλεκτρική ενέργεια (σε ορισμένες περιπτώσεις συμπαράγει και θερμική ενέργεια). Στα Η/Ζ παρουσιάζεται το χαρακτηριστικό της παραγωγής ηλεκτρικής ενέργειας ανάλογα με τη ζήτηση, καθώς και εκείνο της γρήγορης απόκρισής τους στη συνεχώς μεταβαλλόμενη ζήτηση ηλεκτρικής ενέργειας. Ο πιο συνηθισμένος τύπος Η/Ζ στις μέρες μας είναι η ντηζελογεννήτρια, που αποτελείται από μια ηλεκτρική γεννήτρια AC που καθοδηγείται από μια παλινδρομική μηχανή εσωτερικής καύσης που ακολουθεί τον κύκλο του Diesel. Το καύσιμο που χρησιμοποιείται είναι συνήθως το πετρέλαιο (ντήζελ), και τα μεγέθη των ντηζελογεννητριών ποικίλουν ανάμεσα σε λίγα κων και αρκετά MW. Για πολύ μικρά μεγέθη γεννητριών (κάτω από 25 kW), διαδεδομένη λύση αποτελούν και οι μηχανές εσωτερικής καύσης με καύσης με καύσιμο τη βενζίνη ή το προπάνιο.

Κεφάλαιο 3. Διαστασιολόγηση αυτόνομου Φ/Β συστήματος

3.1 Εισαγωγή

Κατά τη διάρκεια μιας ημέρας, μέρος της ηλιακής ακτινοβολίας που προσπίπτει σε μια Φ/Β συστοιχία μετατρέπεται σε ηλεκτρική. Η παραγόμενη αυτή ηλεκτρική ενέργεια:

- είτε χρησιμοποιείται για την απευθείας τροφοδότηση (άμεση χρήση) των ηλεκτρικών συσκευών της εφαρμογής (που αναφέρονται και ως καταναλώσεις ή φορτία)
- είτε αποθηκεύεται σε μπαταρίες (έμμεση χρήση) προκειμένου να χρησιμοποιηθεί κατά τη διάρκεια της νύχτας ή περιόδων συννεφιάς

Η παραγόμενη ηλεκτρική ενέργεια είτε αξιοποιείται ως έχει (δηλαδή ως ενέργεια DC), είτε μετατρέπεται σε ενέργεια AC με χρήση αντιστροφέων. Στις περισσότερες περιπτώσεις ενδείκνυται η μετατροπή του DC ρεύματος της Φ/Β συστοιχίας σε AC, δεδομένης της ευρείας χρήσης συσκευών που χρησιμοποιούν ρεύμα AC. Στο Σχήμα 3.1 αναπαριστάνεται ένα τυπικό διάγραμμα ροής ενέργειας σε ένα αυτόνομο Φ/Β σύστημα με μπαταρίες.

Σχήμα 3.1: Διάγραμμα ροής ενέργειας αυτόνομου Φ/Β συστήματος με μπαταρίες

Σε κάθε περίπτωση, η μετατροπή της ενέργειας από την ηλιακή ακτινοβολία σε ηλεκτρική ενέργεια, καθώς και η μεταφορά της στο χώρο τελικής αξιοποίησής της, συνοδεύεται από απώλειες. Μέρος της μεταφερόμενης ηλεκτρικής ενέργειας μετατρέπεται σε εσωτερική ενέργεια των συσκευών, αυξάνοντας τη θερμοκρασία των καλωδίων και των ηλεκτρονικών διατάξεων του Φ/Β συστήματος, και αποβαλλόμενη τελικά προς το περιβάλλον. Σε κάθε χαρακτηριστικό τμήμα της γραμμής παραγωγής και μεταφοράς της ηλεκτρικής ενέργειας, προσδιορίζεται ο βαθμός αξιοποίησης της ηλεκτρικής ενέργειας, ή ο βαθμός απόδοσης εάν αφορά ενεργειακή μετατροπή. Παρακάτω αναφέρονται τυπικές τιμές των βαθμών αξιοποίησης/απόδοσης για τα βασικά τμήματα ενός αυτόνομου Φ/Β συστήματος:

Θερμοκρασία: Η θερμοκρασία αναφέρεται στη θερμοκρασία του Φ/Β στοιχείου T_{cell} και όχι στη θερμοκρασία περιβάλλοντος. Σε περίπτωση που δεν μας δίνονται επιπλέον στοιχεία, γίνεται η θεώρηση ότι η T_{cell} είναι 30°C μεγαλύτερη από τη μέση θερμοκρασία ημέρας. Ο θερμοκρασιακός συντελεστής του Φ/Β (n_θ) μπορεί τότε να υπολογιστεί από τη σχέση:

$$n_g = 1 - 0.005 \cdot (T_{cell} - 25^{\circ}\text{C})$$

- *Καθαρότητα*: Τυπικές τιμές του συντελεστή καθαρότητας είναι *n_{καθ}*=96%÷99%
- Μετατροπέας DC/DC: Τυπικές τιμές του βαθμού απόδοσης μετατροπέα DC/DC είναι n_{conv}=87%÷93%
- Μπαταρίες: Τυπικές τιμές του συνολικού βαθμού απόδοσης φόρτισης-εκφόρτισης μπαταρίων είναι n_{bat}=80%÷90%
- Αντιστροφέας: Τυπικές τιμές του βαθμού απόδοσης αντιστροφέα είναι n_{inv}=90%÷96%
- Καλωδιώσεις μεταφοράς: Τυπικές τιμές του βαθμού αξιοποίησης της ηλεκτρικής ενέργειας
 στα καλώδια μεταφοράς είναι n_w=96%÷99%
- Γήρανση Φ/Β: Η πτώση του βαθμού απόδοσης λόγω γήρανσης του Φ/Β ανά έτος παίρνει τυπικές τιμές στο εύρος n_{νηρ}=95%÷99%
- Δίοδοι αντεπιστροφής: Τυπική τιμή του βαθμού απόδοσης των διόδων αντεπιστροφής είναι n_d=99%

Γενικά, η μελέτη ενός αυτόνομου Φ/Β συστήματος περιλαμβάνει τρεις βασικές εργασίες:

- 1. Καταγραφή και επεξεργασία στοιχείων κατανάλωσης (φορτίων) Φ/Β συστήματος
- Υπολογισμός του μεγέθους των επιμέρους τμημάτων του αυτόνομου Φ/Β συστήματος, με πρόβλεψη ημερών αυτονομίας
- 3. Λεπτομερή περιγραφή της εγκατάστασης και οικονομική ανάλυση

Στην παρούσα Ενότητα θα αναλυθούν οι δύο πρώτες εργασίες.

