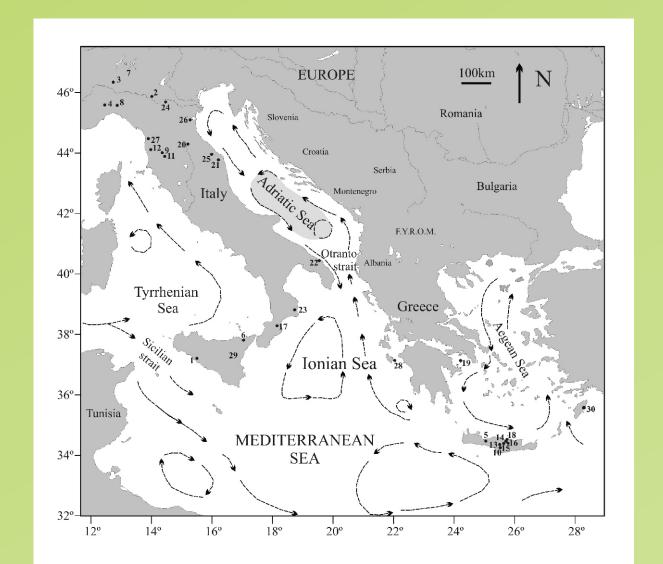


Quaternary climatic variability modulates Bregmaceros Mediterranean distribution range

AGIADI K., KARAKITSIOS V.

Department of Historical Geology and Paleontology Faculty of Geology and Geoenvironment National and Kapodistrian University of Athens Panepistimioupolis 15784, Athens, Greece e-mail: kagiadi@geol.uoa.gr

Introduction and methodology


Bregmaceros THOMPSON 1840 (Gadiformes) is a small subtropical pelagic fish, with fourteen (14) worldwide distributed valid species(1). Bregmaceros atlanticus GOODE & BEAN 1886 is the only one truly circumglobal. In the modern Mediterranean Sea it is mostly considered an invasive species. Bregmaceros has been reported between 0 and 1260 meters depth, maintains an epipelagic life style and is most abundant in the upper 200 meters (2). Fossil remains of *Bregmaceros* are well recorded in the Mediterranean Neogene and Quaternary. Here, we review the Pliocene and Pleistocene Mediterranean record of Bregmaceros, based on the most recent data.

Palaeobiogeography

Landini & Menesini (3) were the first to address the distribution of Bregmaceros in the Neogene Mediterranean Sea. Two Miocene species, Bregmaceros albyi and Bregmaceros catulus, were considered valid, but no particular palaeoecologic significance was attributed to them. These authors suggested a genus extinction date from the Mediterranean by 2.2 Ma. More recent findings (4) extend its presence well into the Middle Pleistocene, at least until 0.7 Ma BP. The initial review (4) suggested that during the Pliocene, Bregmaceros was endemic to the eastern Mediterranean, a hypothesis that was thereafter disputed (5). Landini & Sorbini (6) also suggested that fish taxa with subtropical Indo-Pacific affinities may also survived other climatic crises in the Late Pliocene and the Quaternary. Records of Bregmaceros remains in sediments sampled across complete stratigraphic sections are very few. The Bregmaceros fauna, with few exceptions, is usually located in short geologic sections, where there is usually no continuous record of the fish assemblage evolution through time. In Gerakas section (4), the high abundance of Bregmaceros found in Gelasian stage sediments is interpreted as a palaeotemperature maximum, as well as an indication of increased oceanic input in the area of southern Zakynthos.

The latest findings of Bregmaceros atlanticus in the Ionian stage sediments of Rhodes Island further the stratigraphic distribution of the genus in the Mediterranean waters at least until 0,28 Ma BP, indicating that its presence in the basin was not continuous, We hypothesize that, at least the Pleistocene Bregmaceros remains may indeed belong to the modern species B. atlanticus, which experienced geographic distribution shifts, similar to those occurring today, whenever climatic and local palaeoceanographic conditions were favorable.

The Pliocene - Pleistocene (5.33-0.28Ma) Mediterranean record of Bregmaceros.

