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Abstract
Tracking and predicting, with reasonable accuracy, the spatiotemporal evolution of dif-

fusive hazardous phenomena (e.g. wildfires, oil slicks, chemical leaks, etc) is of paramount

importance for civil authorities since it helps them to optimize their response and con-

tain the potential damage. Hazard specific, mechanistic or semi-empirical methods are

commonly used for this purpose. However these methods usually fail to make good pre-

dictions, due to the large number of time-varying parameters governing these complex

phenomena. Recently significant efforts have been invested worldwide towards in the

design and development of distributed systems for large scale environmental monitoring.

The goal of such efforts is to predict, monitor and manage the consequences of diffusive

hazards, often modeled as ``continuous objects'' (i.e. objects that tend to occupy large

areas and their shape and size continuously changing with time). Wireless Sensor Net-

work (WSN) is a mature technology which can play a major role in the development of

continuous object tracking systems.

In this PhD dissertation we study the problem of continuous object tracking using large

scale WSNs. We propose a novel practical WSN-based scheme that is able to track and

predict the evolution behavior of a continuous object's boundary under realistic assump-

tions. The proposed scheme consists of two main components: a) A collaborative in-

network WSN algorithm that estimates the local evolution parameters (orientation, direc-

tion and speed) of an evolving continuous object, and b) a novel algorithm which combines

the produced local estimates, as they become available to a fusion center, to reconstruct

the overall continuous object's boundary.

The proposed asynchronous WSN collaborative algorithm is based on the assumption

that the boundary of a continuous object can be approximated as a piecewise linear curve.

Each line segment (local front model) of this curve can be adequately characterized by

a small set of parameters namely the orientation, angle, direction and speed of the seg-

ment's propagation. As the continuous objects boundary evolves these parameters are



re-estimated using ad-hoc formed clusters of collaborative sensor nodes. A flexible prob-

abilistic sensing model that can capture the sensor nodes' detection distance uncertainty

as well as their disruption probability is introduced which allow us to formulate the model

parameters estimation problem in a Bayesian manner. We solve this estimation prob-

lem analytically and derive simple algebraic closed-form expressions that can be easily

implemented by the energy constrained microprocessors of the sensor nodes. To further

support our claim that the proposed collaborative algorithm is suitable for large-scaleWSN

deployment, we introduce a simulation-driven WSN emulation scheme which allows us to

estimate, using small number of ``real'' sensor nodes, the energy, memory and processing

requirement as a function of the the WSN's density.

When a small number of local fronts estimates becomes available to a fusion center, the

proposed boundary reconstruction algorithm appropriately combines their information and

determines a ``new'' set of the local fronts estimates which describe the continuous object's

boundary evolution characteristics at a specific time instance. Using this information, the

boundary reconstruction algorithm forms a simple polygon that approximates the shape of

the boundary. Next, using the formed polygon and uniform B-splines curves, it determines

a ``smooth'' approximation of the boundary. Finally, based on the local fronts' parameter

estimation uncertainties the algorithm can produce a probability field that indicating for

each point of the considered area the probability to be reached by the object's front line.

Extensive computer simulations demonstrate the ability of the proposed collaborative

algorithm to estimate accurately the evolution characteristics of complex continuous ob-

jects (e.g. with time-varying evolution rates and/or irregular boundary shapes) using rea-

sonably dense WSNs. Moreover, it shown that the algorithm is robust to sensor node

failures and communication link failures which are expected in harsh environments. Fi-

nally, we show that the proposed boundary reconstruction algorithm is able to track with

accuracy the evolution of different types of continuous objects, using a small number of

local front estimates that may be distorted with error.

Subject Area: Distributed Signal Processing, Data Fusion, Sensor Networks.

Keywords: Machine Learning, distributed estimation, Bayesian estimation, continuous

object tracking, environmental hazards, wireless sensor networks.



ΠΕΡΙΛΗΨΗ 

 

Η ικανότητά παρακολούθησης και πρόβλεψης της χώρο-χρονικής εξέλιξης ενός 

διάχυτου καταστροφικού φαινομένου (π.χ. δασική πυρκαγιά, πετρελαιοκηλίδα, χημική 

διαρροή κτλ.) παρέχει καθοριστικής σημασίας πληροφορία στις αρμόδιες αρχές καθώς 

τις βοηθά να βελτιώσουν τις επιχειρήσεις καταστολής του φαινομένου καθώς και να 

περιορίσουν τις καταστροφικές του συνέπειες. Τα τελευταία χρόνια έχουν προταθεί 

πολλά μαθηματικά καθώς και εμπειρικά μοντέλα τα οποία προσπαθούν να προβλέψουν 

την χώρο-χρονική εξέλιξη διαφόρων καταστροφικών φαινομένων. Παρόλα αυτά, οι 

προβλέψεις αυτών των μοντέλων συνήθως αποκλίνουν από την πραγματικότητα, λόγω 

του ότι εξαρτώνται από πολλές δυναμικά μεταβαλλόμενες παραμέτρους οι οποίες είναι 