3.2 Φορτία

Συνήθως γίνεται υπολογισμός της ημερήσιας ζήτησης ηλεκτρικής ενέργειας. Σε περίπτωση που δεν δίνονται επιπλέον στοιχεία, οι Πίνακες 3.1-3.3 δίνουν τυπικές τιμές απαίτησης ισχύος (και σε ορισμένες περιπτώσεις ημερήσιας απαίτησης ενέργειας) διάφορων οικιακών συσκευών.

Συσκευή	Ισχύς
Ψυγείο: AC EnergyStar 14 ft ³	300 W, 1080 Wh/day
Ψυγείο: AC EnergyStar 19 ft ³	300 W, 1140 Wh/day
Ψυγείο: AC EnergyStar 22 ft ³	300 W, 1250 Wh/day
Ψυγείο: DC Sun Frost 12 ft ³	58 W, 560 Wh/day
Καταψύκτης: AC 7.5 ft ³	300 W, 540 Wh/day
Καταψύκτης: DC Sun Frost 10 ft ³	88 W, 880 Wh/day
Μικρή ηλεκτρική κουζίνα	1250 W
Μεγάλη ηλεκτρική κουζίνα	2100 W
Πλυντήριο πιάτων: κρύο στέγνωμα	700 W
Πλυντήριο πιάτων: ζεστό στέγνωμα	1450 W
Φούρνος μικροκυμάτων	750 - 1100 W
Καφετιέρα (παρασκευή)	1200 W
Καφετιέρα (θέρμανση)	600 W
Φρυγανιέρα	800 - 1400 W

Πίνακας 3.1: Τυπικές απαιτήσεις ισχύος συσκευών κουζίνας

Συσκευή	Ισχύς
Πλυντήριο ρούχων: κατακόρυφος άξονας	500 W
Πλυντήριο ρούχων: οριζόντιος άξονας	250 W
Στεγνωτήρας ρούχων	500 W
Ηλεκτρική σκούπα	1000 - 1400 W
Ανεμιστήρας φούρνου: 1/4 ΗΡ	600 W
Ανεμιστήρας φούρνου: 1/3 ΗΡ	700 W
Ανεμιστήρας φούρνου: 1/2 ΗΡ	875 W
Ανεμιστήρας οροφής	65 - 175 W
Ανεμιστήρας για όλη την οικία	240 - 750 W
Κλιματιστικό μηχάνημα: παραθύρου 10000 Btu	1200 W
Θερμάστρα (φορητή)	1200 - 1875 W
Λαμπτήρας φθορισμού (ισοδύναμος 100 W)	30 W
Λαμπτήρας φθορισμού (ισοδύναμος 60 W)	16 W
Ηλεκτρική κουβέρτα, μονή/διπλή	60/100 W
Ηλεκτρικό σίδερο ρούχων	1000 - 1800 W
Ηλεκτρικό ρολόι	4 W

Πίνακας 3.2: Τυπικές απαιτήσεις ισχύος γενικών οικιακών συσκευών

Πίνακας 3.3: Τυπικές απαιτήσεις ισχύος οικιακών ηλεκτρονικών συσκευών

Συσκευή	Ισχύς
Τηλεόραση: > 39 in (ενεργή/σε αναμονή)	142/3.5 W
Τηλεόραση: 25 έως 27 in έγχρωμη (ενεργή/σε αναμονή)	90/4.9 W
Τηλεόραση: 19 έως 20 in έγχρωμη (ενεργή/σε αναμονή)	68/5.1 W
Δορυφορικός δέκτης (ενεργός/σε αναμονή)	17/16 W
Στερεοφωνικό συγκρότημα (ενεργό/σε αναμονή)	44/3 W
Συνεπτυγμένο στερεοφωνικό συγκρότημα (ενεργό/σε αναμονή)	22/9.8 W
Ασύρματο τηλέφωνο	4 W
Ραδιόφωνο με ρολόι (ενεργό/σε αναμονή)	2.0/1.7 W
Επιτραπέζιος Η/Υ (ενεργός/αδρανής/σε αναμονή)	125/80/2.2 W
Φορητός Η/Υ	20 W
Εκτυπωτής ψεκασμού μελάνης (ink-jet)	35 W
Εκτυπωτής dot-matrix	200 W
Εκτυπωτής laser	900 W

3.3 Επιμέρους τμήματα αυτόνομου Φ/Β συστήματος

3.3.1 Φ/Β συστοιχία

Η ισχύς αιχμής μιας Φ/Β συστοιχίας P_{α} (σε kW_p) υπολογίζεται από τη σχέση:

$$E(\mathbf{kWh/d}) = \Pi(\mathbf{kWh/m}^{2}\mathbf{d}) \cdot \frac{P_{a}(\mathbf{kW_{p}})}{1(\mathbf{kW_{p}/m}^{2})} \cdot n_{\theta} \cdot n_{\kappa\alpha\theta} \cdot n_{conv} \cdot \dots$$

Στην παραπάνω σχέση πρέπει να δοθεί ιδιαίτερη προσοχή στις μονάδες που χρησιμοποιούνται. Έτσι, η (ημερήσια) κατανάλωση ηλεκτρικής ενέργειας *Ε* δίνεται σε kWh/d, ενώ η ηλιακή ακτινοβολία Π δίνεται σε kWh/m²d. Δεδομένα ηλιακής ακτινοβολίας για διάφορες περιοχές της Ελλάδας και για κλίσεις Φ/Β ίσες με 0°, 30°, 45°, 60° και 90° δίνονται στους Πίνακες Π1.1-Π1.5 του Παραρτήματος. Είναι σημαντικό να τονιστεί ότι στους Πίνακες αυτούς αναγράφεται η συνολική μηνιαία ηλιακή ακτινοβολία, η οποία πρέπει να διαιρεθεί με τις εκάστοτε ημέρες του κάθε μήνα για να υπολογιστεί η παράμετρος Π. Εκτός από την επίδραση της θερμοκρασίας, της καθαρότητας και του μετατροπέα DC/DC που περιλαμβάνονται στην παραπάνω σχέση, χρειάζεται να συνυπολογιστεί και η επίδραση οποιαδήποτε άλλης απώλειας λαμβάνεται υπόψη στο συγκεκριμένο πρόβλημα που μελετάται.

