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ABSTRACT

Analyzing tracking data of various types of moving objects is an in-
teresting research problem with numerous real-world applications.
Several works have focused on continuously monitoring the nearest
neighbors of a moving object, while others have proposed similar-
ity measures for finding similar trajectories in databases containing
historical tracking data. In this work, we introduce the problem of
continuously monitoring nearest trajectories. In contrast to other
similar approaches, we are interested in monitoring moving objects
taking into account at each timestamp not only their current po-
sitions but their recent trajectory in a defined time window. We
first describe a generic baseline algorithm for this problem, which
applies for any aggregate function used to compute trajectory dis-
tances between objects, and without any restrictions on the move-
ment of the objects. Using this as a framework, we continue to
derive an optimized algorithm for the cases where the distance be-
tween two moving objects in a time window is determined by their
maximum or minimum distance in all contained timestamps. Fur-
thermore, we propose additional optimizations for the case that an
upper bound on the velocities of the objects exists. Finally, we
evaluate the efficiency of our proposed algorithms by conducting
experiments on three real-world datasets.
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H.2.8 [Database Management]: Database Applications—Spatial

databases and GIS
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1. INTRODUCTION
The increasingly widespread use of GPS enabled devices and

other positioning technologies has made possible the tracking and
monitoring of various types of moving objects, such as cars, peo-
ple or animals. This has consequently lead to the study of a broad
range of queries in a multitude of settings and applications. Re-
trieving objects whose motion is “similar” to that of a target query
object is one of the most basic and useful analytical queries. In
the literature, two important types of such moving object similar-
ity queries have been proposed, the Nearest Neighbor (NN) and
the Nearest Trajectory (NT), also known as trajectory similarity,
queries. Both types define a similarity (or equivalently a distance)
metric between moving objects, and return the top-k most simi-
lar (or equivalently least distant) objects with respect to a specified
moving query object. The distinguishing characteristic is the defi-
nition of the metric. Generally speaking, NN queries, e.g., [5, 8],
are concerned with the distance between individual locations of
moving objects, i.e., at some particular time instance, whereas NT
queries, e.g., [19, 21] take into account the distance between the
trajectories of moving objects, i.e., for the sequence of locations
over a time interval.
Both query types have been extensively studied for historical

data, which can be stored on disk and indexed by specialized data
structures. To the best of our knowledge, however, only NN queries
have been considered in a continuous monitoring setting, where
new object locations continuously arrive, and the result must be
accordingly updated. This work introduces and studies Continuous

Nearest Trajectory (CNT) queries. Given a trajectory distance, i.e.,
a metric aggregating individual location distances within a speci-
fied time window, a CNT query continuously returns the set of k
objects that have the smallest trajectory distance to a given query
object. CNT queries are a natural extension of both continuous
NN queries, in the sense that the recent trajectory (and not only the
last location) of objects is considered, as well as of historical NT
queries, in that the result is computed and maintained in real-time.
We note that existing approaches do not extend for CNT queries.

This is obvious for methods designed for historical data, as they
take advantage of specialized index structures (which are not suit-
able for highly dynamic streaming data), and have the entire trajec-
tory completely known upfront. Moreover, algorithms for continu-
ous NN queries cannot be adapted for CNT. The main reason being
that these methods assume that either the objects [34] or the query
[31, 29, 17] is stationary, and define validity or influence spatial

regions, which guarantee that the result will not change as long as
the query object remains inside the region, in the former case, or
that objects do not cross the region, in the latter case. Note that
the latter methods can handle moving queries but only by treating
them as new queries. This means that previous computations are



no longer useful and the result needs to be computed from scratch,
a scenario which is only tolerable when the query object changes
location infrequently. Therefore, a validity/influence region-based
approach is not possible for CNT queries, where both the query ob-
ject and the other objects move continuously and freely. However,
we show that, in a specific setting (concerning the definition of the
trajectory distance and assuming maximum velocities), it is possi-
ble to determine the minimum expected time when a moving object
can influence the result.
There are some other works dealing with different types of con-

tinuous queries on moving objects, which however do not extend
for CNT queries either. In a setting similar to ours, [2] defines
a trajectory distance metric, and continuously computes the spa-
tiotemporal trajectory join, i.e., determines pairs of objects whose
trajectory distance does not exceed a given threshold. In other
words, the underlying computation is answering a range query un-
der a hard threshold, which is always easier to process as the search
space is restricted. In contrast, the k-th trajectory distance in CNT
queries is not known beforehand and can be arbitrarily high, mak-
ing the methods of [2] inapplicable for CNT queries. Another work
[27] proposes an online method to determine groups of objects that
move close together, i.e., within a disk of a given radius. In their
problem, only the distance between individual locations is taken
into account and the threshold is also hard, making their ideas not
suitable for CNT queries.
Given these observations, we propose a generic baseline algo-

rithm, termed BSL, for processing CNT queries. This approach
makes no assumptions regarding the underlying trajectory distance
function or the movement of the objects. Thus, it serves as a frame-
work for adapting and optimizing algorithms to more specific cases.
Building upon this, we derive an optimized algorithm, called

XTR, for the cases where the trajectory distance between two mov-
ing objects is defined based on the extrema (maximum or mini-
mum) of individual location distances. The maximum-defined CNT
query establishes a distance guarantee that spans the time window
within which trajectories are examined, and can be used, for ex-
ample, to determine how far the nearest objects have strayed. The
minimum-defined CNT query determines objects that have come
close to the query at any time during the recent past, and can be
thought of as a continuous NN query with “memory”. On the
other hand, using both the minimum and the maximum location
distances, gives a more informative description of the movement of
an object, as it determines the tightest annulus (donut) around the
query that contains the object’s trajectory.
Moreover, we study the aforementioned case when a global max-

imum velocity for the objects is known. This is a reasonable as-
sumption given that most moving objects have upper bounds on
their attainable velocities. For this particular setting, we introduce
the HRZ algorithm, which computes distance bounds in order to
determine the earliest possible time, termed horizon, when an ob-
ject may influence the result.
Our main contributions can be summarized as follows:

• We introduce and formally define the problem of continuously
monitoring the objects with the k-nearest trajectories to a given
query object, where trajectory distances take into consideration
the objects’ recent locations.

• We present a generic baseline algorithm (BSL) for the problem,
which defines the types of events and operations needed for the
computation.

• We propose the XTR algorithm optimized for the case when the
trajectory distance is determined by the maximum or minimum
individual location distance between objects. We also discuss
some other related trajectory distance definitions.

• We present the HRZ algorithm that introduces further optimiza-
tions assuming that the moving objects have bounded velocities.

• We experimentally evaluate the proposed algorithms using real-
world datasets.
The rest of the paper is organized as follows. Section 2 discusses

related work. Section 3 formally defines the problem. Then, Sec-
tions 4–6 present our algorithms. Finally, Section 7 presents our
experimental evaluation, and Section 8 concludes the paper.

2. RELATED WORK
We discuss various types of queries for moving objects, distin-

guishing between NN variants in Section 2.1 and NT methods in
Section 2.2.

2.1 NN Queries on Moving Objects
Given a (stationary) query object location and a set of (station-

ary) object locations, the k-Nearest Neighbor (NN) query retrieves
the k objects which are closer to the query location. There are many
different ways to extend the NN query for moving objects during
some time interval, evident by the rich bibliography on the subject.
A first classification is based on where the interval of interest lies

with respect to the current time. If it is in the past, the queries are
termed historical, as they concern stored trajectory data. If the in-
terval is placed in the future, the queries are further classified into
predictive, when it can be assumed that objects move in a known
manner (i.e., with constant velocity, or along a line) and thus their
future locations can be extrapolated, or monitoring, when no as-
sumptions are made on the moving patterns and thus location up-
dates are issued. Processing historical and predictive NN queries
is generally less challenging compared to monitoring queries, be-
cause the former essentially have at query time the entire trajecto-
ries of the moving objects.
The second classification is based on the semantic of the NN

query during an interval. A snapshot NN query reports the objects
that are closest to the query object at any time instance within the
interval; e.g., find the object that comes closest to some location
within the next 10 minutes. A continuous NN query reports the
objects that are closest to the query object at every time instance
within the interval; e.g., report the objects that were at some time
closest to the query object during the past 10 minutes. Note that
in the data stream literature, the term continuous (or long standing)
query [1] refers to the case when the result of a query must be con-
tinuously updated as streaming tuples arrive; in the context of NN
queries, these requirements essentially correspond to the continu-
ous monitoring NN query.
Regarding predictive queries, [13] presents a dual plane method

for predictive snapshot NN queries, in the case that all objects move
in 1-D space, or are restricted to move within the same segment
(i.e., road). [23] studies continuous predictive variants for various
spatial queries, including NN, and describe a method to return the
initial result and its validity period (i.e., the time at which the re-
sult will change). [24] studies continuous predictive NN queries
assuming that only the query is moving along a line, while all other
objects are stationary. [10] and [3] also deal with continuous pre-
dictive NN queries, but they are able to handle updates on the mo-
tion patterns of objects, without computing the result from scratch.
For continuous monitoring NN queries, [22] and [34] handle the

case when only the query object is moving. The former retrieves
m > k nearest neighbors hoping that the result at a future time
is among these m objects, provided that the query does not move
much. The latter returns a Voronoi-based validity region such that
the result does not change as long as the query remains within the
region. [31], [29] and [17] present incremental grid-based methods



for general continuous monitoring NN queries, i.e., when all ob-
jects move in a non-predictive manner; the last two works feature
shared execution techniques to handle multiple NN queries.
In the case of historical trajectory data, R-tree based trajectory

indices (e.g., 3D R-tree [26], TB-tree [20]) are typically used to ex-
pedite the NN query processing. [6] handles historical snapshot NN
queries, while [5], [8] process historical continuous NN queries.
Another line of work concerns NN queries over uncertain data.

For example, [25] processes continuous monitoring NN queries for
objects with uncertain locations. [9] handles continuous predic-
tive NN queries with updates for objects with uncertain locations
and speeds. [18] deal with historical snapshot and continuous NN
queries for objects with uncertain locations.
Finally, there has been some interest on identifying groups of

moving objects, such as moving object clusters [12], flocks [7, 27],
convoys [11], and swarms [15]. Generally speaking, these groups
consist of objects that are close to each other (e.g., within a disk of
a given radius) at each time instant. These methods however cannot
be used for processing CNT queries.

2.2 Nearest Trajectories
There exist many approaches for defining distance (or similarity)

metrics for trajectories. All of them also propose methods to iden-
tify the most similar trajectory to a given query trajectory, which
can be extended to retrieve the top-k similar ones, but their tech-
niques only operate on historical data. A useful survey on the topic
is included in [19].
While the Euclidean distance (or some other Lp norm) is typi-

cally used to quantify closeness of two locations, the extension for
the case of multiple locations within trajectories is not straightfor-
ward. In addition, a trajectory distance must take into account the
temporal aspect of the locations. [30] defines the trajectory dis-
tance as the L2 norm of individual Euclidean location distances,
after re-sampling the trajectories to account for different reporting
intervals. [16] ignores the temporal dimension and defines spatial
trajectory distance as the average of the Euclidean distances com-
puted between a location in one trajectory and its closest location
in the other (termed the one way distance).
The previous trajectory distances can be computed in linear time

with respect to the trajectory length. On the other hand, there exist
more complex metrics, inspired from sequence similarity measures,
that require quadratic time. [28] uses the Longest Common Subse-
quence (LCSS) similarity measure, an edit distance variant, that
allows the matching of locations that are close in space at different
time instants, provided that they are not far in time, and also allows
for locations to be unmatched, e.g., accounting thus for location
imprecisions or small deviations. In a similar manner, [4] defines
the Edit Distance on Real Sequence (EDR) that captures the min-
imum number of edit operations (insert, delete, replace locations)
necessary to transform one trajectory into the other.
An approach for finding historical top-k similar trajectories is

presented in [21]. The basic algorithm prioritizes object examina-
tion aiming to avoid distance computations for objects not in the
result. In addition, approximate techniques are also presented.
Another related problem is trajectory clustering, where the goal

is to group trajectories based on a trajectory distance metric. For
this problem, however, the basic underlying operation is typically a
range query (retrieve trajectories within a given distance threshold)
rather than a top-k similarity query. For example, in [14] the goal
is to partition historical trajectories into sub-trajectories and then
group them to construct dense clusters according to a metric that
composes a perpendicular, a parallel, and an angle distance.
To the best of our knowledge, continuous monitoring of top-k

similar trajectories has not been addressed in the past. The only
work that handles continuous monitoring of a trajectory defined
query is [2], which deals with spatiotemporal trajectory joins. The
underlying trajectory distance metric is the maximum among all
Euclidean location distances, and the goal is to find pairs of tra-
jectories that are within a given trajectory distance threshold. That
is the core query is a range rather than a top-k similarity query.
Therefore, their approach is not applicable to our problem.