πολύ δύσκολο να εκτιμηθούν. Πρόσφατα, έχουν γίνει σημαντικές προσπάθειες για τον 

σχεδιασμό και την ανάπτυξη κατανεμημένων συστημάτων για παρακολούθηση μεγάλων 

γεωγραφικών περιοχών. Στόχος αυτών των τεχνικών είναι να προβλέψουν, να 

παρακολουθήσουν και να διαχειριστούν τις συνέπειες των διάχυτων καταστροφικών 

φαινομένων τα οποία αναφέρονται στη βιβλιογραφία ως «συνεχή αντικείμενα» (π.χ. 

αντικείμενα τα οποία καταλαμβάνουν μεγάλες γεωγραφικές περιοχές και το σχήμα τους 

αλλάζει κατά την εξέλιξή τους). Τα Ασύρματα Δίκτυα Αισθητήρων (ΑΔΑ) είναι μια ώριμη 

τεχνολογία η οποία μπορεί να διαδραματίσει σημαντικό ρόλο στην ανάπτυξη 

συστημάτων παρακολούθησης διάχυτων καταστροφικών φαινομένων. 

Στην παρούσα διδακτορική διατριβή μελετάμε το πρόβλημα της παρακολούθησης 

συνεχών αντικειμένων χρησιμοποιώντας ευρείας κλίμακας δίκτυα αισθητήρων. 

Προτείνουμε μια καινοτόμο μέθοδο βασισμένη στην τεχνολογία των ΑΔΑ η οποία είναι 

ικανή να παρακολουθεί και να προβλέπει την συμπεριφορά εξέλιξης των 

χαρακτηριστικών εξέλιξης μετώπου ενός συνεχούς αντικειμένου κάτω από ρεαλιστικές 

υποθέσεις. Η προτεινόμενη μέθοδος αποτελείται από δύο κύρια συστατικά: α) Έναν 

συνεργατικό αλγόριθμο ΑΔΑ ο οποίος μπορεί και εκτιμά με ακρίβεια τις τοπικές 

παραμέτρους εξέλιξης (ταχύτητα και κατεύθυνση) του μετώπου ενός καταστροφικού 

φαινομένου και β) έναν αλγόριθμο ο οποίος, συνδυάζει τις τοπικές εκτιμήσεις όταν αυτές 



γίνονται διαθέσιμες σε κάποιο κεντρικό σταθμό (fusion center) και ανακατασκευάζει το 

συνολικό μέτωπο του φαινομένου οποιαδήποτε στιγμή της εξέλιξης του επιθυμούμε. 

Ο προτεινόμενος ασύγχρονος αλγόριθμος ΑΔΑ είναι βασισμένος στην υπόθεση ότι 

το μέτωπο ενός συνεχούς αντικειμένου μπορεί να προσεγγισθεί από μια τμηματικά 

συνεχή γραμμική συνάρτηση. Τα χαρακτηριστικά εξέλιξης κάθε γραμμικού τμήματος 

(μοντέλο τοπικού μετώπου) αυτής της συνάρτησης μπορούν επαρκώς να περιγραφούν 

από ένα μικρό σύνολο παραμέτρων. Καθώς το συνεχές αντικείμενο εξελίσσεται οι 

παράμετροι των τοπικών μοντέλων ενημερώνονται από μικρές δυναμικά 

σχηματιζόμενος ομάδες ασυρμάτων κόμβων. Η ενημέρωση των παραμέτρων βασίζεται 

σε ένα πρωτότυπο στοχαστικό μοντέλο ανίχνευσης του μετώπου από τον αισθητήρα, το 

οποίο μοντελοποιεί την αβεβαιότητα της απόστασης ανίχνευσής καθώς και την 

πιθανότητα καταστροφής του αισθητήρα από το φαινόμενο. Με τη χρήση του 

στοχαστικού μοντέλου ανίχνευσής, μπορέσαμε και διατυπώσαμε το πρόβλημα 

εκτίμησης των παραμέτρων εξέλιξης με ένα Μπαυσιανό τρόπο ο οποίος μας οδήγησε 

σε αναλυτικές αλγεβρικές λύσεις, οι οποίες μπορούν εύκολα να υλοποιηθούν από τους 

περιορισμένης επεξεργαστικής ικανότητας ασύρματους κόμβους του δικτύου. Για να 

ελέγξουμε αν ο αλγόριθμός μας μπορεί να υλοποιηθεί σε πραγματικό δίκτυο 

αισθητήρων ευρείας κλίμακας, σχεδιάσαμε ένα σύστημα εξομοίωσης ασυρμάτων 

δικτύων αισθητήρων ο οποίος μας επιτρέπει να εκτιμήσουμε χρησιμοποιώντας ένα 

μικρό αριθμό από πραγματικούς ασύρματους κόμβους τις απαιτήσεις του αλγορίθμου 

σε ενέργεια, επεξεργασία αλλά και σε μνήμη και να δούμε πως αυτές μεταβάλλονται 

συναρτήσει της πυκνότητας του δικτύου. 