3.3.2 Μπαταρίες και αυτονομία

Για την επιλογή των χαρακτηριστικών μεγεθών της συστοιχίας των μπαταριών, η ονομαστική χωρητικότητά τους *C_N* (σε Ah) εκτιμάται συναρτήσει της μέγιστης ηλεκτρικής ενέργειας *E* (σε Wh – προσοχή στις μονάδες) που μπορεί να αποθηκευτεί και να ανακτηθεί από τις μπαταρίες, της τάσης *V*_{bat} των μπαταριών (σε V), του μέγιστου βάθους εκφόρτισης *β*_{εκφ} των μπαταριών, καθώς και του συνολικού τους βαθμού απόδοσης *n*_{bat}, σύμφωνα με τη σχέση:

$$C_{N} = \frac{E}{V_{bat} \cdot \beta_{\varepsilon \kappa \phi} \cdot n_{bat}}$$

Οι μέρες αυτονομίας των μπαταριών μπορεί να δίνονται απευθείας ή να υπολογίζονται από γραφήματα. Το Σχήμα 3.2 απεικονίζει ένα τέτοιο γράφημα, που προσδιορίζει τις ημέρες αυτονομίας ενός Φ/Β συστήματος συναρτήσει των ισοδύναμων ωρών ήλιου αιχμής (ηλιακής ακτινοβολίας 1kW/m²) για τη μέση μέρα ενός μήνα, καθώς και της απαιτούμενης ετήσιας διαθεσιμότητας ηλεκτρικής ενέργειας. Οι ημερήσιες ώρες ήλιου αιχμής για τα μηνιαία ηλιακά δεδομένα μιας περιοχής προκύπτουν διαιρώντας την ηλιακή ακτινοβολία Π (kWh/(m²·day)) με την ηλιακή ακτινοβολία αιχμής (1kW/m²).

Σχήμα 3.2: Υπολογισμός ημερών αυτονομίας Φ/Β συστήματος

Για διαφορετικές τεχνολογίες μπαταριών που μπορούν να χρησιμοποιηθούν σε αυτόνομα Φ/Β συστήματα, τυπικές τιμές του μέγιστου βάθους εκφόρτισης *θ*εκφ είναι οι ακόλουθες:

- Μπαταρίες αυτοκινήτων: 25%
- Μπαταρίες μολύβδου-οξέος βαθιάς εκφόρτισης: 60-80%
- Μπαταρίες νικελίου: 90%

Σε πιο λεπτομερείς αναλύσεις διαστασιολόγησης μπαταριών, μπορούν να ληφθούν υπόψη και άλλοι παράγοντες που επηρεάζουν τη λειτουργία και τη συμπεριφορά τους. Στο Σχήμα 3.3 δίνεται η διαφοροποίηση της ονομαστικής χωρητικότητας μιας μπαταρίας μολύβδου-οξέως σε σχέση με τον ρυθμό εκφόρτισης και τη θερμοκρασία της. Όπως μπορεί να προκύψει από τη μελέτη του Σχήματος 3.3, η ονομαστική ικανότητα μιας μπαταρίας από τον κατασκευαστή της αναφέρεται σε ρυθμό εκφόρτισης *C*/20 και θερμοκρασία μπαταρίας 25°C.

Σχήμα 3.3: Επίδραση ρυθμού εκφόρτισης και θερμοκρασίας μπαταριών

3.3.3 Ηλεκτροπαραγωγό ζεύγος (Η/Ζ)

Η ισχύς του Η/Ζ πρέπει να καλύπτει παράλληλα τα φορτία της εφαρμογής και τη φόρτιση των συσσωρευτών. Στο κύκλωμα λοιπόν χρειάζεται να παρεμβάλλεται κατάλληλος ανορθωτής, ο οποίος μπορεί να είναι ενσωματωμένος στο Η/Ζ. Αρχικά, χρειάζεται να υπολογιστεί ο χρόνος φόρτισης μπαταριών t_{φ} (σε h) με δεδομένο ρεύμα φόρτισης I_{φ} (συνήθως $I_{\varphi} \leq C_N/10$), σύμφωνα με τη σχέση:

$$t_{\varphi} = \frac{\beta_{\varepsilon \kappa \phi} \cdot C_N}{n_{bat} \cdot I_{\varphi}}$$

Στη συνέχεια υπολογίζεται η απαιτούμενη ισχύς του Η/Ζ *P*_φ για τη φόρτιση των μπαταριών υπό τάση φόρτισης *V*_φ:

$$P_{\varphi} = V_{\varphi} \cdot I_{\varphi}$$

Η V_φ συνήθως λαμβάνεται τουλάχιστον 20% μεγαλύτερη σε σχέση με την τάση των μπαταριών του αυτόνομου Φ/Β συστήματος. Στο τελευταίο στάδιο υπολογισμών διαστασιολόγησης του Η/Ζ, στην

ισχύ *P*_φ πρέπει να προστεθεί και η μέγιστη ισχύς των φορτίων, έτσι ώστε να προκύψει η ελάχιστη απαιτούμενη ισχύς του Η/Ζ.

3.3.4 Υπόλοιπα τμήματα Φ/Β συστήματος

Οι αντιστροφείς σε ένα αυτόνομο Φ/Β σύστημα χρειάζεται να έχουν συχνά την ικανότητα μεγάλων στιγμιαίων ρευμάτων (και επομένως μεγάλης στιγμιαίας ισχύος) που είναι πολλαπλάσια του κανονικού φορτίου, π.χ., για την εκκίνηση ενός κινητήρα. Ως παράδειγμα ένας αντιστροφέας με απαιτήσεις ισχύος εξόδου (AC) μόνιμης λειτουργίας 1.5kW, είναι πιθανόν να χρειάζεται να δώσει υπερτριπλάσια ισχύ αιχμής (5kW) για χρονική διάρκεια τουλάχιστον 10sec.

Οι ελεγκτές φόρτισης, όπως αναφέρθηκε και παραπάνω, συνήθως διαστασιολογούνται για ονομαστική ισχύ μεγαλύτερη ή ίση της Φ/Β συστοιχίας με την οποία συνδέονται, και για μέγιστο ρεύμα έως και 40% μεγαλύτερο του μέγιστου ονομαστικού ρεύματος της Φ/Β συστοιχίας, εάν υπάρχουν συνθήκες αντανάκλασης.

Σε σχέση με τη διαστασιολόγηση των καλωδίων, πληροφορίες δίνονται στην Ενότητα 2.2: Σύστημα εσωτερικής διανομής Φ/Β εγκατάστασης.

3.4 Παράδειγμα εφαρμογής

Να διαστασιολογηθεί αυτόνομο Φ/Β σύστημα για κατοικία στο Ηράκλειο Κρήτης, η οποία κατοικείται καθ' όλη τη διάρκεια του έτους. Οι καταναλώσεις (φορτία) της κατοικίας, που θεωρούνται σταθερές σε όλο το έτος, δίνονται στον Πίνακα 3.4.