3. PROBLEM DEFINITION
Consider a set O of moving objects, whose locations are contin-

uously monitored and reported at fixed discrete times, called times-

tamps. Location updates have the form 〈o, t, x, y〉, meaning that
object o at timestamp t is at location o[t] = (x, y). We assume that
updates always arrive in increasing order of their timestamps, but
we do not assume that for each timestamp updates are received for
all objects.
We denote as T (o) the set of timestamps at which updates for

o were received. For simplicity and without loss of generality we
assume that for any timestamp t′ for which no update for o was
received, i.e. t′ 6∈ T (o), the location of o is the same as its last
reported location, i.e. o[t′] = o[t], where t ∈ T (o) is the latest
timestamp before t′. Essentially, this corresponds to assuming that
object o has not moved during time [t′, t]; making other assump-
tions can also be handled accordingly, e.g., by issuing artificial up-
dates for the objects based on inferred locations.

Definition 1. The location distance between two objects o and o′

at timestamp t is given by the Euclidean metric, i.e.,

d(o, o′, t) =
√

(x− x′)2 + (y − y′)2.

where o[t] = (x, y) and o′[t] = (x′, y′) are the respective (reported
or extrapolated) locations of o and o′ at t.

The above definition measures the distance between two objects
at a single timestamp. However, we are interested in comparing the
recent trajectories of the objects, hence their distances over a series
of consecutive timestamps within a specified time window. For this
purpose, we introduce the following definition.

Definition 2. Given two objects o and o′, a time window w, and an
aggregate function G, the trajectory distance of o and o′ is defined
by applying G on the location distances of o and o′ at each times-
tamp within the time window of length w ending at timestamp t:

D(o, o′, t, w,G) = Gτ∈[t−w,t]d(o, o
′
, τ).

Function G can be any aggregate function, e.g., minimum, maxi-
mum, average, among others.

We now formally define the problem of continuously reporting
the objects with the k-nearest trajectories to a moving query object.

Problem Statement. The Continuous Nearest Trajectory (CNT)
query 〈O, q, T , k, w,G〉, whereO is a set of moving objects, q ∈ O

a query object, and T a series of consecutive future timestamps,
returns for each timestamp t ∈ T the k objects in O that have the
smallest trajectory distance to q w.r.t. the time window w and the
aggregate function G, i.e., ∀t ∈ T it returns a subset Ok ⊆ O of
size k, such that ∀o ∈ Ok, o

′ ∈ O \Ok:

D(q, o, t, w,G) ≤ D(q, o′, t, w,G).

4. BASELINE FOR CNT
We first describe a generic baseline (BSL) method for answering

continuous nearest trajectory queries. BSL operates under any ag-



Algorithm 1: BSL

1 foreach t ∈ T do

2 OA ← ∅ // the set of affected objects at t
3 if QUpd then

4 q.loc← (xq, yq) // update q’s current location
5 OA ← O // mark all objects for processing
6 else

7 foreach OUpd and OExp do

8 OA ← OA ∪ o // add the referred object inOA

9 foreach o ∈ OA do

10 Do ← BSL_ProcessObject(o)
11 if Do has changed then

12 if o in the resultsR then

13 update o’s entry inR
14 else if Do smaller than the trajectory distance ofR’s last entry

then

15 deleteR’s last entry
16 insert an entry for o inR

17 report t, R

gregate function G and follows an event driven process, where the
events to be handled are specified below:

• Query location updates (QUpd). This is an update 〈q, t, x, y〉
to the location of the query object q, specifying its new location
(x, y) for the current timestamp t. This may result in changes in
the trajectory distances of the objects, and subsequently changes
in the current set of nearest trajectories (NTs). When objects are
allowed to move arbitrarily, their new distances to the new query
location have to be computed, and the new aggregate distances
and NTs have to be evaluated.

• Object location updates (OUpd). This is an update 〈o, t, x, y〉 to
the location of an object o, specifying its new location (x, y) for
the current timestamp t. As a result, the current location distance
of the object to the query has to be evaluated, which may affect
its trajectory distance within the window w. If this changes, it
may in turn affect the inclusion or not of the object in the re-
sult set. In addition, the system needs to remember to purge this
location distance when it becomes obsolete, i.e., concerns a lo-
cation outside the window. Therefore, it generates a correspond-
ing expiration event that will be triggered at timestamp t+w as
described next.

• Object distance expiration (OExp). Unlike QUpd and OUpd,
which are events received by the external environment, OExp

events are generated and triggered by the system as part of han-
dling OUpd events. OExp events have the form 〈o, t〉, and mean
that a location distance for object o is set to expire at timestamp
t (this location distance was computed for a location update re-
ceived at timestamp t−w). Similarly to a location update, such
a removal may affect the trajectory distance of the object, and
consequently its inclusion in the set of NTs.

In the following, we describe in detail how BSL handles the above
events to evaluate a CNT query.

BSL makes use of the following in-memory data structures. For
the query, it only stores its latest location q.loc. For each object, it
stores its latest location o.loc, as well as a list o.hist of location dis-
tances and their corresponding timestamps, ordered by time. In ad-
dition, it uses an event queueQ to store and process OExp location
distance expiration events, i.e., for removing distances for times-
tamps outside the time window w. An OExp event 〈o, t〉 means
that at time t, BSL needs to purge an expired distance for object o.
This is the least recent location distance in the list o.hist. Events
in Q are inserted and processed in a FIFO manner, i.e. they are
ordered by time. Finally, BSL maintains a results list R of size k,
where each entry corresponds to an object and its trajectory dis-

Algorithm 2: BSL_ProcessObject

1 if OExp event for o was triggered then

2 remove the expired location distance from o.hist

3 if QUpd or OUpd event for o was received then

4 update o.loc, if changed
5 compute new location distance d
6 add d to o.hist
7 create OExp event for o at timestamp t + w

8 update trajectory distanceDo

9 return Do

tance, updated at every timestamp. Any object that does not appear
in the list at time t has trajectory distance not less than the largest
trajectory distance in R.
Algorithm 1 shows the pseudocode for BSL. Since this is a con-

tinuous query, BSL executes in a loop for every timestamp t ∈ T
(line 1), i.e. as long as the query is standing, and at each itera-
tion it reports the current result set R (line 17). The input at each
timestamp is the set of QUpd, OUpd, and OExp events that have
been received for processing. Based on these events, BSL deter-
mines the set of affected objects OA that require processing at this
timestamp (line 2). Note that the set OA contains not only objects
that have received location updates, but also objects for which an
expiration event was triggered, or, in the case of a query update, all
objects.
If the query object has moved to a new location, then q.loc is

updated and new object distances need to be computed (lines 3–
5). Otherwise, only those objects for which an update or expira-
tion happened are marked for processing (lines 6–8). Subsequently,
each affected object o ∈ OA is processed (lines 9–17). First, the
procedure BSL_ProcessObject is invoked (line 10), which up-
dates o.loc and o.hist accordingly, and recomputes the object’s lo-
cation distance and trajectory distance (see Algorithm 2 below).
Then, BSL checks if the returned trajectory distance has changed
(line 11). If so, then the result set R may need updating. In par-
ticular, if o was in the result, then its entry in R must be updated
(lines 12–13) with the new trajectory distance. Otherwise, if the
new trajectory distance is smaller than any trajectory distance inR,
this means that o should be (tentatively) inserted in R, evicting the
last entry (lines 14–16).
We next describe the procedure BSL_ProcessObject, shown

in Algorithm 2, in more detail. If an expiration event has occurred
for o, then the expired location distance is removed from o.hist

(lines 1–2). If the object’s location has changed, o.loc is updated
(line 4). The new location distance of o is computed and added to
the history (lines 5–6). Moreover a corresponding expiration event
is added in Q (line 7). Finally, the new trajectory distance for o is
computed and returned (lines 8–9).

5. EXTREMA-DEFINED CNT
In the following, we assume that the aggregate function G defin-

ing the trajectory distance is max or min over location distances,
or, more generally, any other function taking as input only the ex-
trema (max, min) location distances. In these instances, the tra-
jectory distance is determined by one (or two) location distances
within the time window. Note, however, that these location dis-
tances may change over time, as new locations arrive and old ones
expire. Nonetheless, we show that processing of extrema-defined
CNT queries can be streamlined. We first start our discussion con-
sidering the case of themax function; the case ofmin can be han-
dled in a similar manner, and is hence omitted. We then discuss the
necessary changes to process CNT queries for any extrema-defined
aggregate function.



Algorithm 3: XTR_ProcessObject

1 if OExp event for o was triggered then

2 remove the expired location distance from o.hist

3 if QUpd or OUpd event for o was received then

4 update o.loc, if changed
5 compute new location distance d
6 add d to o.hist
7 remove from o.hist all location distances less than d
8 t′ ← the earliest timestamp in o.hist
9 if Q contains OExp event for o then

10 update OExp’s time to t′ + w

11 else

12 insert inQ the event 〈o, t′ + w〉

13 return Do ← earliest location distance in o.hist

When the aggregate function G is max, the trajectory distance
of an object o is determined by the largest location distance within
the time window w. In that case, we show that it is possible to
discard some location distances which cannot influence the trajec-
tory distance during their lifespan. Based on this observation, we
describe the Extrema (XTR) algorithm, which is based on the BSL
framework but reduces the number of location distances stored per
object, and, consequently, the number of events generated and pro-
cessed. The key observation of XTR is captured by the following
lemma.

Lemma 1. Given an object o, where d < d′ are two location dis-
tances at timestamps t < t′ for t′ − t ≤ w, the location distance d
does not contribute to the trajectory distance of o for any timestamp
after t′.

Proof. Location distance d is valid, i.e., may contribute to the tra-
jectory distance, during its lifespan ending at timestamp t+w. Dur-
ing the time interval [t′, t+w], location distance d′ is also valid and
greater, and thus dominates d. As a result, the trajectory distance,
i.e., the maximum location distance, must be at least d′ > d.