Όταν ένας μικρός αριθμός από τοπικές εκτιμήσεις (τοπικά μέτωπα) γίνει διαθέσιμος 

σε έναν κεντρικό κόμβο, ο προτεινόμενος αλγόριθμος ανακατασκευής του μετώπου, 

συνδυάζει την πληροφορία τους και καθορίζει ένα νέο σύνολο από τοπικές εκτιμήσεις οι 

οποίες περιγράφουν τα χαρακτηριστικά εξέλιξης του τοπικού μετώπου τη χρονική 

στιγμή που επιθυμούμε να γίνει η ανακατασκευή. Χρησιμοποιώντας την πληροφορία 

τους, ο αλγόριθμος ανακατασκευής του μετώπου, καθορίζει ένα πολύγωνο το οποίο 

προσεγγίζει το σχήμα του συνεχούς αντικειμένου. Στη συνέχεια, χρησιμοποιώντας το 

πολύγωνο και τις καμπύλες uniform B-splines, καθορίζει μια καμπύλη η οποία 



προσεγγίζει «ομαλά» το μέτωπο του φαινομένου. Τέλος, βασιζόμενος στην αβεβαιότητα 

που έχουμε ως προς την εκτίμηση των παραμέτρων των τοπικών μετώπων, ο 

αλγόριθμος παράγει ένα χωρικό πεδίο πιθανότητας το οποίο περιγράφει για κάθε 

σημείο της περιοχής εξέλιξης την πιθανότητα να έχει καλυφθεί από το καταστροφικό 

φαινόμενο. 

Μέσω ενός μεγάλου αριθμού προσομοιώσεων παρουσιάζουμε την ικανότητα του 

προτεινόμενου συνεργατικού αλγορίθμου να εκτιμά με ακρίβεια τα χαρακτηριστικά 

εξέλιξης πολύπλοκων συνεχών αντικειμένων (π.χ. με χρονικά μεταβαλλόμενα 

χαρακτηριστικά εξέλιξης καθώς και σχήματα μετώπου) χρησιμοποιώντας ρεαλιστικής 

πυκνότητας δίκτυα αισθητήρων. Επιπλέον, δείχνουμε ότι ο αλγόριθμός μας είναι 

εύρωστος σε αστοχίες που μπορεί να συμβούν στους κόμβους κατά την επικοινωνία 

τους ή/και λόγω καταστροφής τους από το πέρασμα του καταστροφικού φαινομένου. 

Τέλος, μέσω πειραματικών αποτελεσμάτων αποδεικνύουμε ότι ο προτεινόμενος 

αλγόριθμος ανακατασκευής του μετώπου μπορεί να παρακολουθεί με ακρίβεια την 

εξέλιξη διαφόρων τύπων συνεχών αντικειμένων, χρησιμοποιώντας ένα μικρό αριθμό 

από τοπικές εκτιμήσεις στις οποίες μπορεί να υπεισέρχονται σφάλματα.  

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεμημένη Επεξεργασία Σήματος, Σύντηξη Δεδομένων, 

Δίκτυα αισθητήρων 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μηχανική μάθηση, κατανεμημένη εκτίμηση παραμέτρων, Μευσιανή 

εκτίμηση, παρακολούθηση συνεχών αντικειμένων, κατανεμημένοι 

αλγόριθμοι, περιβαλλοντικές καταστροφές, ασύρματα δίκτυα 

αισθητήρων. 
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Συνοπτική Παρουσίαση της Διδακτορικής Διατριβής 

 

Τα ασύρματα δίκτυα αισθητήρων (Wireless Sensor Networks - WSN), είναι μια 

ραγδαία αναπτυσσόμενη τεχνολογία με μεγάλο εύρος εφαρμογών (π.χ. 

παρακολούθηση στόχων, περιβαλλοντικών φαινομένων, ασθενών κτλ.). Τα WSN 

αποτελούνται συνήθως από ένα μεγάλο αριθμό αυτόνομων ηλεκτρονικών συσκευών 

(αισθητήριων κόμβων) χαμηλού κόστους οι οποίες τοποθετούνται σε μεγάλες 

γεωγραφικές περιοχές για να καταγράψουν τις τιμές φυσικών ή περιβαλλοντικών 

παραμέτρων. Εκτός από το να «αισθάνονται» το περιβάλλον, οι αισθητήριοι κόμβοι 

έχουν την δυνατότητα να επεξεργάζονται δεδομένα και να ανταλλάσσουν (ασύρματα) 

πληροφορία. Οι πρόσφατες εξελίξεις στους τομείς της μικροηλεκτρονικής και των 

ασύρματων επικοινωνιών καθιστούν την τεχνολογία των ασυρμάτων δικτύων 

αισθητήρων ιδανική υποψήφιο για την ανάπτυξη κατανεμημένων εφαρμογών ευρείας 

κλίμακας με δυνατότητες επεξεργασίας πληροφορίας  και λήψης αποφάσεων.  