re	Site/Section	Identification	Material	Age	Reference
	Girgenti	Bregmaceros sp.	Otoliths	Zanclean	Weiler 1971
	Lugagnano	Bregmaceros albyi	Otoliths	Zanclean	Anfossi & Mosna 1979
	Monteu Roero	Bregmaceros albyi	Otoliths	Zanclean	Anfossi & Mosna 1979
	Alba	Bregmaceros sp.	Otoliths	Zanclean	Nolf & Cavallo 1995
	Prassies	Bregmaceros sp.	Otoliths	Zanclean	Markopoulou & Kagiouzis 2001 - revised
	Monte Bauso	Bregmaceros albyi	skeletal	Pliocene	Landini & Sorbini 2005b
	Taino	Bregmaceros albyi	skeletal	Pliocene	Anfossi et al 1982
	Val d'Arda	Bregmaceros albyi	skeletal	Pliocene	Anfossi & Mosna 1972
	Castelfiorentino	Bregmaceros albyi	skeletal	Pliocene	Landini et al 1990
)	Roufas	Bregmaceros albyi	skeletal	Pliocene	Gaudant 2001
	Poggibonsi	Bregmaceros albyi	skeletal	Pliocene	Landini & Sorbini 2005b
•	Orciano Pisano	Bregmaceros albyi	skeletal	Pliocene	Landini & Sorbini 2005b
	Voutes	B. albyi	skeletal	Pliocene	Gaudant 2001
		Bregmaceros sp.	otoliths		Agiadi et al. 2009
•	Gournes	B. albyi	skeletal	Pliocene	Gaudant et al 1994
		Bregmaceros sp.	otoliths		Agiadi et al. 2009
	Stavromenos	B. cf. albyi	skeletal	Pliocene	Gaudant et al 1994
	Prassas	Bregmaceros albyi	skeletal	Pliocene	Gaudant et al 1994
•	Singa	Bregmaceros albyi	skeletal	Pliocene	Sorbini & Landini 2003
	Amnissos	B. cf. albyi	skeletal	Piacenzian	Gaudant 2001
		Bregmaceros sp.	otoliths		Agiadi et al. 2009
	Agios Thomas	Bregmaceros albyi	skeletal	Piacenzian	Argyriou & Theodorou 201
	Marecchia River	Bregmaceros albyi	skeletal	Piacenzian	Sorbini 1988
	Sforzacosta	Bregmaceros albyi	skeletal	Piacenzian	Sorbini 1988
	Sant' Andrea	Bregmaceros albyi	otoliths	Piacenzian	Bossio et al 1986
	Stuni	Bregmaceros albyi	skeletal otoliths	Piacenzian	Landini & Menesini 1985
	Samoggia Stream	Bregmaceros albyi	Skeletal otoliths	Piacenzian	Bedini & Landini 1986 Landini & Sorbini 1993
	Metauro River	Bregmaceros albyi	Skeletal	Piacenzian	Sorbini 1988
	Rio Merli	Bregmaceros sp.	Otoliths	Piacenzian	Girone 2007
	Morrona	Bregmaceros sp.	Otoliths	Gelasian - Calabrian	Nolf & Girone 2000
	Gerakas	Bregmaceros sp.	Otoliths	Gelasian - Ionian	Agiadi et al. 2010
	Fiumefreddo	Bregmaceros sp.	Otoliths	Calabrian - Ionian	Girone et al 2006
	Tsampika Bay	Bregmaceros atlanticus	Skeletal Otoliths	Ionian	Agiadi et al 2012

Taphonomy

A combination of palaeoecologic and taphonomic conditions determine fish remains preservation. Landini and Sorbini (6) as well as Girone et al (7) noted significant ecological and facies differences between fish assemblages preserved inside the Mediterranean Miocene sediments, either as skeletal or as otolith material. Articulated fish skeletons are preserved under very specific sedimentologic and palaeoceanographic conditions, usually inside laminated clays and diatomites, indicating anoxic/dysoxic or hypersaline waters. On the contrary normal marine clays and silts contain large numbers of otoliths, but do not allow for the preservation of articulated skeletal parts (4). Specifically, In fact, Mediterranean Pliocene – Pleistocene diatomites, diatomitic marls and laminated marls commonly preserve articulated skeletons of the Bregmaceros fauna, with pelagic and mesopelagic taxa, lacking benthic-benthopelagic species. On the contrary, normal marine marls containing a large number of otoliths, may contain Bregmaceros sp. (4) and its accompanying fauna, but also include a significant benthic portion. Consequently, it appears that during anoxic/dysoxic episodes, benthic and benthopelagic fish shift their distribution ranges to more favorable localities on the NW Mediterranean. When sea floor oxygenation rises to normal levels again, the benthic fauna returns to these areas, and can be discovered as otoliths.

Conclusions

Sampling methodologies and strategies in previous years have separated the fish skeletal record from the otolith database. Here we integrate these with regard to the genus Bregmaceros. During anoxic events it seems that Bregmaceros along with other high pelagic and mesopelagic taxa are favored and become extremely abundant in the sediments. The latest findings indicate that, Bregmaceros sp. coped with the intense Pliocene and Pleistocene climatic and oceanographic variability, through the contraction and expansion of its Mediterranean distribution, at least until 0.28 Ma. Its presence today in the central - eastern Mediterranean is one more effort to inhabit favorable waters, showing exactly how flexible and adaptable B. atlanticus can be.

References

1 Froese & Pauly, 2011. FishBase. World Wide Web electronic publication.

2 Castellanos-Galindo et al. 2006. Check list of gadiform, ophidiiform and lophiidorm fishes from Colombian waters of the tropical eastern Pacific. Biota Colomb. 7 (2), 191–209.

3 Landini & Menesini, 1988. The Bregmaceros (Teleost fish) extinction in the Mediterranean basin. Modern Geology, 13: 149-158.

4 Agiadi et al. 2011. The early Quaternary palaeobiogeography of the eastern Ionian deep-sea Teleost fauna: a novel palaeocirculation approach. Palaeo3. 306: 228-242.

5 Nolf & Girone, 2000. Otolithes de poisons du Pleistocene inferieur (Santernien) de Morrona (Sud est de Pisa). Riv. Piem. Storia Natur., 21: 3-18. 6 Landini & Sorbini, 1993. Biogeographic and palaeoclimatic relationships of the Middle Pliocene ichthyofauna of the Samoggia Torrent (Bologna, Italy). Proc. 1st RCANS, 12:83-89.

7 Girone et al. 2010. Fish otoliths from the pre-evaporitic (early Messinian) sediments of northern Italy: their stratigraphic and palaeobiogeographic significance. Facies, DOI 10.1007/s10347-010-0212-6.

8 Agiadi et al. 2012.- A middle Pleistocene eastern Mediterranean fish refuge: the Tsampika Bay (Rhodes, Greece). EGU2012.