The XTR algorithm uses the same data structures and variables
as BSL and performs the same main operations described in Al-
gorithm 1. However, XTR differs from BSL in the way it pro-
cesses objects. In particular, we discern the following main differ-
ences. First, XTR only keeps the non-dominated location distances
in o.hist, as Lemma 1 suggests. Second, at any time t, the event
queue Q contains only a single entry per object o, and its seman-
tics can be viewed differently: it now schedules trajectory distance
recomputations rather than location expirations. By purging a pri-
ori those earlier location distances that are smaller than d, XTR
avoids unnecessary triggering of the corresponding OExp events,
thus avoiding unnecessary processing of objects whose trajectory
distance cannot yet change.
The processing for an object o in XTR is handled by the pro-

cedure XTR_ProcessObject outlined in Algorithm 3. Its first
tasks, removing expired location distances, updating the object’s
location, and recomputing the object’s location distance to the query,
are identical to BSL’s (lines 1–6). In addition, based on Lemma 1,
XTR removes any location distances less than d from o.hist (line
7). Let t′ be the earliest timestamp that remains (line 8). XTR in-
serts in Q an event to expire the location distance at t′, if no event
for o in Q already exists, otherwise it resets the scheduled time of
the existing event (lines 9–12). This event essentially schedules the
next trajectory distance recomputation necessary for o (assuming
that the trajectory distance is not affected by newer location up-
dates until then). Finally, the trajectory distance is set to the earliest
location distance and returned (line 13).
We now discuss the general case where the aggregate function

G is some function over the extrema (min and max) location dis-
tances. One example of such a function is the average of the mini-

mum andmaximum location distances recorded for an object within
the current time window. Recall that Lemma 1 identifies loca-
tion distances which are irrelevant for the max case; an analogous
lemma holds for the min case. Therefore, when both the max
and the min location distance contribute to the trajectory distance,
we can discard location distances which are irrelevant for both ex-
trema cases. Following this observation, we propose the following
changes to the XTR_ProcessObject algorithm. For each ob-
ject o, we maintain its minimum and maximum location distances
for the current time window, denoted as o.min and o.max, respec-
tively, i.e. o.min = min{o.hist} and o.max = max{o.hist}. In
addition, we keep a time marker tm which is the earliest timestamp
of either o.min or o.max. In the event queue Q, we still need to
keep only one entry for each object o, set to 〈o, tm + w〉, to trig-
ger a reevaluation of its trajectory distance when either o.min or
o.max expires. Moreover, the early removal of unnecessary en-
tries in o.hist is now done as follows. When o.min or o.max

changes, and tm is set accordingly, we remove all entries from
o.hist with timestamp earlier than tm. The reason for this is that
for any location distance d with timestamp t < tm it holds that
o.min < d < o.max (otherwise, d would be the current min or
max) and d cannot become a future o.min or o.max since it ex-
pires before them.

6. EXPLOITING BOUNDED VELOCITIES

FOR EXTREMA-DEFINED CNT
This section considers extrema-defined trajectory distances and

assumes that there exists a global upper bound vmax on the velocity
of a moving object1. Under this realistic assumption, we show that
it is possible to derive a more efficient algorithm than XTR for
processing CNT queries. The proposed Horizon (HRZ) algorithm
takes advantage of the velocity bound to further reduce the number
of location updates that need to be processed. Similar to Section 5,
we assume that the trajectory distance is the maximum location
distance within the time window; the case of min is similar, while
the more general case of extrema-defined functions can be handled
in a straightforward manner.
The basic idea behind HRZ is the following. For ease of expo-

sition, assume k = 1 and consider two objects o and o′. Let D[t]

and D
′

[t] denote, respectively, a lower and an upper bound on the
trajectory distances of o and o′ to the query q at time t. Clearly,

if D[t] > D
′

[t] for any timestamp t within a time interval, then o
cannot be in the result during that interval. Hence, in Section 6.1,
we derive lower and upper bounds on trajectory distances. Then, in
Section 6.2, we discuss the computation of the time horizon, which
determines a time interval during which a particular object may not
be a result. Finally, in Section 6.3, we put our ideas together and
present the HRZ algorithm.

6.1 Bounds on Trajectory Distances
Let t be the current timestamp, and consider an object o for

which the most recent location distance is d received at timestamp
td ≤ t, and its current trajectory distance is D ≥ d, valid since
timestamp tD ≤ td. A lower bound for the trajectory distance of
o at any future timestamp t′ > t can be computed assuming that
object o moves at maximum velocity vmax towards the query q,
while q also moves at maximum velocity vmax towards o. As a re-
sult, since the last known update at td, the location distance of o to
q is decreasing at a maximum rate of 2vmax. Notice however that
this will affect its trajectory distance only after both D and d have

1Note that the extension to differing maximum velocities across
objects is straightforward and thus omitted.



expired. The trajectory distance in this setting is clearly a lower
bound for the trajectory distance of o for any possible motion of o
and q. Thus, we derive the following lemma.

Lemma 2. Given an object o at current timestamp t, with latest
location distance d at timestamp td ≤ t and current trajectory dis-
tance D ≥ d valid since tD ≤ td, its trajectory distance for any
future timestamp t′ ≥ t is lower bounded by the function:

Do[t
′] =











D if t ≤ t′ ≤ tD + w

d if tD+w<t′≤ td+w

max{d−2vmax · (t
′−td), 0} if t′ > td + w.

Proof. First, observe that at time t the history of the object (i.e.,
during the time interval [t − w, t]) certainly contains a location
distance with valueD at time tD (determining the current trajectory
distance) and another with value d at time td. It may also contain
other location distances, which however must have values between
d and D. Consequently, it is easy to see that the lemma holds for
the first two clauses.
Regarding the third clause, we need to show that for any future

timestamp t′ > t, the lower bound holds. Consider the location
distances valid during the future time window [t′ − w, t′]; recall
that location distance d is no longer valid. Let dm be the largest
valid location distance with timestamp tm ∈ [t′−w, t′]. Therefore,
the trajectory distance at time t′ is defined as dm. Due to the bound
on the velocity of objects, it holds that any object, o or the query
q, from timestamp td (of o’s known location update in the past)
up to timestamp tm cannot have traveled a distance greater than
vmax ·(tm− td). As a result, the location distance of o cannot have
decreased more than 2vmax · (tm − td) (but not become less than
zero), which is the case that o and q travel towards one another (and
travel together once they reach each other). Therefore, the location
distance at tm cannot be less than dm ≥ d−2vmax ·(tm−td), and
is also greater than zero. Since tm ≤ t′, the lower bound holds.

In a similar way, we can also derive an upper bound for the tra-
jectory distance of o in a future timestamp t′. This can be com-
puted assuming that object o moves at maximum velocity vmax

away from the query q, while also q moves at maximum velocity
vmax away from o. As a result, since the last known update at
td, the location distance of o to q is increasing at a rate of 2vmax.
Again, any updates will come into effect only as long as there ex-
ists no previous value that is still valid and greater. The trajectory
distance in this setting is clearly an upper bound for the trajectory
distance of o for any possible motion of o and q. Thus, we derive
the following lemma.

Lemma 3. Given an object o at timestamp t, with latest location
distance d at timestamp td ≤ t and current trajectory distance
D ≥ d valid since tD ≤ td, its trajectory distance for any future
timestamp t′ ≥ t is upper bounded by the function:

Do[t
′] =

{

max{D, d+ 2vmax · (t
′ − td)} if t ≤ t′ ≤ tD + w

d+ 2vmax · (t
′ − td) if t′ > tD + w.

Proof. Consider the first clause, and a timestamp t′ ∈ [t, tD + w];
the corresponding time window is [t′ − w, t′] and D is still valid.
Let dm denote the largest valid location distance with timestamp
tm ∈ [t′ − w, t′]. Trivially, if dm is D, the upper bound holds.
Assume otherwise, i.e., dm > D. Using similar reasoning as
in Lemma 2, the location distance of o from timestamp td up to
timestamp tm cannot have increased more than 2vmax · (tm − td).
Therefore, dm ≤ d+2vmax · (tm − td), and the upper bound also
holds for this case because tm ≤ t′. The second clause is proved
in a similar way, given thatD has now expired.

6.2 Time Horizon of Objects
We now proceed to derive the minimum time required for an

object o 6∈ R to enter the result set. We refer to this as the time

horizon of an object, corresponding to the earliest time for which
the object’s trajectory distance may become equal to (or less than)
the trajectory distance of some object in R. Using Lemmas 2 and
3, the time horizon is formally defined as follows.

Definition 3. Given the current result setR at timestamp t, the time

horizon th for an object o 6∈ R is defined as the earliest possible
time that the trajectory distance of o becomes lower than that of any
object in R, i.e.:

th = min{t′ ≥ t | ∃o′ ∈ R : Do[t
′] ≤ Do′ [t

′]}

An important remark regarding the previous definition is that it
does not suffice to just consider the trajectory distance upper bound
of the k-th object in R. As location updates may not occur at all
timestamps, it is possible for two objects oi, oj ∈ R with trajec-
tory distances Di < Dj to have at some future timestamp t

′ upper
trajectory bounds such that Di[t

′] > Dj [t
′]. This can occur, for

example, when the objects’ last location distances and timestamps
satisfy the conditions di > dj and ti < tj .
As a result, computing the time horizon for an object requires

considering the trajectory distance upper bounds for all objects in
R, which is time consuming given that the time horizon needs to
be computed at each timestamp for each affected object not in the
result set. We thus propose an alternative method for determining
the time horizon. The key idea is the following lemma, which de-
rives a single upper bound on the trajectory distance of any object
in the result set R.

Lemma 4. Consider a set of objects R at current timestamp t,
where, for the i-th object, di denotes its latest location distance
at timestamp tid and Di ≥ di denotes its current trajectory dis-
tance valid since timestamp tiD ≤ tid. Define object o

+ ∈ R to
be the one with the largest trajectory distance, and object o∗ ∈ R

to be the one that can have the largest possible location distance at
current timestamp t, i.e.,

o
+ = argmax

oi∈R

D
i and o

∗ = argmax
oi∈R

(

d
i + 2vmax · (t− t

i
d)
)

.

Then, the trajectory distance of any object in R for any future
timestamp t′ ≥ t is upper bounded by the function:

DR[t
′] =

{

max{D+, d∗+2vmax · (t
′−t∗)} if t ≤ t′ ≤ t+w

d∗ + 2vmax · (t
′ − t∗) if t′ > t+ w,

where D+ is the trajectory distance of o+, and d∗ is the latest lo-
cation distance of o∗ computed at timestamp t∗.

Proof. It suffices to show that the upper bound on the trajectory
distance of each object in R according to Lemma 3 is always (i.e.,
for any t′ > t) not greater than the upper bound provided by this
lemma. Consider an object oi ∈ R and its trajectory distance upper
bound:

Di[t′] =

{

max{Di, di+2vmax · (t
′−tid)} if t≤ t′≤ tiD + w

di + 2vmax · (t
′ − tid) if t′ > tiD + w.

First note that tiD < t, and consider a future timestamp t′ during
the time interval [t, tiD + w]. Comparing the first clause of the two
bounds, we can see that D+ ≥ Di from the definition of object
o+. On the other hand, from the definition of o∗ we derive that
d∗+2vmax ·(t−t∗) ≥ di+2vmax ·(t−tid). Adding 2vmax ·(t

′−t)
to both sides of the inequality, we derive that the lemma holds.



Algorithm 4: HRZ

1 foreach t ∈ T do

2 OA ← ∅ // the set of objects marked for processing at t
3 if QUpd then

4 q.loc← (xq, yq) // update q’s current location
5 OA ← O // mark all objects for processing
6 else

7 foreach OUpd and OExp do

8 OA ← OA ∪ o // add the referred object inOA

9 foreach o ∈ OA ∩ R do

10 Do ← HRZ_ProcessObject(o)
11 update o’s entry inR

12 identify objects o+ and o∗ inR // from Lemma 4
13 foreach o ∈ OA \ R do

14 if t < o.th − w then continue

15 Do ← HRZ_ProcessObject(o)
16 if Do smaller than the trajectory distance ofR’s last entry then

17 deleteR’s last entry
18 insert an entry for o inR

19 report t, R

Next, consider a future timestamp t′ during the time interval
[tiD + w, t + w], and compare the second clause of Di[t′] to the
first clause of DR[t

′]. With similar reasoning as before, we have
that d∗ + 2vmax · (t

′ − t∗) ≥ di + 2vmax · (t − tid), and since
the first clause of DR[t

′] is always greater than the left-hand side
of the inequality, the lemma holds.
In the case of a future timestamp t′ > t + w, when the second

clauses of the bounds apply, it is easy to see, using similar reason-
ing as before, that the lemma holds.

Using the bound on the trajectory distance of any object in R, it
is possible to efficiently compute a timestamp that never overesti-
mates the time horizon, as the next lemma suggests.

Lemma 5. Given the current result set R at timestamp t, the time
horizon th for an object o 6∈ R is not less than the following value:

th ≥ min{t′ ≥ t |Do[t
′] ≤ DR[t

′]}.