Η παρακολούθηση στόχων (π.χ. ο καθορισμός της θέσης τους συναρτήσει του 

χρόνου) αποτελεί ένα ενδιαφέρον πρόβλημα το οποίο έχει μελετηθεί εκτενώς μιας και 

βρίσκει πολλές εφαρμογές (π.χ. στρατιωτικές, περιβαλλοντικές κτλ.). Εκτός από τον 

καθορισμό της τροχιάς των κινούμενων στόχων, είναι πολύ σημαντικό να μπορούμε να 

εκτιμούμε και τα χαρακτηριστικά εξέλιξής τους (π.χ. διεύθυνση και ταχύτητα) σε 

πραγματικό χρόνο, καθώς αυτή η πληροφορία μπορεί να χρησιμοποιηθεί για να 

προβλέψουμε τις μελλοντικές θέσεις τους και να καταλάβουμε την συμπεριφορά 

εξέλιξής τους. 

Τα ασύρματα δίκτυα αισθητήρων έχουν ευρέως χρησιμοποιηθεί για την 

παρακολούθηση στόχων (ενός ή πολλαπλών). Λόγω του συνεχώς μειωμένου κόστους 

τους γίνονται όλο και πιο δημοφιλή σε εφαρμογές περιβαλλοντικής παρακολούθησης. 

Πρόσφατα, πολλές τεχνικές βασισμένες στην τεχνολογία των ασυρμάτων δικτύων 

αισθητήρων έχουν προταθεί για την ανίχνευση και παρακολούθηση διάχυτων 

καταστροφικών φαινομένων (όπως δασικές πυρκαγιές, πετρελαιοκηλίδες, διάχυση 

βιοχημικών υλών κτλ.), τα οποία μοντελοποιούνται ως "συνεχή αντικείμενα" (δηλαδή 



αντικείμενα που αλλάζουν το μέγεθος και το σχήμα τους με την πάροδο του χρόνου). Η 

ικανότητα να παρακολουθούμε και να προβλέπουμε, με ικανοποιητική ακρίβεια, την 

θέση των διάχυτων καταστροφικών φαινομένων, είναι μείζονος σημασίας μιας και 

βοηθά τις αρμόδιες αρχές να οργανώνουν αποδοτικά τις επιχειρήσεις τους (π.χ. για τη 

καταστολή του φαινομένου, την αποτελεσματική εκκένωση περιοχών κτλ). Ωστόσο, οι 

κλασικοί αλγόριθμοι παρακολούθησης στόχων δεν μπορούν να χρησιμοποιηθούν για 

την παρακολούθηση συνεχών αντικειμένων μιας και τα δύο προβλήματα έχουν 

θεμελιώδεις διαφορές. Πιο συγκεκριμένα, τα συνεχή αντικείμενα καταλαμβάνουν 

συνήθως μεγάλες γεωγραφικές περιοχές και το μέγεθός και το σχήμα τους αλλάζει 

δυναμικά με το χρόνο. Αντίθετα οι “απλοί” διακριτοί στόχοι (όπως οχήματα, άνθρωποι, 

ζώα κτλ.) έχουν μικρό μέγεθος σε σχέση με την έκταση που καλύπτει το δίκτυο και 

συνήθως ένας μικρός αριθμός από κόμβους επαρκεί για να ανιχνεύσουμε την τροχιά 

τους. 

Η βασική ιδέα των τεχνικών παρακολούθησης του μετώπου συνεχών αντικειμένων, 

που βασίζονται στην τεχνολογία των ασυρμάτων δικτύων αισθητήρων, είναι η επιλογή 

των κόμβων του δικτύου που βρίσκονται πλησιέστερα στο μέτωπο του καταστροφικού 

φαινομένου όσο αυτό εξελίσσεται. Παρόλο που αυτές οι τεχνικές επιτυγχάνουν να 

ανιχνεύσουν τα όρια του συνεχούς αντικειμένου εμμέσως από τις θέσεις των 

επιλεγμένων κόμβων, έχουν σημαντικά μειονεκτήματα τα οποία καθιστούν 

προβληματική τη χρήση τους στην ανάπτυξη πραγματικών συστημάτων 

παρακολούθησης συνεχών αντικειμένων. 