Είδος κατανάλωσης	Ισχύς (W)	Χρόνος λειτουργίας (h)	Καταναλισκόμενη ενέργεια (Wh)
Εσωτερικός φωτισμός	60	6	360
Εξωτερικός φωτισμός	36	5	180
Τηλεόραση	70	6	420
Ψυγείο	100	16	1600
Άλλες χρήσεις	1000	0.5	500
ΣΥΝΟΛΟ	1266		3060

Πίνακας 3.4: Καταναλώσεις αυτόνομου συστήματος

Πίνακας 3.5: Συνολική μηνιαία ηλιακή ακτινοβολία (KWh/m²) για το Ηράκλειο Κρήτης

Κλίση												
συλλέκτη φ	Ι	Φ	Μ	Α	Μ	I	I	Α	Σ	0	Ν	Δ
0°	59	75	110	151	196	214	226	205	157	105	75	58
30°	83	97	126	154	183	190	205	202	176	133	108	87
45°	90	100	124	145	164	166	181	186	171	137	117	95
60°	91	99	117	128	138	136	149	161	158	134	119	97
90°	79	81	86	81	75	69	76	92	108	107	103	87
Ημέρες μήνα	31	28	31	30	31	30	31	31	30	31	30	31

Τα μηνιαία δεδομένα ηλιακής ακτινοβολίας για διαφορετικές κλίσεις Φ/Β πλαισίων στο Ηράκλειο δίνονται στον Πίνακα 3.5, όπως προκύπτουν από τους Πίνακες Π1.1-Π1.5 του Παραρτήματος. Επιπλέον, στον Πίνακα 3.6 δίνεται η μέση θερμοκρασία ημέρας στο Ηράκλειο για κάθε μήνα του έτους.

πνακάς 5.5. Μεσή μηνιαία σερμοκράσια ημεράς (C) για το πράκλειο κρητής													
Μήνας	I	Φ	М	Α	М	I	I	Α	Σ	0	Ν	Δ	
Τ ημέρας (°C)	13	13.2	14.5	17.6	21.3	25.3	27	26.9	24.5	21.1	17.7	14.7	

Πίνακας 3.6: Μέση μηνιαία θερμοκρασία ημέρας (°C) για το Ηράκλειο Κρήτης

Τα υπόλοιπα απαραίτητα δεδομένα για τη διαστασιολόγηση του αυτόνομου Φ/Β συστήματος είναι τα ακόλουθα:

- Καθαρότητα: *n_{καθ}*=96%
- Μετατροπέας DC/DC: *n_{conv}*=90%
- Μπαταρίες: *n_{bat}*=85%
- Αντιστροφέας: n_{inv}=94%
- V_{bat}=24V
- V_φ=30V
- *β*_{εκφ}=70%
- Ημέρες αυτονομίας: 3
- Μέγιστο ρεύμα φόρτισης μπαταριών: C/10

Από τα δεδομένα του Πίνακα 3.5, προκύπτει η μέση ημερήσια ηλιακή ακτινοβολία Π (σε kWh/(m²·day)) για το Ηράκλειο, η οποία και αναγράφεται στον Πίνακα 3.7.

,			• •	•	•	•		,,,	•	•		. ,
Κλίση				_				_	_	_		
συλλέκτη φ		Φ	M	Α	M			Α	Σ	0	N	Δ
0°	1.90	2.68	3.55	5.03	6.32	7.13	7.29	6.61	5.23	3.39	2.50	1.87
30°	2.68	3.46	4.06	5.13	5.90	6.33	6.61	6.52	5.87	4.29	3.60	2.81
45°	2.90	3.57	4.00	4.83	5.29	5.53	5.84	6.00	5.70	4.42	3.90	3.06
60°	2.94	3.54	3.77	4.27	4.45	4.53	4.81	5.19	5.27	4.32	3.97	3.13
90°	2.55	2.89	2.77	2.70	2.42	2.30	2.45	2.97	3.60	3.45	3.43	2.81

Πίνακας 3.7: Μέση ημερήσια ηλιακή ακτινοβολία Π (kWh/(m²·day)) για το Ηράκλειο Κρήτης

Για να βρεθεί ο μήνας διαστασιολόγησης του αυτόνομου Φ/Β συστήματος, καθώς και η βέλτιστη κλίση, επιλέγεται καταρχήν για κάθε τιμή κλίσης η μικρότερη τιμή ηλιακής ακτινοβολίας (έτσι ώστε να εξασφαλίζεται αυτονομία του συστήματος). Στη συνέχεια, για τις ελάχιστες τιμές ηλιακής ακτινοβολίας για κάθε κλίση (κίτρινο χρώμα κελιών στον Πίνακα 3.7) επιλέγεται εκείνη η κλίση που έχει την συγκριτικά μεγαλύτερη ελάχιστη τιμή ηλιακής ακτινοβολίας (κόκκινα γράμματα στον Πίνακα 3.7). Από τη σύγκριση αυτή προκύπτει ότι ο μήνας διαστασιολόγησης θα είναι ο *Ιανουάριος* και η βέλτιστη κλίση και η βέλτιστη κλίση θα είναι 60°.

Για τον υπολογισμό του θερμοκρασιακού συντελεστή Φ/Β *n*_θ γίνεται η θεώρηση ότι η *T_{cell}* είναι 30°C μεγαλύτερη από τη μέση θερμοκρασία ημέρας. Υπενθυμίζεται ότι ο *n*_θ υπολογίζεται από τη σχέση:

$$n_g = 1 - 0.005 \cdot (T_{cell} - 25^{\circ}\text{C})$$

οπότε βάσει των δεδομένων του Πίνακα 3.6 προκύπτουν τα αποτελέσματα του Πίνακα 3.8.

Πίνακας 3.8: Υπολογισμός μηνιαίου θερμοκρασιακού συντελεστή Φ/Β, n_θ

Μήνας	I	Φ	М	Α	М	I	I	Α	Σ	0	Ν	Δ
T _{cell} (°C)	43	43.2	44.5	47.6	51.3	55.3	57	56.9	54.5	51.1	47.7	44.7
nə	0.91	0.909	0.9025	0.887	0.8685	0.8485	0.84	0.8405	0.8525	0.8695	0.8865	0.9015