Proof. Denote as A the set from Definition 3, i.e., A = {t′ ≥
t | ∃o′ ∈ R : Do[t

′] ≤ Do′ [t
′]}, and as B the set from this lemma,

i.e., B = {t′ ≥ t | Do[t
′] ≤ DR[t

′]}. We claim that B ⊆ A

to prove the lemma. Since it holds that DR[t
′] ≥ Do′ [t

′] for any
o′ ∈ R from Lemma 4, the condition of set B is harder to satisfy
than that of A, and thus the claim B ⊆ A holds.

Lemma 5 suggests that we can compute, in constant time, a
timestamp not greater than the time horizon as the solution of the
equationDo[t

′] = DR[t
′]. Henceforth, to simplify the presentation

of HRZ, whenever we refer to the time horizon th or its computa-
tion, we mean the solution of this equation instead of Definition 3.

6.3 The HRZ Algorithm
Having a method to compute the time horizon of an object, we

next detail the HRZ algorithm, highlighting its differences with re-
spect to XTR. The data structures and variables that HRZ uses are
as inXTR, with the exception that for each objectHRZ additionally
stores its time horizon th indicating the time after which the object
may appear in the result set R. The computation of th is based on
Lemma 5. The HRZ algorithm takes advantage of the time horizon
to reduce the number of events processed as follows. At any times-
tamp before th−w, HRZ ignores updates for the particular object.
During the time interval [th − w, th], HRZ only stores the loca-
tions and location distances, since these are necessary to compute
the trajectory distance at time th. However, it does not compute the
trajectory distance, since it is guaranteed to be greater than those in

Algorithm 5: HRZ_ProcessObject

1 if OExp event for o was triggered then

2 remove the expired location distance from o.hist

3 if QUpd or OUpd event for o was received then

4 update o.loc, if changed
5 compute new location distance d
6 if o 6∈ R then

7 compute th
8 else th ← t

9 if t < th − w then

10 clear state of o
11 remove o’s entry inQ
12 return Do ←∞

13 else

14 add d to o.hist
15 remove from o.hist all location distances less than d and with

timestamps before t− w

16 if t < th then

17 return Do ←∞
18 else

19 t′ ← the earliest timestamp in o.hist
20 if Q contains OExp event for o then

21 update OExp’s time to t′ + w

22 else

23 insert inQ the event 〈o, t′ + w〉

24 return Do ← earliest location distance in o.hist

R, and it does not add any events in Q. After the time horizon th,
HRZ operates similar to XTR.
Algorithm 4 shows the pseudocode for HRZ. The main differ-

ence from BSL and XTR is that it handles the processing of af-
fected objects in two phases. In the first phase (lines 9–11), HRZ
considers only objects that are in R, i.e., objects that were reported
as results in the previous timestamp. For these objects, the pro-
cessing (handled by HRZ_ProcessObject) is essentially identical to
XTR, as we later explain. Once processing is completed, the ob-
ject’s entry in R is updated if its trajectory distance changed.
Between the first and second phase, HRZ scans all objects in

R, and determines objects o+ and o∗ as defined in Lemma 4 (line
12). Then, during the second phase (lines 13–18), HRZ considers
the remaining affected objects, i.e., not in R. If the current time is
more thanw timestamps before the time horizon o.th of an object o,
HRZ essentially ignores o (line 14). For each other affected object,
its processing (handled by HRZ_ProcessObject at line 15) differs
significantly from XTR. Once it concludes, HRZ checks whether
the object should be included in the result set R provided that its
trajectory distance has sufficiently decreased (lines 16–18).
We next describe the HRZ_ProcessObject procedure, shown in

Algorithm 5. As in XTR, the procedure removes expired location
distances if an event from Q was triggered (lines 1–2). The main
operations of the procedure occur when either an object or a query
location update were received (lines 3–23). First, the object’s loca-
tion is updated, if it changed, and its location distance is computed
(lines 4–5). If the object o under processing did not belong in the
result at the previous timestamp (line 6), the procedure computes
the time horizon th by applying Lemma 5 (line 7); otherwise th
is set to current time (line 8), meaning that object o may belong
in the result. Since the time horizon is now recalculated taking
into account the object’s current location distance, it is necessary
to check again if the object should be ignored (line 9). If the check
succeeds, all stored information for object o is cleared, its entry
in the event queue is removed and an infinite trajectory distance is
returned (lines 10–12).
In the following operations (lines 14–23), it holds that the current

time is t ≥ th − w, hence HRZ needs to store locations and loca-
tion distances. The object’s current location distance d is stored



(line 14), and all location distances less than d are removed (line
15) as in XTR. Subsequently, if the current time falls in the in-
terval [th − w, th] (line 16), finding the actual trajectory distance
during this interval is not necessary, as the object is guaranteed to
not be in the result set. Therefore, HRZ simply returns an infinite
trajectory distance (line 17) and, to increase efficiency, it does not
create a corresponding expiration event. A consequence is that at
future timestamps after the current time horizon, there may exist
expired location distances. Therefore, the procedure may also have
to remove such distances (line 15). Otherwise, if the current time
is not before the time horizon (line 18), the processing is identical
to XTR. That is, the earliest timestamp is identified, and the event
queue is properly updated (lines 19–22). The last operation is to
compute the trajectory distance from the earliest location distance
and return it (line 24). As a final note, observe that if the object
was not in the result at the previous timestamp, its processing is
identical to XTR, as its time horizon is set to current time (line 8).

7. EXPERIMENTAL EVALUATION
To evaluate the efficiency of the proposed algorithms for the

continuous nearest trajectories query, we conduct experiments us-
ing three real-world trajectory datasets. In the following, we first
present the datasets used for the evaluation and then we report the
results of our experiments.

7.1 Datasets
To cover a variety of cases regarding the shapes of trajectories,

the type of the objects, and the speed and type of movement, we
use three different real-world datasets in our experiments. We refer
to these datasets as Beijing taxis, Aegean ships, and Athens vehi-

cles. These datasets vary in their characteristics, ensuring that our
methods are robust across diverse settings. For example, in the Bei-

jing taxis dataset, the shape of the trajectories exhibits a relatively
high regularity due to the grid-like structure of the underlying road
network. At the other end, the Athens road network is highly irreg-
ular, resulting in diverse trajectories with constantly varying head-
ings. Finally, the Aegean ships trajectory dataset comprises rela-
tively long trajectories with medium degree of heading variations.
A typical issue in trajectory datasets is the often high variation

of the sampling rate, caused, for example, by weak GPS signal, or
when the user manually switches off their personal tracking devices
(e.g., to save battery or for privacy). In our datasets, to reduce
such gaps, when the time interval between two consecutive reported
locations exceeds a specified threshold (set to 30 seconds) but is
not greater than a maximum threshold (set to 120 seconds), we use
linear interpolation to create intermediate location updates.
We next detail the used datasets.

• Beijing taxis. These trajectories are from the T-Drive trajectory
dataset, which contains GPS tracking data from taxis moving in
the area of Beijing [32, 33]. A total of 1,023,924 trajectories are
used. These trajectories belong to a total of 569 taxis recorded
in the period 2/2/2008 – 4/2/2008. Each trajectory comprises on
average 3,017 points (i.e. location updates).

• Aegean ships. This dataset contains GPS tracking data from
ships moving in the Aegean sea2. A total of 986,275 trajecto-
ries are used, obtained from 887 ships in the period 31/12/2008 –
02/01/2009. On average, each trajectory comprises 1,101 points.

• Athens vehicles. This dataset contains GPS tracking data from
vehicles moving in the area of Athens, recorded in the context of
the SimpleFleet project3. 667,421 trajectories are used, coming

2http://www.chorochronos.org/?q=node/8
3http://www.simplefleet.eu/

from 2,497 vehicles on 01/10/2012. Each trajectory comprises
157 points on average.

7.2 Results
The goal of the experimental evaluation is to study the efficiency

of the proposed algorithms, and in particular to compare the speedup
achieved by the XTR and HRZ algorithms with respect to the more
generic baseline BSL algorithm. For this purpose, we conduct a
series of experiments, using the datasets previously described. The
trajectory distance metric used in all experiments is the maximum
of all valid location distances. We note that the performance ofBSL
is identical for all metrics, as the method is distance agnostic. On
the other hand, XTR and HRZ have roughly the same performance
for any extremum-defined trajectory distance metrics.
The main performance metric is the total execution time, i.e.,

the time spent processing a CNT query over its entire lifespan. To
better investigate the performance gains of XTR and HRZ with re-
spect to BSL, we also report their relative improvement in execu-
tion time, and the percentage of events (location updates and expi-
rations) that they process compared to BSL. The investigated pa-
rameters affecting the performance of the algorithms is the number
k of nearest trajectories requested, the size w of the time window,
and the number |O| of objects. In all settings, the reported perfor-
mance metrics (time and number of events) are the average of 10
executions involving randomly selected query objects. The answer
to a CNT query is calculated at each timestamp that an update or
an expiration event occurs.

7.2.1 Varying the number of nearest trajectories

In this experiment, we measure the total execution time of each
of the three algorithms with respect to the number k of nearest tra-
jectories returned. The total monitoring time T is set to 60 minutes,
and the sizew of the time window for keeping each object’s history
is set to 5 minutes. The results are presented in Figure 1.
The first important observation is that for all datasets, the exe-

cution times of both XTR and HRZ are significantly lower than
for BSL, clearly showing in practice the effectiveness of the corre-
sponding optimizations for these cases. Furthermore,HRZ has also
a clear benefit over XTR. The differences are more pronounced in
the Beijing taxis dataset, which shows that, due to the regularity in
the movement of objects imposed by the underlying grid-like struc-
ture of the Beijing road network, more effective pruning of location
updates and distance recomputations can be achieved. In contrast,
the differences become relatively smaller in Athens vehicles, where
the road network is less uniform.
A second observation is that for all algorithms the execution time

increases with k. This is expected since k regulates the size of the
ordered list R that has to be maintained by the algorithm at each
timestamp. However, this increase is lower forXTR and, even more
so for HRZ, which is an additional evidence that XTR and HRZ
need to process fewer events, and hence perform fewer lookup and
sort operations on R.

7.2.2 Varying the size of the time window

In the next experiment, we compare the execution time of the
three algorithms with respect to the window size w during which
the past location distances of an object remain valid and contribute
to the trajectory distance. As previously, the total monitoring time
T was set to 60 minutes, and k was set to 10. To better illustrate
the improvement in execution time achieved byXTR andHRZwith
respect to BSL, we plot the speedup of XTR and HRZ compared
to BSL. The results are shown in Figure 2.
As illustrated, XTR shows a speedup of almost up to 5 times over
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Figure 1: Execution time of BSL, XTR and HRZ w.r.t. the number k of nearest trajectories returned at each timestamp.
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Figure 2: Execution time speedup of XTR and HRZ compared to BSL w.r.t. the size w of the time window.
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Figure 3: Percentage of events handled by XTR and HRZ compared to BSL w.r.t. the size w of the time window.

BSL, while for HRZ it is even higher, in the range of 15× to 22×
for the first two datasets and 4× to 6× for the Athens vehicles. No-
tice that in this setting k = 10, so when these results are considered
in conjunction with those illustrated in Figure 1, these speedups are
expected to be increasingly higher for higher values of k.
Moreover, the speedup for both algorithms increases as the win-

dow sizew increases. This behavior is because XTR andHRZ only
consider the maximum or minimum value in each object’s history,
so the gain is higher for larger time windows. The gain for HRZ is
even higher as w increases, since HRZ is able to set time horizons
for objects later in the future, thus ignoring more location updates
and further decreasing the total events to be handled.
To better illustrate the reduction of the number of events that

XTR and HRZ process, and how this is affected by the size of
the time window, we also report the number of events in the event
queue Q that are created and processed by XTR and HRZ with re-
spect to those by BSL. The results are shown in Figure 3. Indeed,
the results are in agreement with those in Figure 2, showing that

XTR needs to process only about 30% of the events processed by
BSL, while HRZ fewer than 5%.