Τα βασικότερα μειονεκτήματα που εμφανίζονται σε σχεδόν όλες τις προτεινόμενες 

τεχνικές παρακολούθησης συνεχών αντικειμένων στη σύγχρονη βιβλιογραφία είναι: 

1. Η απαίτηση για χρήση δικτύων εξωπραγματικής πυκνότητας (χιλιάδες κόμβοι 

ανά τετραγωνικό χιλιόμετρο). Παρόλο που το κόστος των αισθητήριων κόμβων έχει 

μειωθεί σημαντικά, η κάλυψη μεγάλων περιοχών με δίκτυα υψηλής πυκνότητας 

παραμένει ακόμα απαγορευτική. 

2. Η απουσία θεώρησης της πιθανότητας αστοχίας των κόμβων, καθώς και της 

μεταξύ τους επικοινωνίας. Ωστόσο, σε ένα πραγματικό δίκτυο αισθητήρων, οι 



αστοχίες θεωρούνται βέβαιες ότι θα συμβούν, ιδιαίτερα όταν αυτό βρίσκεται 

τοποθετημένο στα αφιλόξενα περιβάλλοντα που δημιουργούνται από τα 

εξελισσόμενα καταστροφικά φαινόμενα. 

3. Η απαίτηση ύπαρξης συγχρονισμού μεταξύ των κόμβων του δικτύου, η οποία 

είναι δύσκολο να επιτευχθεί ακόμα και σε χαμηλής πυκνότητας ασύρματα δίκτυα 

αισθητήρων.  

4. Η θεώρηση ιδανικού μηχανισμού ανίχνευσης του φαινομένου (π.χ. ανίχνευση του 

φαινομένου σε συγκεκριμένη απόσταση), καθώς και η  απουσία θεώρησης διακοπής 

της λειτουργίας ανίχνευσής των κόμβων λόγω καταστροφής των αισθητήρων τους.  

5. Η αδυναμία παροχής πληροφορίας σχετικά με τα χώρο-χρονικά χαρακτηριστικά 

εξέλιξης του μετώπου του συνεχούς αντικειμένου. Αυτή η αδυναμία καθιστά τις εν 

λόγω τεχνικές ακατάλληλες για την ανάπτυξη συστημάτων πρόβλεψης. 

6. Η αδυναμία τους να αποτιμήσουν με ακρίβεια τις ενεργειακές, επεξεργαστικές και 

επικοινωνιακές απαιτήσεις του δικτύου πριν την τελική τοποθέτηση του στην περιοχή 

ενδιαφέροντος. 

7. H αδυναμία τους να ανακατασκευάσουν με αυτοματοποιημένο τρόπο τα όρια του 

μετώπου κατά την εξέλιξη του καταστροφικού φαινομένου και να παρέχουν 

συντελεστές εμπιστοσύνης για τις διαφορετικές περιοχές του μετώπου που 

ανακατασκευάστηκε. 

Στη παρούσα διδακτορική διατριβή, σχεδιάσαμε και αναπτύξαμε ένα σύστημα 

βασισμένο στην τεχνολογία τον ασύρματων δικτύων αισθητήρων το οποίο ξεπερνά 

όλους τους προαναφερθέντες περιορισμούς.  

 

Στοχαστικό Μοντέλο Ανίχνευσης του Μετώπου – Πρόβλημα Εκτίμησης των 
Παραμέτρων Εξέλιξης Ενός Συνεχούς Αντικειμένου. 

Αναπτύξαμε ένα καινοτόμο πιθανοτικό μοντέλο ανίχνευσης του φαινομένου το 

οποίο μοντελοποιεί α) την αβεβαιότητα που έχει ο αισθητήριος κόμβος ως προς την 



απόσταση ανίχνευσης του φαινομένου, καθώς και β) την πιθανότητα αδυναμίας 

ανίχνευσης του λόγω αστοχίας του αισθητήρα. Όπως παρατηρούμε από το Σχήμα 1 η 

αβεβαιότητα ως προς την απόσταση ανίχνευσης μοντελοποιήται από μια κανονική 

κατανομή        

με παραμέτρους:                              

Η οποία δίχνει ότι η πιθανότητα ανίχνευσης αυξάνει μονότονα καθώς η απόσταση του 

τοπικού μετώπου από τον αισθητήρα μειώνεται στο διάστημα             . Ενώ ελλατώνεται 

όταν το τοπικό μέτωπο κινήται στο διάστημα               λόγω πιθανής  καταστροφής του 

αισθητήρα από το φαινόμενο. 

 

Σχήμα 1: Το προτεινόμενο στοχαστικό μοντέλο ανίχνευσης του μετώπου. 