Η ισχύς αιχμής P_{α} της Φ/Β συστοιχίας θα είναι ίση με:

$$E(kWh/d) = \Pi(kWh/m^{2}d) \cdot \frac{P_{a}(kW_{p})}{1(kW_{p}/m^{2})} \cdot n_{\theta} \cdot n_{\kappa\alpha\theta} \cdot n_{conv} \cdot n_{bat} \cdot n_{inv} =$$

$$P_{a}(kW_{p}) = \frac{E(kWh/d) \cdot 1(kW_{p}/m^{2})}{\Pi(kWh/m^{2}d) \cdot n_{\theta} \cdot n_{\kappa\alpha\theta} \cdot n_{conv} \cdot n_{bat} \cdot n_{inv}} \Longrightarrow$$

$$P_{a} = \frac{3.060(kWh/d) \cdot 1(kW_{p}/m^{2})}{2.94(kWh/m^{2}d) \cdot 0.91 \cdot 0.96 \cdot 0.90 \cdot 0.85 \cdot 0.94} = 1.66kW_{p}$$

Για αυτονομία 3 ημερών, η ονομαστική χωρητικότητα των μπαταριών είναι ίση με:

$$C_{N} = \frac{E}{V_{bat} \cdot \beta_{\varepsilon \kappa \phi} \cdot n_{bat}} = \frac{3 \cdot 3060 (\text{Wh})}{24 (\text{V}) \cdot 0.70 \cdot 0.85} = 642.85 \text{Ah}$$

Θεωρώντας την επίδραση ρυθμού εκφόρτισης ίσου με C/10 και θερμοκρασίας μπαταριών ίσης με 10°C (αναφερόμενη στον μήνα διαστασιολόγησης Ιανουάριο), από το Σχήμα 3.3 προκύπτει ότι η ο συντελεστής της χωρητικότητας των μπαταριών στις συνθήκες αυτές σε σχέση με τις ονομαστικές συνθήκες είναι περίπου 0.8, από όπου προκύπτει ότι:

$$C_{Nnew} = \frac{C_N}{0.8} = \frac{642.85 \text{Ah}}{0.8} = 803.57 \text{Ah} \approx 800 \text{Ah}$$

Για το H/Z προκύπτει ότι I_{φ} = C/10 = 800Ah/10h = 80A, άρα:

$$t_{\varphi} = \frac{\beta_{\varepsilon \kappa \phi} \cdot C_{Nnew}}{n_{bat} \cdot I_{\varphi}} = \frac{0.70 \cdot 800 \text{Ah}}{0.85 \cdot 80 \text{A}} = 8.2 \text{h}$$

και

 $P_{\varphi} = V_{\varphi} \cdot I_{\varphi} = 30 \text{V} \cdot 80 \text{A} = 2400 \text{W} = 2.4 \text{kW}$

Από τα παραπάνω προκύπτει ότι η ελάχιστη ισχύς του Η/Ζ πρέπει να είναι τουλάχιστον ίση με:

$$P_{H/Z} \ge (1.27 + 2.4) \text{kW} = 3.67 \text{kW}$$

Στην παραπάνω σχέση, η ποσότητα 1.27kW είναι η μέγιστη ισχύς των φορτίων (Πίνακας 3.4).

Τέλος χρειάζεται να αναφερθεί ότι η παραπάνω μεθοδολογία διαστασιολόγησης αυτόνομου Φ/Β συστήματος μπορεί να χρησιμοποιηθεί σε πιο αναλυτικές περιπτώσεις, που λαμβάνουν υπόψη παράγοντες όπως:

- Θεώρηση χρονικού διαστήματος χρήσης κατοικίας μικρότερο του έτους
- Διαφορετικά φορτία σε διαφορετικές περιόδους (π.χ., χειμώνας και καλοκαίρι)
- Συνδυασμός φορτίων DC και AC
- Φορτία άμεσης τροφοδοσίας (τα οποία δεν εξυπηρετούνται από τη μπαταρία)
- Θεώρηση συντελεστή περιθωρίου, λόγω πιθανής υποτίμησης των φορτίων, κλπ

Κεφάλαιο 4. Βιβλιογραφία.

- 1. Ι.Ε. Φραγκιαδάκης, "Φωτοβολταϊκά συστήματα", Εκδόσεις Ζήτη, Θεσσαλονίκη, 2006
- 2. Κ. Καγκαράκης, "Φωτοβολταϊκή τεχνολογία", Εκδόσεις Συμμετρία, Αθήνα, 1992
- 3. Α. Νεοκλέους, Σ.Π. Κωνσταντινίδης, "Μετατροπή της Ηλιακής Ενέργειας σε Ηλεκτρική με Φωτοβολταϊκά Συστήματα", Εκδόσεις Ίων, Αθήνα, 1991
- 4. Ν. Mohan, Τ.Μ. Undeland, W.P. Robbins, "Ηλεκτρονικά Ισχύος", Εκδόσεις Τζιόλα, Θεσσαλονίκη 1996
- 5. T. Markvart, L. Castañer, "Practical handbook of photovoltaics: fundamentals and applications", Elsevier, UK, 2003
- 6. G.M. Masters, "Renewable and efficient electric power systems", John Wiley & Sons, New Jersey, 2004
- 7. Ι. Κατσίγιαννης, "Βελτιστοποίηση Δομής και Οικονομική Αξιολόγηση Απομονωμένου Συστήματος Ηλεκτρικής Ενέργειας που Βασίζεται σε Ανενεώσιμες Πηγές Ενέργειας", Διδακτορική Διατριβή, Τμήμα Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, 2008
- 8. Τεχνικό Επιμελητήριο Ελλάδας, "Τεχνολογίες Ανανεώσιμων Πηγών Ενέργειας", Κατάρτιση Ενεργειακών Επιθεωρητών, Εκπαιδευτικό Υλικό, Επιθεώρηση Κτηρίων, 2011
- Γ. Τσακαλούδης, "Μελέτη και εγκατάσταση αυτόνομου υβριδικού συστήματος", Πτυχιακή Εργασία, Τμήμα Μηχανικών Φυσικών Πόρων και εριβάλλοντος, Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης, 2014
- Α.Μ. Πολυπόρτης, "Ενεργειακή αυτονομία οικισμού με φωτοβολταϊκά συστήματα: Το παράδειγμα της Μηλιάς Χανίων", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2011
- 11. Μ.-Μ. Καραχαντζίτη, "Ανάλυση, μοντελοποίηση και έλεγχος αιολικού και φωτοβολταίκού συστήματος σε δίκτυο κατανεμημένης παραγωγής", Διπλωματική Εργασία, Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών, Πανεπιστήμιο Πατρών, 2013
- 12. Α. Παπαδόπουλος, Α.-Σ. Τοσκάνο, "Προσδιορισμός της βέλτιστης ισχύος αντιστροφέων σε φωτοβολταϊκές εγκαταστάσεις με σύστημα δύο αξόνων", Διπλωματική Εργασία, Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνική Σχολή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 2012
- Γ.Λ. Κτενίδης, "Μελέτη Διασυνδεδεμένου Φωτοβολταϊκού Σταθμού Παραγωγής Ηλεκτρικής Ενέργειας των 100kW", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2008
- 14. Κ.Α. Μπάμπαλη, "Φωτοβολταϊκές Εγκαταστάσεις σε Κτίρια", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2011