7.2.3 Varying the number of objects

In the last set of experiments, we measure the performance of the
algorithms with respect to the number of objects. For this purpose,
we create subsets of the original datasets, containing a specific por-
tion of randomly selected objects, and ran the algorithms on these
subsets. The other parameters are set to T = 60 minutes, k = 10,
and w = 5 minutes. The results are plotted in Figure 4.
As expected, the execution time of all algorithms increases as the

size of the dataset increases. However, XTR and, especially, HRZ
show better scalability. Especially HRZ for the cases of the Beijing

taxis and the Aegean ships, where the movement of the objects is
relatively more regular, proves to be quite robust with respect to
the total number of objects, which verifies that it can successfully
avoid unnecessary examinations of objects that cannot qualify as
candidates for the result set.
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Figure 4: Execution time of BSL, XTR and HRZ w.r.t. the size |O| of the dataset.

8. CONCLUSIONS
This paper introduced and studied the problem of continuously

reporting moving objects with similar recent trajectories to a given
query object. This problem extends the case of continuous nearest
neighbor monitoring and of discovering similar trajectories in his-
torical data. We proposed a generic baseline method that operates
for any aggregate trajectory distance metric; the extension to other
metrics is left as future work. Then we turned our attention to in-
stances where the distance between the trajectories of two objects
is determined by the extrema (minimum and maximum) of their
individual location distances. For these instances, we described
two more efficient algorithms, with the latter taking into account a
given bound on the velocities of objects. Our experimental study
on real-world datasets showed that our methods exhibit up to 22
times performance gain compared to the baseline.
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Abstract. In this work we present a novel framework that permits us to de-

tect outliers in a data warehouse. We extend the commonly used definition of

distance-based outliers in order to cope with the large data domains that are typ-

ical in dimensional modeling of OLAP datasets. Our techniques utilize a two-

level indexing scheme. The first level is based on Locality Sensitivity Hashing

(LSH) and allows us to replace range searching, which is very inefficient in high

dimensional spaces, with approximate nearest neighbor computations in an intu-

itive manner. The second level utilizes the Piece-wise Aggregate Approximation

(PAA) technique, which substantially reduces the space required for storing the

data representations. As will be explained, our method permits incremental up-

dates on the data representation used, which is essential for managing voluminous

datasets common in data warehousing applications.

1 Introduction

Assuring quality of data is a fundamental task in information management. It becomes

even more critical in decision making applications, where erroneous data can mislead to

disastrous reactions. The data warehouse is the cornerstone of an organization’s infor-

mation infrastructure related to decision support. The information manipulated within

a data warehouse can be used by a company or organization to generate greater under-

standing of their customers, services and processes. Thus, it is desirable to provision

for tools and techniques that will detect and address potential data quality problems in

the data warehouse.

It is estimated that as high as 75% of the effort spent on building a data warehouse

can be attributed to back-end issues, such as readying the data and transporting it into

the data warehouse [1]. This is part of the Extract Transform Load (ETL) processes,

that extract information pieces from available sources to a staging area, where data is

processed before it is eventually loaded in the data warehouse local tables. Processing

at the data staging area includes cleansing, transformation, migration, scrubbing, fusion

with other data sources etc.

In this paper, we propose a novel framework for identifying outliers in a data ware-

house. Outliers are commonly defined as rare or atypical data objects that do not behave

like the rest of the data. Often, erroneous data points appear as outliers when projected

⋆ This work was funded by Project EICOS.



Fig. 1. Customer dimension projected onto the

Product dimension
Fig. 2. Framework’s Overview

on a properly derived feature space. In our work, we exploit the dimensional modeling

used in a data warehouse and let the user examine the data under selected dimensions

of interest. This way, our definition of what constitutes an outlier has a natural inter-

pretation for the policy makers that interact with this data. Moreover, our techniques

are tailored for the massive and periodic schedule of updates that occur with each ETL

process. Clearly, techniques that require substantial pre- or post- processing of data are

not suitable for handling massive datasets such as those in a data warehouse.

2 A Framework for Detecting Outliers in a Data Warehouse

Given a data warehouse with multiple dimensions d1, d2,. . . , dn, each organized by

different hierarchy levels hk the data warehouse administrator my select a pair (daggr,

haggr level) so as to define the requested aggregation and, similarly, a pair (dproj , hproj level)

in order to denote the space that these aggregates should be projected upon. For instance

the aggregate dimension can be customer at the hierarchy level of customer-type and

the projected dimension product at the product-brand level. These pairs indicate our

intention to compare different customer types based on cumulative sales of the brand of

products they buy in order to search for outliers. Clearly, a data warehouse administra-

tor may define multiple such pairs of dimensions in order to test the data for outliers. An

example presented in Figure 1 where the customer (aggregate) dimension is projected

onto the product dimension. This projection leads to a high dimensional vector for each

customer that summarizes all his buys over the whole list of products.

An O(D,M) distance based outlier is defined [2] as a data item O in a dataset with

fewer than M data items within distance D from O. The definition, in our domain,

suggests that range queries need to be executed in the data space defined by the pro-

jected dimension in order to compute the number of data items that lay inside a range

of D from item O. As has been explained, the projected space can have very high di-

mensionality (i.e. equal to the number of all products in the data warehouse, which is

in the order of thousands), which renders most multidimensional indexing techniques

ineffectual, due to the well documented curse of dimensionality [3].

In order to address the need to compare data items on a high-dimensionality space

when looking for outliers, we adapt a powerful dimensionality reduction technique



called LSH [4]. LSH generates an indexing structure by evaluating multiple hashing

functions over each data item (the resulting vector when projecting a customer on the

space of products she buys). Using the LSH index, we can estimate the k nearest neigh-

bors of each customer and compute outliers based on the distances of each customer

from its k neighbors. We thus propose an adapted approximate evaluation of distance-

based outliers that treats a data item O as an outlier if less than M of its k nearest

neighbors are within distance M from O. Please notice that this alternative evaluation

permits us to utilize the LSH index for a k-NN query (with k > M ) and restrict the

range query on the k results retrieved from the index. Thus, the use of the LSH index

permits effective evaluation of outliers, however it introduces an approximation error,

because of collisions introduced by the hashing functions. There have been many pro-

posals on how to tune and increase performance of LSH (e.g. [5, 6]), however such

techniques are orthogonal to the work we present here.

The use of LSH enables computation of outliers by addressing the curse of dimen-

sionality. Still, an effective outlier detection framework needs to address the extremely

high space required for storing the resulting data vectors. The size of these vectors is

proportional to the size of a data cube slice on the selected pair of dimensions. More-

over, these vectors need to be updated whenever the data warehouse is updated with

new data. We address both these issues (space overhead, update cost) using the PAA

representation instead of the original vectors. Utilizing PAA, we store vectors of lower

dimensionality than the real ones, thus gaining in space. We can also compute the dis-

tances between each data item and its nearest neighbours through their PAA representa-

tions much faster than using the real data items without losing too much in accuracy as

we will show in our experimental evaluation. PAA [7] represents a data item of length

n in R
N space (where n > N ) achieving a dimensionality reduction ratio N :n. Given

that each data item X is a vector with coordinates x1, .., xn, its new representation will

be a new vector X̄ of length N and coordinates the mean values of the N equisized

fragments of vector X . So according to PAA a vector X = x1, .., xn is represented by

X̄ = x̄1, .., x̄N where x̄i =
N
n

n

N
i∑

j= n

N
(i−1)+1

xj .

Beside the space savings provided by PAA, its adaptation has another important

advantage in our application. Because of its definition, PAA representations are lin-

ear projections that permit incremental updates whenever new data arrives at the data

warehouse. Let PAAold denote the PAA vector of a customer and PAAdelta the PAA

representation of the customer’s buys in the newly acquired updates. Then, in order to

compute the new representation PAAnew for this customer we can simply add the two

vectors, i.e. PAAnew=PAAold+PAAdelta. This property is vital for data warehouses,

where incremental updates are of paramount importance [8].

3 Experiments and Concluding Remarks

In our experimental evaluation, we used a clustered synthetic dataset that represents or-

ders of 10,000 customers over a list of 1200 products. Each cluster contains customers

with similar behavior. In particular, the customers within each cluster have a randomly
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(pre)selected set of “hot” products that represent 20% of the whole product list. For

a customer in the cluster, 80% of her orders are on that 20% subset of products. Dif-

ferent clusters have different set of hot products. The frequencies of customers’ orders

follow the normal distribution with different mean values per cluster. In order to eval-

uate the performance of our method we injected in the dataset outliers in the form of

spurious orders. We created three infected datasets. In the first one, the spurious orders

add low disturbance (measured by the number of spurious orders) to the original data.

while in the second medium and in the third large. In Figure 3 we depict the f-measure

( 2×recall×precision

recall+precision
) in detecting the injecting outliers for the tree datasets. We compare

two variants. The first uses the LSH index and the data vectors generated by projecting

the customers on the product dimension. The second setup, instead of the original vec-

tors, it only stores their PAA representations of one quarter of the original vector length.

In the Figure we observe that the accuracy of the PAA method is quite similar to the

other method that stores the actual vectors, while the storage of PAA is much smaller,

as it shown in Figure 4. Moreover, the size of the LSH index is very small, while its

accuracy in computing distance-based outliers is at least 98%.
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Abstract. Trajectory data capture the traveling history of moving ob-
jects such as people or vehicles. With the proliferation of GPS and track-
ing technology, huge volumes of trajectories are rapidly generated and
collected. Under this, applications such as route recommendation and
traveling behavior mining call for efficient trajectory retrieval. In this
paper, we first focus on distance-based trajectory search; given a collec-
tion of trajectories and a set query points, the goal is to retrieve the top-k
trajectories that pass as close as possible to all query points. We advance
the state-of-the-art by combining existing approaches to a hybrid method
and also proposing an alternative, more efficient range-based approach.
Second, we propose and study the practical variant of bounded distance-
based search, which takes into account the temporal characteristics of the
searched trajectories. Through an extensive experimental analysis with
real trajectory data, we show that our range-based approach outperforms
previous methods by at least one order of magnitude.

1 Introduction

The proliferation of GPS and tracking technology has brought to availability
huge volumes of trajectories from real moving objects such as mobile phone
users, vehicles and animals. Searching such a collection of trajectories finds
several applications, including route recommendation, behavior mining, and in
transportation systems [1, 2]. Different from conventional retrieval tasks which
identify similar trajectories to a given one or those crossing a specific spatial
region, in this paper we focus on point-based search, which retrieves trajectories
based on given points. In particular, taking as input a set of query points Q
(e.g., a particular set of POIs), the distance-based trajectory search studied in
[3, 4] retrieves the trajectories that pass as close as possible to all query points.

⋆ Work supported by grant HKU 715413E from Hong Kong RGC, and by the European
Social Fund and Greek National Funds through the NSRF Research Program Thales.
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Specifically, the distance of a trajectory t to Q is computed by summing up, for
each query point q ∈ Q, its distance to the nearest point in t.

Consider for instance a collection of touristic trajectories; a travel agency
issues a distance-based query to survey or recommend popular routes that pass
close to specific sightseeing attractions. As another example, query set Q could
contain traffic congestion points; in this case, the traffic department seeks to
discover the causes of the congestion by analyzing the trajectories that pass
near the points in Q. In the context of surveillance and security applications, Q
may contain locations of crime scenes, and hence the police department issues
a distance-based query to investigate the correlation of these crime locations by
identifying suspects who moved close to all of them.

Contributions. This paper tackles two problems under the point-based trajec-
tory search. First, we thoroughly study the efficient evaluation of distance-based
trajectory search. We review in detail existing algorithms IKNN [3] and GH/QE
[4]. These methods follow a candidate generation and refinement paradigm, and
invoke a nearest neighbor (NN) search centered at each query point to exam-
ine the trajectories in ascending order of their distance to Q. By analyzing the
pros and cons of these methods, we design a hybrid NN-based algorithm which
consistently outperforms IKNN and GH/QE by over an order of magnitude. Going
one step further, we tackle the inherent shortcomings of the NN-based approach
itself, namely (a) the increased I/O cost due to independently running multi-
ple NN searches and (b) the increased CPU cost for continuously maintaining
a priority queue for each NN search. We propose a novel spatial range-based
approach, which is up to 2 times faster than our hybrid algorithm.