Βασιζόμενοι στο προτεινόμενο πιθανοτικό μοντέλο ανίχνευσης, διατυπώσαμε ένα 

Μπευσιανό πρόβλημα εκτίμησης των παραμέτρων εξέλιξης του φαινομένου το οποίο 

και λύσαμε αναλυτικά. Οι κλειστού τύπου αλγεβρικές εκφράσεις που προέκυψαν από τη 

λύση του προβλήματος, μπορούν με ευκολία να υλοποιηθούν από τους 

ενσωματωμένους μικροεπεξεργαστές των αισθητήριων κόμβων, καθώς σέβονται τις 

περιορισμένες επεξεργαστικές δυνατότητες των ασύρματων κόμβων. 
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Συνεργατικός Αλγόριθμος Ασυρμάτων Δικτύων Αισθητήρων για την Εκτίμηση 
των Χαρακτηριστικών της Χώρο-Χρονικής Εξέλιξης Συνεχών Αντικειμένων.  

Στη συνέχεια παρουσιάζουμε ασύγχρονο συνεργατικό αλγόριθμο ο οποίος, 

βασιζόμενος στη μοντελοποίηση του στοχαστικού μοντέλου ανίχνευσης και 

χρησιμοποιώντας δίκτυα αισθητήρων ρεαλιστικής πυκνότητας, μπορεί και εκτιμά με 

ακρίβεια τα χώρο-χρονικά χαρακτηριστικά εξέλιξης του μετώπου ενός συνεχούς 

αντικειμένου. Η εκτίμηση των χαρακτηριστικών εξέλιξης, υλοποιείται από μικρές 

συνεργαζόμενες ομάδες αισθητήριων κόμβων (clusters) οι οποίες σχηματίζονται 

δυναμικά (βλέπε Σχήμα 2). Κατά την εξέλιξη του συνεχούς αντικειμένου, ο αλγόριθμος 

ενημερώνει τις εκτιμώμενες παραμέτρους και με έναν πλήρως κατανεμημένο τρόπο τις 

προωθεί στους κόμβους οι οποίοι βρίσκονται στην κατεύθυνση εξέλιξης του μετώπου.  

 

Σχήμα 2: Το μέτωπο του φαινομένου (κόκκινες διακεκομμένες καμπύλες) εισέρχεται 

στην περιοχή τοποθέτησης των κόμβων (μαύροι κύκλοι). Οι ασύρματοι κόμβοι του 

δικτύου αυτό-οργανώνονται δυναμικά σε μικρές ομάδες (τριάδες) οι οποίες εκτιμούν τις 

χώρο-χρονικές παραμέτρους εξέλιξης των τοπικών μετώπων (μαύρα ευθύγραμμα 

τμήματα).    



Για την αποτίμηση του προτεινόμενου συνεργατικού αλγορίθμου υλοποιήσαμε ένα 

σύστημα προσομοίωσης το οποίο αποτελείται από δύο συστατικα: α) Έναν 

προσομοιωτή που αναπτύχθηκε σε γλώσσα προγραμματισμού Matlab και β) τον 

δημοφιλή προσομοιωτή ασυρμάτων δικτύων αισθητήρων COOJA (βλέπε Σχήμα 3). Ο 

προσομοιωτής που αναπτύχθηκε σε Matlab μας δίνει τη δυνατότητα να 

προσομοιώσουμε διαφορετικά σενάρια εξέλιξης καταστροφικών φαινομένων καθώς και 

διαφορετικά σενάρια πυκνότητας αλλά και στρατηγικές τοποθέτησης των ασύρματων 

κόμβων του δικτύου. H χρήση του προσομοιωτή COOJA, μας επιτρέπει να 

προσομοιώσουμε ρεαλιστικά την συμπεριφορά του ασυρμάτου δικτύου αισθητήρων 

μιας και έχει τη δυνατότητα να υλοποιεί πρωτοκολλά επικοινωνίας ασυρμάτων δικτύων 

αισθητήρων (όπως το 802.15.4) καθώς και διαφορετικά σενάρια πιθανότητας αστοχίας 

των κόμβων κατά την επικοινωνία τους.  

 

 

Σχήμα 3: UML διάγραμμα του συστήματος προσομοίωσης για την αποτίμηση της 

συμπεριφοράς του προτεινόμενου συνεργατικού αλγορίθμου. 

Μέσω ενός μεγάλου αριθμού προσομοιώσεων παρουσιάζουμε την ικανότητα του 

αλγορίθμου να εκτιμά με ακρίβεια τα χαρακτηριστικά εξέλιξης πολύπλοκων συνεχών 

αντικειμένων κάτω από διαφορετικές συνθήκες σφαλμάτων των κόμβων και της μεταξύ 

τους επικοινωνίας τα οποία αναμένονται στα αφιλόξενα περιβάλλοντα που 

δημιουργούνται από εξελισσόμενα καταστροφικά φαινόμενα. 