Παράρτημα 1. Δεδομένα ηλιακής ακτινοβολίας στην Ελληνική Επικράτεια

1													1		
	Περιοχή	Η	θ	м	Α	м	Ι	Ι	Α	Σ	0	Ν	Δ	Μέσος όρος	Συνολική
1	Αθήνα	58	74	110	147	190	204	219	202	149	104	70	54	132	1.581
2	Αλίαρτος	48	64	102	139	182	197	205	210	138	91	61	47	124	1.483
3	Άραξος	59	71	111	143	181	189	207	195	147	103	68	52	127	1.527
4	Αργοστόλι	61	72	111	137	190	207	217	198	146	102	67	52	130	1.559
5	Άρτα	60	68	109	130	178	193	208	192	141	100	65	52	125	1.497
6	Ηράκλειο	59	75	110	151	196	214	226	205	157	105	75	58	136	1.631
7	Θεσσαλονίκη	49	64	96	135	174	186	205	178	131	87	55	44	117	1.403
8	Ιεράπετρα	72	85	127	155	195	216	227	211	164	120	87	69	144	1.728
9	Ιωάννινα	48	59	95	124	165	177	196	177	127	91	56	42	113	1.357
10	Καλαμάτα	66	76	116	135	192	209	217	198	149	106	75	55	133	1.569
11	Κέρκυρα	54	65	103	137	178	201	217	193	140	97	60	48	124	1.493
12	Κομοτηνή	50	61	92	128	165	183	194	177	130	91	55	45	114	1.368
13	Κόνιτσα	52	61	100	118	163	174	193	176	126	89	59	49	113	1.361
14	Κόρινθος	54	69	110	139	185	199	208	194	145	101	69	54	127	1.526
15	Κύθηρα	67	77	114	143	190	212	218	200	153	109	74	59	135	1.615
16	Λαμία	51	62	105	137	180	198	204	187	135	92	63	52	122	1.466
17	Λάρισα	47	62	100	138	179	189	202	186	135	91	61	44	119	1.433
18	Λήμνος	45	62	101	140	184	200	206	192	142	96	58	44	123	1.469
19	Μεθώνη	59	73	113	136	186	202	213	194	147	107	73	55	130	1.556
20	Μήλος	53	60	107	159	200	227	241	220	168	102	72	49	138	1.660
21	Μυτιλήνη	51	65	102	138	189	207	222	200	150	101	64	49	128	1.539
22	Νάξος	54	69	107	142	183	199	207	192	150	105	70	54	128	1.531
23	Πάρος	58	75	114	151	198	216	223	202	155	108	72	56	136	1.629
24	Πάτρα	53	67	113	129	177	199	203	185	141	99	62	51	123	1.479
25	Πύργος	64	73	117	138	191	206	216	198	149	106	74	59	133	1.592
26	Ρέθυμνο	59	76	106	145	194	206	222	203	149	95	76	56	132	1.587
27	Ρόδος	64	77	122	155	196	214	227	211	166	117	79	61	141	1.686
28	Σάμος	60	74	111	144	188	210	221	202	158	111	72	54	134	1.606
29	Σέρρες	47	60	97	130	170	185	196	178	129	87	56	45	115	1.380
30	Σητεία	60	75	115	149	195	212	224	202	156	107	77	58	136	1.630
31	Σκύρος	45	61	95	139	187	205	215	194	142	93	59	45	123	1.480
32	Σούδα Κρήτης	59	75	112	149	196	206	221	208	156	102	74	57	135	1.616
33	Σύρος	56	75	109	154	198	208	226	204	155	112	70	55	135	1.621
34	Τυμπάκι	69	83	128	152	193	213	223	213	162	118	83	66	142	1.703
35	Χανιά	59	75	112	149	196	215	229	210	154	101	74	56	136	1.630
36	Χίος	53	67	108	144	195	214	226	205	155	107	67	52	133	1.594

Πίνακας Π1.1: Συνολική μηνιαία και ετήσια ηλιακή ακτινοβολία (KWh/m²) σε διάφορες περιοχές της Ελλάδας, σε οριζόντιο επίπεδο (κλίση 0°)

	Περιοχή	I	Φ	м	Α	M	I	1	Α	Σ	ο	N	Δ	Μέσος Όρος	Συνολική
1	Αθήνα	87	99	129	152	179	184	202	203	170	136	105	85	144	1.730
2	Αλίαρτος	69	83	119	144	172	179	189	211	156	117	89	71	133	1.600
3	Άραξος	89	94	130	148	171	171	191	196	167	135	102	81	140	1.677
4	Αργοστόλι	93	96	130	142	180	187	200	199	166	134	100	81	142	1.707
5	Άρτα	94	91	129	135	169	176	193	194	161	132	99	84	138	1.656
6	Ηράκλειο	83	97	126	154	183	190	205	202	176	133	108	87	145	1.744
7	Θεςσαλονίκη	75	87	113	142	167	171	192	181	151	115	83	70	129	1.544
8	Ιεράπετρα	106	111	147	158	181	192	205	208	184	155	129	107	157	1.882
9	Ιωάννινα	71	77	111	129	157	162	182	179	144	119	83	64	123	1.478
10	Καλαμάτα	100	101	135	138	180	188	199	197	168	138	112	84	145	1.741
11	Κέρκυρα	83	87	121	148	170	183	202	195	161	129	90	76	137	1.640
12	Κομοτηνή	78	83	108	134	158	168	182	180	150	132	84	74	127	1.522
13	Κόνιτσα	80	81	118	123	156	160	180	178	144	117	89	80	125	1.503
14	Κόρινθος	79	91	129	144	175	180	192	194	165	132	103	85	139	1.666
15	Κύθηρα	100	101	132	146	178	189	199	198	172	140	108	90	146	1.753
16	Λαμία	75	81	123	142	171	180	189	188	153	120	94	83	133	1.600
17	Λάρισα	69	82	117	144	171	173	188	188	154	119	92	68	130	1.565
18	Λήμνος	66	82	119	147	176	183	192	195	164	128	87	69	134	1.606
19	Μεθώνη	86	96	131	139	175	181	195	193	165	139	108	84	141	1.692
20	Μήλος	75	75	123	164	188	203	220	219	192	131	106	72	147	1.767
21	Μυτιλήνη	76	86	119	143	180	188	206	202	173	134	96	77	140	1.680
22	Νάξος	77	90	124	146	172	179	190	191	170	136	103	83	138	1.660
23	Πάρος	83	98	132	155	185	193	203	200	174	140	104	84	146	1.751
24	Πάτρα	78	88	133	133	167	180	187	185	160	125	91	79	134	1.611
25	Πύργος	98	97	138	142	180	186	199	198	169	139	112	94	146	1.751
26	Ρέθυμνο	83	98	120	148	181	183	201	200	166	118	110	83	141	1.691
27	Ρόδος	95	101	142	159	184	191	207	210	188	153	118	95	153	1.843
28	Σάμος	90	99	130	149	177	189	203	202	181	147	108	84	147	1.759
29	Σέρρες	72	81	115	136	163	170	184	181	149	116	86	74	127	1.526
30	Σητεία	85	96	132	152	181	188	203	199	174	136	111	86	146	1.743
31	Σκύρος	64	79	110	144	178	186	199	195	162	121	87	68	133	1.594
32	Σούδα Κρήτης	84	97	129	152	183	184	201	206	175	129	107	85	144	1.731
33	Σύρος	82	100	127	159	187	187	207	204	176	148	104	85	147	1.766
34	Τυμπάκι	101	108	148	155	179	189	202	210	181	152	122	101	154	1.847
35	Χανιά	83	97	128	152	183	191	208	207	172	127	107	83	145	1.738
36	Χίος	78	88	127	149	185	194	208	206	178	142	100	82	145	1.737