Second, we observe that the distance-based search ranks trajectories solely on
how close they pass to the query points in Q, ignoring however other qualitative
characteristics of the retrieved results. To fill this gap, we introduce a practi-
cal variant of distance-based trajectory search, which also takes into account
the temporal aspect of the trajectories. Specifically, this bounded distance-based

search filters out non-interesting trajectories, whose points closest to Q span a
time interval greater than a user-defined threshold.

Outline. The rest of the paper is organized as follows. Section 2 formally de-
fines the distance-based and bounded distance-based trajectory search while Sec-
tions 3 and 4 address their efficient evaluation. Then, Section 5 discusses problem
variants where (a) the trajectories are ranked both on their distance to the query
points and the time interval they span, and (b) Q is a sequence of query points,
instead of a set. Section 6 presents our experimental analysis. Finally, Section 7
outlines related work, while Section 8 concludes the paper.

2 Problem Definition

Let T be a collection of trajectories. A trajectory in T is defined as a sequence of
spatio-temporal points {p1, . . . , pn}, each represented by a 〈latitude, longitude,
timestamp〉 triple. The input of point-based trajectory search over collection T is
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Fig. 1. Distance-based trajectory search with 4 trajectories, T = {t1, . . . , t4}, and 3
query points, Q = {q1, . . . , q3}; t1, t2 is the result to 2-DTS(T,Q), while t2, t3 the
result to 2-BDTS(T,Q, τ)

a set of m spatial query points Q = {q1, . . . , qm}. Given a query point qj ∈ Q and
a trajectory ti ∈ T , we define the 〈p∗ij , qj〉 matching pair based on the nearest
to qj point p∗ij of trajectory ti, i.e., p

∗
ij = argminp∈ti dist(p, qj), where dist(·, ·)

denotes the distance (e.g., Euclidean) between two points in space. We then
define the distance of a trajectory to Q based on the matching pairs for every
query point qj as:

dist(ti, Q) =
∑

qj∈Q

dist(p∗ij , qj) (1)

Consider the example in Figure 1(a), where query points are represented as
diamonds, and trajectory points as circles; filled circles indicate matched points
of the trajectory to query points. For trajectory t1, point p

∗
11 is its closest point

to query point q1, and hence 〈p∗11, q1〉 represents a matching pair. The other
matched trajectory points of t1 are p∗12 and p∗13. Note that it is possible for a
trajectory point to be matched with multiple query points. This is the case with
trajectory t3, where p∗32 is the closest point to both q1 and q2, i.e., p

∗
31 ≡ p∗32.

We now formally define the distance-based trajectory search problem [3, 4].

Problem 1 (Distance-based Trajectory Search) Given a collection of tra-

jectories T and a set of query points Q, the k-Distance-based Trajectory Search,
denoted by k-DTS(T,Q), retrieves a subset of k trajectories R ⊆ T such that for

each t ∈ R and t′ ∈ T rR, dist(t, Q) ≤ dist(t′, Q) holds.

Returning to the example of Figure 1(a), trajectory t1 has the lowest distance
to Q, followed by t2, t3 and t4; hence, the result to 2-DTS(T,Q) is t1, t2.

Next, we introduce a novel point-based trajectory search problem by also
taking into account the temporal aspect of the trajectories. Let P ∗i be the set of
all matching pairs for a trajectory ti, sorted ascending on the timestamp of the
involved trajectory points. We define the span of trajectory ti with respect to
Q, denoted by span(ti, Q), as the length of the time interval between the first
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and the last pair in P ∗i , or equivalently:

span(ti, Q) = max
qx,qy∈Q

(timestamp(p∗ix)− timestamp(p∗iy)) (2)

Intuitively, span(ti, Q) equals the total time needed to reach as close as possible
to all query points in Q, following trajectory ti.

Problem 2 (Bounded Distance-based Trajectory Search) Given a collec-

tion of trajectories T , a set of query points Q and a span threshold τ , the k-
Bounded Distance-based Trajectory Search, denoted by k-BDTS(T,Q, τ), re-

trieves the subset of k trajectories R ⊆ T such that:

– for each t ∈ R, span(t, Q) ≤ τ holds, and

– for each t′ ∈ T rR with span(t′, Q) ≤ τ , dist(t, Q) ≤ dist(t′, Q) holds.

Returning to Figure 1(a), assume for simplicity that trajectory points are
reported in fixed time intervals. As a result, the span of a trajectory is pro-
portional to the number of its points from the first to the last matched point
(excluding the first). For example, span(t1, Q) = 4 as there are 4 points from p∗11
and up to p∗13. Similarly, we obtain the spans of t2, t3, t4 as 2, 1, 2, respectively.
Figure 1(b) plots the trajectories in the span-dist plane. DTS ignores the span
values and simply returns the trajectories with the lowest dist coordinate. In
contrast, BDTS introduces a threshold, e.g., τ = 3, on the span of the trajec-
tories, depicted as the dashed vertical line. Trajectories to the right of this line,
i.e., t1, do not qualify as BDTS results. Therefore, the result of 2-BDTS is t2,
t3, i.e., the trajectories with the 2 lowest distances among those left of the line.
Notice that BDTS may not return the trajectory with the lowest distance to Q
if its span exceeds the threshold; e.g., t1 in Figure 1.

Depending on the application, one may consider alternative definitions for
point-based trajectory search that take into account both the distance and the
span metrics. We briefly overview one of them in Section 5, where we also discuss
trajectory search given a sequence of query points, instead of a set.

3 Distance-based Trajectory Search

We first discuss trajectory search based on the distance to a set of query points.
Section 3.1 revisits existing work, while Sections 3.2 and 3.3 present our NN-
based and spatial range-based methods, respectively.

3.1 Existing Methods

Methods IKNN [3] and GH/QE [4] have previously tackled distance-based trajec-
tory search. Note that in [3] the problem was defined with respect to the sim-
ilarity of a trajectory ti to the set of query points Q, defined as sim(ti, Q) =
∑

qj∈Q
e−dist(p∗

ij ,qj). In what follows, we describe the straightforward adaptation

of the IKNN algorithm for the distance metric of Equation (1) (which was also
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Algorithm 1: IKNN
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, k-th distance upper bound UBk, distance lower bound LB

1 initialize C ← ∅, UBk ←∞ and LB ← 0;
2 while UBk > LB do

3 for each qj ∈ Q do

4 δj-NN(qj)← the next δj nearest trajectory points to qj ;
5 update C with δj-NN(qj);
6 update UBk and LB; ⊲ Equations (3) and (4)

7 R← RefineDTS(k, T,Q,C);
8 return R;

used in [4]). The adaptation of GH/QE and our methods (Sections 3.2 and 3.3)
to the similarity metric of [3] is also straightforward and therefore, omitted.
Moreover, the relative performance of all methods is identical independent of
the metric used.

All existing methods adopt a candidate generation and refinement evaluation
paradigm. During the first phase, a set of candidate trajectories is determined
by incrementally retrieving the nearest trajectory points to the query points in
Q. For this purpose, the methods utilize a single R-tree to index all trajectory
points. A candidate trajectory t is called a full match if the matching pairs of
t to all query points in Q have been identified; otherwise, t is a partial match.
As soon as the candidate set is guaranteed to include the final results (even as
partial matches), candidate generation is terminated, and the refinement phase
is then employed to identify and output the results.

The IKNN Algorithm. Note that the IKNN algorithm comes in two flavors; in
the following, we consider the one based on best-first search, as it was shown
in [3] to be both faster and require fewer I/O operations. Algorithm 1 shows
the pseudocode of IKNN. During candidate generation (Lines 2–6), the algorithm
iterates over the points of Q in a round robin manner. For each query point qj ,
the (next) batch of nearest to qj trajectory points is retrieved using the R-tree
index, in Line 4. The nearest neighbor search retrieves a different number of
trajectory points δj per query point qj , in order to expedite the termination of
this first phase (details in [3]). Based on the newly identified matching pairs that
involve qj , the set of candidates C is then updated in Line 5 by either adding new
partial matches or filling an empty slot for existing. For each partial match ti in
C, IKNN computes an upper bound of its distance to Q by setting the distance of
ti to every unmatched query point equal to the diameter of the space (maximum
possible distance between two points): 4

dist(ti, Q) =
∑

qj∈Qi

dist(p∗ij , qj) + |QrQi| ·DIAM, (3)

where set Qi ⊆ Q contains all the query points already matched to a point in
trajectory ti. We denote by UBk the k-th smallest among the distance bounds

4 Under the similarity-based definition of DTS in [3], IKNN sets empty “slots” to 0.
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Algorithm 2: GH
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H

1 initialize C ← ∅ and H ← ∅;
2 while C contains less than k full matches do

3 pop 〈pij , qi〉 from H; ⊲ Get the globally nearest trajectory point to some query point
4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;

6 R← RefineDTS(k, T,Q,C);
7 return R;

Algorithm 3: QE
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H, distance lower bound LB

1 initialize C ← ∅, H ← ∅ and LB ← 0;
2 while C contains less than k full matches with dist(·, Q) ≥ LB do

3 pop 〈pij , qi〉 from H; ⊲ Get the globally nearest trajectory point to some query point
4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;
6 complete the most promising partial matches in C; ⊲ Equation (5)
7 update LB; ⊲ Equation (6)

8 R← RefineDTS(k, T,Q,C);
9 return R;

for the trajectories in C. In addition, IKNN computes a lower bound LB of the
distance to Q for all unseen trajectories (i.e., those not contained in C), by
aggregating the distance of the farthest (retrieved so far) trajectory point to
each query point in Q. Formally:

LB =
∑

qj∈Q

dist(pδj , qj) (4)

where pδj is the last trajectory point returned by the NN search centered at qj .
The candidate generation phase of IKNN terminates when UBk ≤ LB; in this

case, none of the unseen trajectories can have smaller distance to Q compared to
the candidates in C. Last, IKNN invokes RefineDTS to produce the results. Briefly,
the function examines candidates in ascending order of a lower bound on their
distance, retrieving them from disk to compute dist(·, Q) (details in [3]).

The GH/QE Algorithms. Different from IKNN, the methods in [4] retrieve tra-
jectory points in ascending order of the distance to their closest query point.
Specifically, a global heap H is used to retrieve at each iteration the globally

nearest trajectory point pij to some query point qj , and then, to update candi-
date set C, accordingly. Algorithm 2 shows the pseudocode of GH. The candidate
generation phase of GH is terminated as soon as set C contains k full matches
(proof of correctness in [4]). Note that these full matches are not necessary among
the final results identified in Line 6 during the refinement phase.

In practice, the order imposed by global heap H cannot guarantee a good
performance unless both trajectory and query points are uniformly distributed
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in space. For instance, if a particular query point is very close to many trajec-
tories, GH will generate a large number of partial matches with only that slot
filled. Consequently, it will take longer to produce the k full matches needed to
terminate the generation phase, and at the same time a large number of candi-
dates would have to be refined. A similar problem occurs when a query point is
located away from the trajectories.

To address these issues, Tang et al. [4] proposed an extension to GH termed QE,
which periodically fills the empty slots for the partially matched trajectories with
the highest potential of becoming results. These are then retrieved from disk,
and their actual distance is computed. A trajectory has high potential if it has
(i) few empty slots and (ii) small distance in each filled slot with respect to the
next point to be retrieved for that slot. These factors are captured respectively
by the denominator and enumerator of the following equation:

potential(ti) =

∑

qj∈Qi

(

dist(pHj , qj)− dist(p∗ij , qi)
)

|QrQi|
(5)

where set Qi ⊆ Q contains all the query points already matched to a point in ti,
pHj is the next nearest trajectory point to qj contained in heap H and p∗ij is the
nearest to qj point in trajectory ti.