Σύστημα Εξομοίωσης για την Αποτίμηση της Συμπεριφοράς Συνεργατικών 
Αλγορίθμων Ασυρμάτων Δικτύων Αισθητήρων  

Μια ακόμα σημαντική συνεισφορά της παρούσας διδακτορικής διατριβής είναι η 

ανάπτυξη ενός πρωτότυπου συστήματος εξομοίωσης το οποίο μας επιτρέπει να 

αποτιμήσουμε τις απαιτήσεις σε μνήμη, ενέργεια και επεξεργαστική ισχύ που έχουν 

κατανεμημένοι αλγόριθμοι όταν υλοποιούνται από ευρείας κλίμακας ασύρματα δίκτυα 

αισθητήρων στο πεδίο, χρησιμοποιώντας ένα μικρό αριθμό από πραγματικούς 

αισθητήρες. Η βασική ιδέα της προτεινόμενης μεθόδου εξομοίωσης, είναι η εικονική 

επανατοποθέτηση του μικρού αριθμού από διαθέσιμους πραγματικούς αισθητήριους 

κόμβους (π.χ. AVR Raven nodes), έτσι ώστε να εξομοιώνουν την συμπεριφορά των 

συνεργαζόμενων κόμβων μίας συστάδας (cluster) σε περιοχές εξέλιξης του φαινομένου.  

 

Σχήμα 4: Το προτεινόμενο σύστημα εξομοίωσης για ρεαλιστική αποτίμηση της 

συμπεριφοράς συνεργατικών αλγορίθμων ασυρμάτων δικτύων αισθητήρων. 

Το προτεινόμενο σύστημα εξομοίωσης αποτελείται από δύο συστατικά: α) έναν 

προσομοιωτή που υλοποιήσαμε σε γλώσσα προγραμματισμού Matlab και β) ένα Java 

πρόγραμμα (που ονομάσαμε Raven Observer) το οποίο διαχειρίζεται τον μηχανισμό της 

εικονικής επανατοποθέτησης των πραγματικών κόμβων (βλέπε Σχήμα 4). Με τη χρήση 

του Matlab προσομοιωτή, μας δίνεται η δυνατότητα προσομοιώνουμε την συμπεριφορά 

εξέλιξης διαφορετικών καταστροφικών φαινομένων καθώς και να δοκιμάζουμε 



διαφορετικές πυκνότητες και στρατηγικές τοποθέτησης των κόμβων του δικτύου. Ο 

Matlab προσομοιωτής παράγει σαν έξοδο ένα αρχείο το οποίο περιέχει τις θέσεις των 

ασύρματων κόμβων του δικτύου καθώς και τους χρόνους που ανίχνευσαν το μέτωπο 

του καταστροφικού φαινομένου. Χρησιμοποιώντας αυτό το αρχείο ως είσοδο, ο Raven 

Observer καθορίζει την ακολουθία με την οποία πρέπει να γίνει η εικονική 

επανατοποθέτηση των πραγματικών κόμβων του δικτύου.  

Παρουσιάζουμε την δυνατότητα της πραγματικής υλοποίησης του προτεινόμενου 

συνεργατικού αλγορίθμου χρησιμοποιώντας την πλατφόρμα AVR RAVEN της ATMEL. 

Μέσω ενός μεγάλου αριθμού αποτελεσμάτων εξομοίωσης του αλγορίθμου παρέχουμε 

σημαντικές ενδείξεις ότι ο προτεινόμενος συνεργατικός αλγόριθμος μπορεί να 

χρησιμοποιηθεί στη πράξη για την ανάπτυξη κατανεμημένου συστήματος εκτίμησης των 

παραμέτρων εξέλιξης συνεχούς αντικειμένου μιας και σέβεται πλήρως τους 

περιορισμούς μνήμης, επεξεργασίας και ενέργειας των ασύρματων κόμβων χαμηλού 

κόστους του εμπορίου που χρησιμοποιούνται στις εφαρμογές ασυρμάτων δικτύων 

αισθητήρων. 

 

Αλγόριθμος Ανακατασκευής του Μετώπου Συνεχών Αντικειμένων  

Χρησιμοποιώντας τις τοπικές εκτιμήσεις των χαρακτηριστικών εξέλιξης ενός 

συνεχούς αντικειμένου σε διαφορετικά σημεία του μετώπου (βλέπε Σχήμα 5α), εισάγαμε 

έναν αλγόριθμο ο οποίος συνδυάζει δυναμικά την πληροφορία από ένα μικρό αριθμό 

τοπικών εκτιμήσεων και ανακατασκευάζει τη συνολική καμπύλη του μετώπου 

οποιαδήποτε στιγμή της εξέλιξης του επιθυμούμε. Πιο συγκεκριμένα, ο προτεινόμενος 