Πίνακας Π1.2: Συνολική μηνιαία και ετήσια ηλιακή ακτινοβολία (KWh/m²) σε διάφορες περιοχές της Ελλάδας, σε επίπεδο με κλίση 30°

	Περιοχή	Т	Φ	м	А	м	Т	I	Α	Σ	0	Ν	Δ	Μέσος Όρος	Συνολική
1	Αθήνα	95	104	128	144	162	163	179	188	167	142	115	94	140	1.680
2	Αλίαρτος	74	87	118	136	156	158	169	196	154	121	97	78	129	1.545
3	Άραξος	98	99	130	140	155	152	170	181	165	141	111	90	136	1.631
4	Αργοστόλι	102	101	130	134	162	165	178	184	163	139	109	90	138	1.658
5	Άρτα	103	96	129	128	154	156	173	180	159	139	108	93	135	1.617
6	Ηράκλειο	90	100	124	145	164	166	181	186	171	137	117	95	140	1.675
7	Θεςσαλονίκη	82	92	113	135	152	153	172	169	149	120	90	78	125	1.505
8	Ιεράπετρα	115	116	146	148	162	167	180	190	179	160	139	117	152	1.821
9	Ιωάννινα	77	81	111	122	143	145	164	166	142	125	90	70	120	1.436
10	Καλαμάτα	109	105	135	130	163	165	176	182	165	143	122	93	141	1.689
11	Κέρκυρα	91	91	122	136	154	163	181	182	159	135	98	85	133	1.596
12	Κομοτηνή	87	87	109	128	145	151	164	169	149	128	92	83	124	1.491
13	Κόνιτσα	88	85	118	116	142	143	162	166	142	122	98	89	122	1.469
14	Κόρινθος	86	95	128	136	158	159	171	180	162	137	112	93	135	1.617
15	Κύθηρα	108	105	131	137	160	166	176	182	168	145	117	99	141	1.694
16	Λαμία	82	85	123	135	155	160	169	175	151	124	103	92	129	1.553
17	Λάρισα	75	86	118	137	155	154	169	175	152	125	101	75	127	1.520
18	Λήμνος	71	87	119	139	160	163	172	182	162	134	95	76	130	1.559
19	Μεθώνη	93	100	131	131	157	160	173	178	162	144	117	92	136	1.638
20	Μήλος	80	77	122	155	169	178	194	202	188	135	115	78	141	1.694
21	Μυτιλήνη	82	90	119	136	163	167	184	188	170	140	105	85	136	1.630
22	Νάξος	83	93	123	138	155	158	169	177	166	141	112	91	134	1.605
23	Πάρος	89	102	131	146	166	169	179	184	170	145	113	92	140	1.685
24	Πάτρα	84	92	133	126	152	160	167	172	157	134	98	87	130	1.563
25	Πύργος	107	102	138	134	163	164	177	183	166	145	122	105	142	1.705
26	Ρέθυμνο	89	102	119	139	162	160	177	184	161	121	118	90	135	1.622
27	Ρόδος	103	106	142	150	165	168	183	193	185	159	128	104	148	1.785
28	Σάμος	98	103	129	141	160	167	181	187	178	153	118	93	142	1.708
29	Σέρρες	79	85	116	130	149	152	166	170	147	121	94	83	125	1.492
30	Σητεία	91	100	130	142	162	164	179	183	170	140	120	94	140	1.674
31	Σκύρος	69	83	109	137	161	165	178	182	160	126	94	75	128	1.538
32	Σούδα Κρήτης	90	101	127	143	164	161	177	189	171	133	115	93	138	1.664
33	Σύρος	89	105	126	151	168	165	184	189	173	154	113	94	142	1.710
34	Τυμπάκι	109	113	147	145	160	165	177	192	176	157	131	111	149	1.784
35	Χανιά	90	100	127	143	164	167	183	190	168	131	115	90	139	1.667
36	Χίος	85	92	126	141	167	171	186	191	175	148	109	90	140	1.683

Πίνακας Π1.3: Συνολική μηνιαία και ετήσια ηλιακή ακτινοβολία (KWh/m²) σε διάφορες περιοχές της Ελλάδας, σε επίπεδο με κλίση 45°