Algorithm 3 shows the pseudocode of QE. The candidate generation phase
of QE terminates when candidate set C contains k full matches (similar to GH),
provided however that their distance to Q is smaller than the distance of all
unseen trajectories (Line 2) (proof of correctness in [4]). To determine this, QE
computes in Line 7, a lower bound LB of the distance for the unseen trajectories
(similar to IKNN) by aggregating the distance of the next nearest trajectory point
to every query point, i.e., the contents of heap H:

LB =
∑

qj∈Q

dist(pHj , qj) (6)

3.2 A Hybrid NN-based Approach

The DTS problem can be viewed as a top-k query [5, 6]. For each query point qj ,
consider a sorted trajectory list Tj , where each trajectory is ranked according
to its distance to the query point. Then, the objective is to determine the top-k
trajectories that have the highest aggregate score, i.e., distance, among the lists.
However, as these lists are not given in advance and constructing them is costly,
the goal is to progressively materialize them, until the result is guaranteed to be
among the already seen trajectories.

Following the top-k query processing terminology, a sorted access on list Tj

corresponds to the retrieval of the next nearest trajectory to query point qj ,
which in turn may involve multiple trajectory point NN retrievals. In contrast, a
random access for trajectory ti on list Tj corresponds to the retrieval of ti from
disk and the computation of its distance to qj ; in practice, once ti is retrieved,
its distance to all query points can be computed at negligible additional cost.
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Methods IKNN, GH and QE employ various ideas from top-k query processing
(an overview of this field is presented in Section 7). Particularly, IKNN performs
only sorted accesses and prioritizes them in a manner similar to Stream−Combine
[7]. Similarly, GH performs only sorted accessses but follows an unconventional
strategy for prioritizing them, which explains its poor performance on our tests in
Section 6. On the other hand, QE additionally performs random accesses following
a strategy similar to the CA algorithm [5] to select which trajectory to retrieve.

In the following, we present the NNA algorithm, which combines the strengths
of IKNN and QE. In short, it builds upon the Quick−Combine top-k algorithm [8]
performing both sorted and random accesses to generate the candidate set. NNA
has the following features. First, similar to IKNN, the algorithm retrieves in a
round robin manner, batches of nearest trajectory points to each query point in
Q. This addresses the weaknesses of GH when dealing with non-uniformly dis-
tributed data. Second, after performing the nearest neighbor search centered at
each query point, NNA fills the slots of the trajectories with the highest potential
according to Equation (5), similar to QE. Finally, NNA employs the termination
condition of IKNN for the candidate generation phase. In practice, NNA extends
Algorithm 1 by completing the most promising partial matches in C (similar to
QE), between Lines 5 and 6. Hence, it is able to compute tighter bounds com-
pared to IKNN and thus terminate the generation phase earlier. In addition, it
produces fewer candidates than IKNN, reducing the cost of the refinement phase.

3.3 A Spatial Range-based Approach

We identify two shortcomings of all the NN-based methods previously described.
First, each NN search is implemented independently, which means that R-tree
nodes and trajectory points may be accessed multiple (up to |Q|) times, which
increases the total I/O cost. Second, each NN search is associated with a priority
queue, whose continuous maintenance increases the total CPU cost.

Our novel Spatial Range-based algorithm, denoted by SRA, addresses both
these shortcomings. Similar to the NN-based approaches, it follows a generation
and refinement paradigm. However, to generate the candidate set, it issues a
spatial range search of expanding radius centered at each query point in Q. All
searches operate on a common set N of R-tree nodes, which avoids accessing
nodes more than once and hence saves I/O operations. Moreover, set N needs
not be sorted according to any distance, eliminating costly priority queue main-
tenance tasks. The range-based search for each query point qj is associated with
current radius rj , and is also assigned a maximum radius θj . As the algorithm
progresses, current radius rj increases while maximum radius θj decreases. Can-
didate generation terminates as soon as rj > θj for some query point qj .

Algorithm 4 shows the pseudocode of SRA. In Lines 2–4, SRA initializes the
current and maximum radius for each query point. For the latter, an upper bound
UBk to the k-th smallest distance to Q is computed. In particular, SRA invokes a
sum-aggregate nearest neighbor (sum-ANN) procedure [9] retrieving trajectory
points in ascending order of

∑

qj∈Q
dist(·, qj). Assuming that this procedure

retrieves point pi of trajectory ti, the sum-aggregate value is an upper bound to
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Algorithm 4: SRA
Input : collection of trajectories T , set of query points Q, number of results k
Output : top-k list of trajectories R
Variables : candidate set C, k-th distance upper bound UBk, current ri and maximum θi

search radius for each qi ∈ Q, set of R-tree nodes N
1 initialize C ← ∅ and N ← R-tree root node;
2 compute UBk invoking a sum-ANN(T,Q);
3 for each qj ∈ Q do

4 initialize rj ← 0 and θj ← UBk;

5 while rj ≤ θj for all qj ∈ Q do

6 select current qc;
7 rc ← rc + ξ ; ⊲ Increase rc to expand search around qc
8 expand from N all nodes that intersect with the disc of radius rc centered at qc;
9 S ← trajectory points within spatial range rc found during expansion;

10 update C with S;
11 update UBk; ⊲ Equation (7)
12 for each qj ∈ Q do

13 update θj ← UBk −
∑

qℓ∈Qr{qj}
rℓ; ⊲ Reduce maximum radius

14 R← RefineDTS(k, T,Q,C);
15 return R;

the distance of ti, i.e., dist(ti) ≤
∑

qj∈Q
dist(pi, qj). Hence, once points from k

distinct trajectories have been retrieved, SRA can determine a value for UBk.
During the candidate generation phase in Lines 5–13, SRA first selects the

query point qc ∈ Q with the fewest retrieved points so far, and increases its
radius by a fixed ξ5, so that each location retrieves more or less the same number
of points. Then, it extends the range search centered at qc to new radius rc. In
particular, all nodes in N that intersect with the search frontier are expanded,
i.e., replaced by their children (Line 8). During the expansion, all trajectory
points within the frontier are collected in set S (Line 9). Upon completion of the
expansion, set N contains no R-tree node or point within rc distance to qc, or
with distance to qc greater than θc, and N will be re-used in further iterations.

After the expansion, SRA uses the newly seen trajectory points in S to prop-
erly update candidate set C. Note that for each trajectory ti in C, SRA keeps |Q|
slots storing the closest trajectory points ti.pj seen so far to each query point
qj . A slot is marked matched if the corresponding matching pair has been de-
termined, i.e., when ti.pj ≡ p∗ij . SRA in Line 10 performs the following tasks for
each point px in S; let ti be the trajectory px belongs to. For each slot qj that is
not matched, SRA checks whether px is closer to qj than ti.pj , and updates the
slot with px if true. If the slot for the current query point qc was among those
examined, it is marked as matched. The benefits of this update strategy are
twofold. First, it guarantees that no matching trajectory point will be missed,
even though SRA does not access px again (removed from N) for qj 6= qc. At the
same time, it also helps to derive a tighter upper bound for the distance of ti:

dist(ti, Q) =
∑

qj∈Qi

dist(p∗ij , qj) +
∑

qj∈QrQi

dist(ti.pj , qj). (7)

5 In the future, we plan to investigate variable ξj values based on current radius rj
and the trajectory point density around qj , inspired by determining δj value in [3].



10 Shuyao Qi, et al.

Compared to Equation (3) utilized by IKNN and NNA, Equation (7) computes a
tighter bound on unmatched slots. Based on these bounds, a tighter value for
UBk can be established (Line 11).

To better explain the procedure in Line 10, we use the example of Figure 1(a)
for k = 2. SRA has just started and thus C is empty. Assume that the current
query point is qc = q1, and let r1 = 0 + ξ be the radius of the shaded disk
depicted in the figure. As a result, set S in Line 9 contains trajectory points
{p∗21, p

∗
22, p

∗
41}. Moreover, candidate set C contains t2 and t4. For trajectory t2,

p∗21 is settled as the matching point to q1 because dist(p∗21, q1) < dist(p∗22, q1)
and no unseen point of t2 can be closer. On the other hand, the matching points
to q2, q3 cannot be yet determined, but we can use p∗21 and p∗22 to bound t2’s
distances to q2 and q3. Therefore, the slots for t2 become 〈p∗21, p

∗
22, p

∗
21〉, where

bold indicates a matched slot. Moreover, an upper bound to the distance of t2 is
determined as dist(t2, Q) = dist(p∗21, q1) + dist(p∗22, q2) + dist(p∗21, q3). Similarly,
we obtain the slots for t4 as 〈p∗41, p

∗
41, p

∗
41〉.

As a last step, SRA updates the maximum radius for all query points with
respect to the new UBk in Lines 12–13. Observe that SRA’s termination condition
for candidate generation is essentially identical to that of IKNN. Any trajectory
not in the candidate set C must have distance to each qj at least θj , and thus
distance at least equal to LB =

∑

qj∈Q
θj . The termination condition of Line 5,

rj > θj for some qj , and the update of θj , imply that, when candidate generation
concludes, UBk ≤ LB.

Finally, the performance of SRA can be enhanced following the key idea of
QE to further improve the dist(tj , Q) bound and therefore, UBk. We denote this
extension to the SRA algorithm by SRA+. Specifically, in between Lines 10 and
11 in Algorithm 4, SRA+ fills the empty slots of the trajectories in C with the
highest potential as computed using Equation (5).

4 Bounded Distance-based Trajectory Search

We next address the bounded distance-based trajectory search. Recall from Sec-
tion 2 that k-BDTS(T,Q, τ) is equivalent to a k-DTS(T ′, Q) distance-based
query over the subset T ′ ⊆ T containing only trajectories with span(·, Q) ≤ τ .
However, as span(t, Q) can be computed only after all the matching pairs of
a trajectory t to Q are identified, the major challenge is to limit the number
of invalid partial matches generated, i.e., those with the span(·, Q) > τ . In the
following, we address this issue in two alternative ways.

The idea behind the incremental approach, denoted as INCREMENTAL, is to
progressively construct the result set R by utilizing the generation phase of a
DTS method as a “black” box. Algorithm 5 illustrates INCREMENTAL; note that
any of the algorithms in Section 3 can be used as the underlying DTS method. At
each round, INCREMENTAL asks for the missing k−|R| trajectories to complete the
result set R in Lines 3–4. For this purpose, a λ-DTS(T,Q) search is processed,
with the λ value been increased at each round by k− |R|; during the first round
λ = k. Each time λ is updated in Line 3, the DTS method in Line 4 does not
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Algorithm 5: INCREMENTAL
Input : collection of trajectories T , set of query points Q, span threshold τ , number

of results k
Output : result set R
Variables : candidate set C, number of intermediate results λ

1 initialize C ← ∅, R← ∅ and λ← 0;
2 while |R| < k do

3 increase λ by k − |R|;
4 C ← next candidate set of λ-DTS(T,Q);
5 R← R ∪ RefineBDTS(k, T,Q,C, τ);

6 return R;

run from scratch. It continues the candidate generation using a new termination
condition with respect to the updated λ in order to expand candidate set C.
Last, in Line 5, RefineBDTS examines the new candidates to update result set R
by computing their dist(·, Q) and eliminating trajectories with span(·, Q) > τ .

Intuitively, INCREMENTAL takes a conservative approach to bounded distance-
based trajectory search. As it is unable to predict which partial matches could
provide a valid trajectory (full match) with span(·, Q) ≤ τ , a refinement phase
is needed to “clean” the candidate set. Hence, INCREMENTAL may involve several
rounds of generation and refinement phases. To address these issues, we propose
the ONE−PASS approach which involves a single generation and refinement round.
The idea is again to build upon a DTS method but by extending its candidate
generation phase in two ways. First, for each partial match ti in candidate set
C, ONE−PASS computes a lower bound of span(ti, Q) based on the points of ti
matching the current subset of query points Qi ⊂ Q, as follows:

span(ti, Q) =

{

0, if |Qi| = 1

span(ti, Qi), otherwise
(8)

Every partial match with span(·, Q) > τ can be safely pruned. Second, the
original termination is triggered only after candidate set C contains at least
k valid full matches, i.e., with span(·, Q) ≤ τ . This is because the k-th upper
bound UBk of existing candidates can be computed only through full matches.
For example, candidate generation of ONE−PASS based on SRA+ terminates as
soon as at least k valid full matches are identified and rj > θj holds for some
query point qj .