	Περιοχή	I	Φ	м	Α	M	1	1	Α	Σ	о	N	Δ	Μέσος Όρος	Συνολική
1	Αθήνα	97	103	122	129	138	135	150	164	155	140	118	97	129	1.549
2	Αλίαρτος	75	86	112	122	133	132	142	171	143	119	99	81	118	1.417
3	Άραξος	101	99	124	125	132	127	143	159	153	139	114	93	126	1.508
4	Αργοστόλι	105	100	124	120	139	137	149	161	152	137	112	93	127	1.529
5	Άρτα	107	96	123	115	132	131	145	158	148	137	111	97	125	1.500
6	Ηράκλειο	91	99	117	128	138	136	149	161	158	134	119	97	127	1.526
7	Θεσσαλονίκη	85	92	108	122	131	129	146	149	139	119	93	82	116	1.395
8	Ιεράπετρα	118	115	137	131	136	136	148	164	165	156	142	121	139	1.670
9	Ιωάννινα	80	80	105	110	123	122	139	147	133	123	92	73	111	1.326
10	Καλαμάτα	118	105	128	116	138	136	147	159	153	140	125	96	130	1.556
11	Κέρκυρα	94	91	116	122	133	136	152	160	148	133	101	89	123	1.476
12	Κομοτηνή	90	87	104	116	125	128	140	149	140	128	95	87	116	1.388
13	Κόνιτσα	91	85	113	105	122	121	137	146	132	121	100	93	114	1.366
14	Κόρινθος	88	94	122	121	135	132	143	157	150	135	115	97	124	1.490
15	Κύθηρα	111	104	123	122	135	136	146	158	155	142	119	102	130	1.554
16	Λαμία	84	84	117	121	133	133	142	153	141	123	105	96	119	1.433
17	Λάρισα	77	86	112	123	133	129	143	154	142	123	104	78	117	1.403
18	Λήμνος	73	86	114	125	137	136	146	160	151	133	98	79	120	1.438
19	Μεθώνη	95	99	123	117	134	132	144	155	150	141	120	95	125	1.505
20	Μήλος	82	76	115	138	143	146	160	175	174	133	117	80	128	1.538
21	Μυτιλήνη	85	90	113	122	139	139	154	165	159	139	108	89	125	1.502
22	Νάξος	85	92	116	123	132	131	141	154	154	139	114	94	123	1.474
23	Πάρος	91	100	123	129	140	138	148	160	157	142	114	95	128	1.538
24	Πάτρα	87	91	126	113	130	133	141	150	146	132	101	91	120	1.441
25	Πύργος	111	101	131	120	138	136	148	160	154	142	125	109	131	1.575
26	Ρέθυμνο	91	100	112	123	136	132	146	159	149	118	120	92	123	1.477
27	Ρόδος	105	105	134	133	139	138	151	167	171	156	131	108	137	1.639
28	Σάμος	101	103	123	126	136	138	151	163	165	151	121	96	131	1.575
29	Σέρρες	82	85	111	117	129	129	141	150	138	120	97	87	116	1.387
30	Σητεία	92	98	123	126	137	135	147	158	156	136	122	96	127	1.525
31	Σκύρος	70	82	104	123	138	138	149	159	149	124	96	78	117	1.410
32	Σούδα Κρήτης	92	99	120	127	138	132	147	163	157	130	117	96	126	1.518
33	Σύρος	91	104	119	134	143	137	153	164	161	152	115	98	131	1.571
34	Τυμπάκι	111	111	139	128	135	135	146	166	162	153	134	114	136	1.634
35	Χανιά	91	99	119	127	138	137	151	164	155	128	117	93	126	1.517
36	Χίος	87	92	120	127	142	142	155	167	163	146	112	94	129	1.548

Πίνακας Π1.4: Συνολική μηνιαία και ετήσια ηλιακή ακτινοβολία (KWh/m²) σε διάφορες περιοχές της Ελλάδας, σε επίπεδο με κλίση 60°

	Περιοχή	I	Φ	м	Α	M	I	I	А	Σ.	о	N	Δ	Μέσος Όρος	Συνολική
1	Αθήνα	87	86	91	83	78	72	80	97	109	114	104	89	91	1.090
2	Αλίαρτος	67	72	84	79	77	71	78	101	101	97	87	73	82	987
3	Άραξος	90	82	93	81	76	69	78	95	108	113	101	85	89	1.070
4	Αργοστόλι	94	84	93	78	79	73	80	96	107	112	99	85	90	1.078
5	Άρτα	97	80	93	75	77	72	80	96	105	112	99	89	90	1.075
6	Ηράκλειο	79	81	86	81	75	69	76	92	108	107	103	87	87	1.043
7	Θεσσαλονίκη	77	78	83	81	78	72	82	92	101	98	83	75	83	1.000
8	Ιεράπετρα	104	94	100	82	74	68	75	93	112	124	124	109	97	1.159
9	Ιωάννινα	71	67	80	73	73	69	78	90	95	101	82	66	79	946
10	Καλαμάτα	100	87	95	75	77	71	78	93	106	113	110	87	91	1.093
11	Κέρκυρα	85	77	88	80	77	74	83	97	106	110	90	81	87	1.049
12	Κομοτηνή	82	74	80	77	75	72	80	93	101	106	85	81	84	1.008
13	Κόνιτσα	82	71	86	70	73	68	78	90	95	99	90	86	82	989
14	Κόρινθος	78	79	91	79	77	71	77	94	106	109	102	88	87	1.050
15	Κύθηρα	98	86	91	78	75	70	76	92	107	114	104	92	90	1.082
16	Λαμία	75	70	88	79	77	72	78	93	100	100	93	88	85	1.014
17	Λάρισα	69	72	85	81	78	72	79	94	102	101	92	71	83	995
18	Λήμνος	65	73	87	83	80	75	81	97	108	109	87	72	85	1.017
19	Μεθώνη	84	82	92	75	75	69	76	91	104	114	105	86	88	1.054
20	Μήλος	72	62	86	87	79	73	81	100	120	107	103	72	87	1.041
21	Μυτιλήνη	76	75	86	80	80	75	83	99	113	114	96	81	88	1.057
22	Νάξος	75	76	87	79	75	69	76	91	107	112	100	85	86	1.031
23	Πάρος	80	83	91	82	77	70	77	92	108	114	100	85	88	1.058
24	Πάτρα	77	76	95	74	75	71	77	91	103	108	89	83	85	1.018
25	Πύργος	99	84	98	78	78	72	79	95	108	116	111	99	93	1.116
26	Ρέθυμνο	79	82	82	77	75	67	75	91	102	94	104	82	84	1.010
27	Ρόδος	93	86	99	84	77	71	78	96	118	126	115	98	95	1.141
28	Σάμος	90	86	92	81	77	73	80	96	115	123	107	87	92	1.108
29	Σέρρες	75	72	85	78	77	73	80	94	100	100	87	80	83	1.002
30	Σητεία	80	80	90	79	74	68	75	90	107	108	106	86	87	1.043
31	Σκύρος	62	68	78	80	79	74	81	96	106	101	85	71	82	981
32	Σούδα Κρήτης	80	82	88	80	76	68	75	93	108	104	102	85	87	1.042
33	Σύρος	80	86	89	86	80	72	80	96	112	123	102	89	91	1.095
34	Τυμπάκι	98	91	101	80	74	68	74	93	110	122	116	102	94	1.130
35	Χανιά	79	81	88	80	75	69	76	94	106	102	101	82	86	1.033
36	Χίος	78	77	90	82	80	75	82	99	115	120	100	86	90	1.082

Πίνακας Π1.5: Συνολική μηνιαία και ετήσια ηλιακή ακτινοβολία (KWh/m²) σε διάφορες περιοχές της Ελλάδας, σε επίπεδο με κλίση 90°