5 Discussion

We discuss alternative definitions and variants to the point-based search prob-
lems introduced in Section 2.

Distance & Span-based Trajectory Search. Although taking into account
their temporal span, the bounded distance-based search still ranks the trajecto-
ries solely on their distance to the query points in Q. As an alternative, we may
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rank the results with respect to a linear combination of the span-dist metrics:

f(t, Q) = α · dist(t, Q) + (1− α) · span(t, Q) (9)

where α weights the importance of each metric. With Equation (9), we introduce
the k-Distance & Span-based Trajectory Search, denoted by k-DSTS(T,Q) which
returns the subset of k trajectories R ⊆ T with the lowest f(·, Q) value.

All methods discussed in Section 3 can be extended for k-DSTS(T,Q) by
replacing dist(·, Q) with f(·, Q). Note that the upper bound f(t, Q) of a partial
match t can be computed by setting span(t, Q) equal to the total duration of
the trajectory t. In contrast, as no matching pairs are identified for the unseen
trajectories, the lower bound LB or the θj values are defined similar to the DTS
methods, i.e., essentially setting the lower bound of span to zero. In Section 6.4,
we experimentally investigate the efficient evaluation of DSTS.

Order-aware Trajectory Search. Similar to [3], we also consider a variation of
the trajectory search when a visiting order is imposed for the query points. In this
variation, the matched trajectory point p∗ij to query point qj , is not necessarily
the nearest to qj point of trajectory ti. Consider for example trajectory t2 in
Figure 1. The depicted p∗22, p

∗
21, p

∗
23 for DTS cannot be the matched points in

the q1 → q2 → q3 order-aware DTS, as they violate the visiting order. Instead,
the matched points that preserve the imposed visiting order are p∗22, p

∗
22, p

∗
23,

where p∗22 is matched with q1 although dist(p∗22, q1) > dist(p∗21, q1). The distance
of a trajectory to sequence Q is recursively defined as follows:

disto(t, Q) =











min

{

disto(t, T (Q)) + dist(H(t), H(Q))−DIAM

disto(T (t), Q)
if t 6= ∅, Q 6= ∅

|Q| ·DIAM if t = ∅

0 if Q = ∅

(10)

where H(S) is the first point (head) in a sequence S, T (S) indicates the tail of S
after removing H(S), ∅ denotes the empty sequence, and DIAM represents the
diameter of the space. The distance can be computed by straightforward dynamic
programming [3]. To derive an upper bound on a partial matched trajectory ti,
we consider only the subsequence Qi of Q that contains the matched query
points, i.e., disto(ti, Q) = disto(ti, Qi). For order-aware BDTS, distance and
its upper bound are the same as in order-aware DTS. Note, however that the
lower bound on span (Equation (8)) does not apply as the matching are not yet
finalized. For order-aware DSTS evaluation, fo(t, Q) and its upper bound are
defined in a similar manner to order-aware DTS. In Section 6, we experimentally
investigate the order-aware variants of all three trajectory search problems.

6 Experimental Analysis

We evaluate our methods for point-based trajectory search. All algorithms were
implemented in C++ and the tests run on a machine with Intel Core i7-3770
3.40GHz and 16GB main memory running Ubuntu Linux.
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Table 1. POIs in Beijing

category cardinality

Restaurants 51,971
Hotels 10,620

Pharmacies 6,963
Schools 6,618
Banks 6,057

Police stations 2,509
Supermarkets 2,356
Gas stations 1,916
Post offices 1,125

Table 2. Experimental parameters (default values in
bold)

description parameter values

Number of results k 1, 5, 10, 50, 100
Number of query points |Q| 2, 4, 6, 8, 10
Span threshold ratio τ/τmin 1, 1.5, 2, 2.5, 3
Linear combination factor α 0, 0.25, 0.5, 0.75, 1

6.1 Setup

We conducted our analysis using real-world trajectories from the GeoLife Project
[10–12]. The collection contains 17,166 trajectories with 19m points in Beijing,
recording a broad range of outdoor movement. To generate our query sets, we
considered around 90k points of interest (POIs) of various types, located inside
the same area covered by the trajectories (see Table 1 for details). A query set Q
is formed by randomly selecting a combination of |Q| types and a particular POI
from each type. We assess the performance of all involved methods measuring
their CPU and I/O cost, and the number of candidates they generate over 1,000
distinct query sets Q, while varying (i) the number of returned trajectories k and
(ii) the number of query points |Q|. In case of BDTS queries, we additionally vary
the span threshold via the τ/τmin ratio, where τmin is the minimum possible time
required to travel among the query points in Q at a constant velocity of 50km/h.
Finally, for DSTS queries, we also vary the weight factor α of Equation (9).
Table 2 summarizes all parameters involved in our study.

6.2 Distance-based Trajectory Search

Figure 2 reports the CPU cost, the I/O cost and the number of generated candi-
dates for the DTS methods. As expected the processing cost of all methods goes
up as the values of k and |Q| increase. The tests clearly show that SRA+ is overall
the most efficient evaluation method. We also make the following observations.

First, we observe that IKNN always outperforms GH/QE; note that this is the
first time the methods from [3, 4] are compared. Naturally, GH comes as the least
efficient method; due to the examination order imposed by global heap H, the
algorithm is unable to cope with the skewed distribution of the real-world data.
QE manages to overcome the shortcomings of GH by completing the empty slots
of the most promising candidates. Yet, compared to IKNN, QE is less efficient due
to its weak termination condition for the generation phase; recall that at least
k full matches are needed for this purpose which also results in generating a
larger number of candidates, as shown in Figures 2(c) and (f). The advantage of
IKNN over GH/QE justifies our decision to build the hybrid NNA method upon the
round robin-based candidate generation of IKNN which retrieves nearest neighbor
points in batches, and its powerful threshold-based termination condition. NNA is
indeed the most efficient NN-based method, in fact with an order of magnitude
improvement over IKNN and GH/QE on both CPU and I/O cost. Finally, Figure 2
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Fig. 2. Performance comparison for Distance-based Trajectory Search
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Fig. 3. Performance comparison for Distance-based Trajectory Search (order-aware)

clearly shows the advantage of the spatial range-based evaluation approach over
the NN-based one. SRA is always faster while incurring fewer disk page accesses
than IKNN, and in a similar manner, SRA+ outperforms NNA.

We also experimented with the order-aware variant of DTS. Figure 3 depicts
similar results to Figure 2; the spatial range-based evaluation approach is again
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superior to the NN-based and overall, SRA+ is the most efficient method. Nev-
ertheless, it is important to notice that the advantage of completing the most
proposing candidates is smaller compared to Figure 2, in terms of the CPU cost.
Specifically, observe how close is the running time of GH to QE, of IKNN to NNA

and of SRA to SRA+, in Figures 3(a) and (d). This is expected as completing
partial matches employs dynamic programming to compute disto(·, Q).

6.3 Bounded Distance-based Trajectory Search

Next, we investigate the evaluation of BDTS queries while varying the k, |Q|
and τ/τmin parameters. Based on the findings of the previous section, we use the
SRA+ algorithm as the underlying DTS method. Note that due to lack of space we
omit results for the order-aware variant of BDTS; the results however are similar.
Figure 4 clearly shows that ONE−PASS outperforms INCREMENTAL in all cases. As
expected, the conservative approach of INCREMENTAL generates a larger number
of candidates by performing multiple rounds of generation and refinement which
results in both higher running time and more disk page accesses. Last, notice
that the evaluation of BDTS becomes less expensive for both methods while
increasing τ/τmin, as the number of invalid candidates progressively drops.

6.4 Distance & Span-based Trajectory Search

Finally, we study the evaluation of DSTS queries. For this experiment, we ex-
tended the most dominant method from [3, 4], i.e., IKNN, and our methods NNA,
SRA and SRA+ following the discussion in Section 5. The results in Figure 5
demonstrate, similar to the DTS case, the advantage of both the spatial range-
based approach and the SRA+ algorithm which is overall the most efficient eval-
uation method. Due to lack space, we again omit the figure for the order-aware
variant of DSTS as the results are identical to Figure 5.

7 Related Work

Apart from the studies [3, 4] for distance-based search on trajectories detailed in
Section 3.1, our work is also related to top-k and nearest neighbor queries.

Top-k Queries. Consider a collection of objects, each having a number of scor-
ing attributes, e.g., rankings. Given an aggregate function γ (e.g., SUM) on these
scoring attributes, a top-k query returns the k objects with the highest aggre-
gated score. To evaluate such a query, a sorted list for each attribute ai organizes
the objects in decreasing order of their value to ai; requests for random accesses

of an attribute value based on object identifiers may be also possible. Ilyas et al.
overviews top-k queries in [6] providing a categorization of the proposed meth-
ods. Specifically, when both sorted and random accesses are possible, the TA/CA
[5] and Quick−Combine [8] algorithms can be applied. TA retrieves objects from
the sorted lists in a round-robin fashion while a priority queue to organizes the
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Fig. 4. Performance comparison for Bounded Distance-based Trajectory Search

best k objects so far. Based on the last seen attribute values, the algorithm de-
fines an upper score bound for the unseen objects, and terminates if current k-th
highest aggregate score is higher than this threshold. TA assumes that the costs
of the two different access methods are the same. As an alternative, CA defines
a ratio between these costs to control the number of random accesses, which in
practice are usually more expensive than sorted accesses. Hence, the algorithm
periodically performs random accesses to collect unknown values for the most
“promising” objects. Last, the idea behind Quick−Combine is to favor accesses
from the sorted lists of attributes which significantly influence the overall scores
and the termination threshold. In contrast, when only sorted accesses are possi-
ble, the NRA [5] and Stream−Combine [7] algorithms can be applied. Intuitively,
Stream−Combine operates similar to Quick−Combine without performing any
random accesses. In Section 3.1, we discuss how the methods in [3, 4] build upon
previous work on top-k queries to address distance-based search on trajectories.

Nearest Neighbor Queries. There is an enormous amount of work on the
nearest neighbor (NN) query (also known as similarity search), which returns
the object that has the smallest distance to a given query point; k-NN queries
output the k nearest objects in ascending distance. Roussopoulos et al. proposed
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Fig. 5. Performance comparison for Distance & Span-based Trajectory Search

a depth-first approach to k-NN query in [13] while Hjaltason et al. enhanced the
evaluation with a best-first search strategy in [14]. An overview of index-based
approaches can be found in [15]; efficient methods for metric spaces, e.g., [16],
and high-dimensional data, e.g., [17], have also been proposed.

For a set of query points, the aggregate nearest neighbor (ANN) query [9]
retrieves the object that minimizes an aggregate distance to the query points.
As an example, for the MAX aggregate function and assuming that the set of
query points are users, and distances represent travel times, ANN outputs the
location that minimizes the time necessary for all users to meet. In case of the
SUM function and Euclidean distances, the optimal location is also known as
the Fermat-Weber point, for which no formula for the coordinates exists.

8 Conclusions

In this paper, we studied the efficient evaluation of point-based trajectory search.
After revisiting the existing methods (IKNN and GH/QE), which examine the tra-
jectories in ascending order of their distance to the queries points, we devised
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a hybrid algorithm which outperforms them by a wide margin. Then, we pro-
posed a spatial range-based approach; our experiments on real-world trajectories
showed that this approach outperforms any NN-based method. Besides improv-
ing the performance of distance-based search, we also introduced and investi-
gated the evaluation of a practical variant for point-based trajectory search,
which also takes into account the temporal aspect of the trajectories. As a direc-
tion for future work, we plan to consider additional types of annotated data on
the trajectories in point-based search, such as textual and social information.
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