αλγόριθμος χρησιμοποιεί τις τοποθεσίες και τις εκτιμώμενες παραμέτρους εξέλιξης 

τοπικών μετώπων και χρησιμοποιώντας κατάλληλες τεχνικές σύντηξης πληροφορίας, 

καθορίζει ένα υποσύνολο των διαθέσιμων τοπικών μετώπων (βλέπε Σχήμα 5β) τα 

οποία χρησιμοποιεί για να προσεγγίσει τμήματα του μετώπου του συνεχούς 

αντικειμένου μια συγκεκριμένη χρονική στιγμή (βλέπε Σχήμα 5γ). Στη συνέχεια 

χρησιμοποιώντας τεχνικές βασισμένες στην υπολογιστική γεωμετρία, ανακατασκευάζει 

ένα πολύγωνο το οποίο στη συνέχεια προσεγγίζεται από μια “ομαλή” κλειστή καμπύλη 



(B-spline) η οποία αποτελεί το ανακατασκευασμένο μέτωπο του συνεχούς αντικειμένου 

(βλέπε Σχημα 5δ). Τέλος, βασιζόμενοι στην αβεβαιότητα των παραμέτρων εξέλιξης των 

τοπικών εκτιμήσεων, ο προτεινόμενος αλγόριθμος παράγει ένα χωρικό πεδίο 

πιθανότητας το οποίο μας δίνει για κάθε σημείο του πεδίου την πιθανότητα να έχει 

επηρεαστεί από το εξελισσόμενο συνεχές αντικείμενο.  

 

Σχήμα 5: α) Οι διαθέσιμες τοπικές εκτιμήσεις (μαύρα ευθύγραμμα τμήματα) που 

περιγράφουν τα τοπικά χαρακτηριστικά εξέλιξης του μετώπου (πράσινες καμπύλες). β) 

Οι επιλεγμένες τοπικές εκτιμήσεις που θα χρησιμοποιηθούν στην ανακατασκευή του 

μετώπου την χρονική στιγμή που επιθυμούμε (t12). γ) Η χώρο-χρονική εξέλιξη των 

επιλεγμένων τοπικών εκτιμήσεων τη χρονική στιγμή t12. δ) Το πολύγωνο (μαύρες 

διακεκομμένες γραμμές) και η ανακατασκευασμένη “ομαλή” καμπύλη (κόκκινη καμπύλη) 

που προσεγγίζουν το μέτωπο του συνεχούς αντικειμένου.  



Μέσω ενός μεγάλου αριθμού προσομοιώσεων, παρουσιάζουμε την ικανότητα του 

προτεινόμενου αλγορίθμου να καθορίζει με ακρίβεια τα όρια συνεχών αντικειμένων με 

διαφορετικά χαρακτηριστικά εξέλιξης (π.χ. σχήματα, επιτάχυνσης, επιβράδυνσης κτλ.), 

χρησιμοποιώντας τις παραμέτρους εξέλιξης ενός μικρού αριθμού τοπικών μετώπων 

στις   οποίες μπορεί να υπεισέρχονται σημαντικά σφάλματα. 

 

Συμπεράσματα 

Στην παρούσα διδακτορική διατριβή αναπτύξαμε ένα σύστημα παρακολούθησης και 

πρόβλεψης της χώρο-χρονικής εξέλιξης συνεχών αντικειμένων το οποίο βασίστηκε 

πάνω στην τεχνολογία των ασύρματων δικτύων αισθητήρων. Το προτεινόμενο σύστημα 

ξεπερνά όλους τους περιορισμούς που εισάγονται από τις μέχρι τώρα προτεινόμενες 

τεχνικές. Συγκεκριμένα, 

Αναπτύξαμε ένα ρεαλιστικό στοχαστικό μοντέλο ανίχνευσης μετώπου το οποίο 

μοντελοποιεί: α) την αβεβαιότητα του αισθητήρα ως προς την απόσταση ανίχνευσης 

του μετώπου καθώς και β) την πιθανότητα αστοχίας ανίχνευσης του μετώπου λόγω 

καταστροφής του αισθητήρα από το φαινόμενο. Το προτεινόμενο στοχαστικό μοντέλο 

ανίχνευσης, μας οδήγησε στην διατύπωση ενός Μπαυσιανού προβλήματος εκτίμησης 

των χώρο-χρονικών παραμέτρων εξέλιξης  του μετώπου, από το οποίο προέκυψαν 

αναλυτικές λύσεις. 

Αναπτύξαμε ένα ασύγχρονο συνεργατικό αλγόριθμο ασυρμάτων δικτύων 

αισθητήρων ο οποίο χρησιμοποιώντας δίκτυα ρεαλιστικής πυκνότητας εκτίμα με 

ακρίβεια τα χώρο-χρονικά χαρακτηριστικά εξέλιξης του μετώπου, κάτω από διαφορετικά 

σενάρια: α) εξέλιξης καταστροφικών φαινομένων, β) πυκνότητας δικτύου, γ) 

στρατηγικής τοποθέτησης κόμβων, γ) πιθανότητας αστοχίας των κόμβων κατά την 

επικοινωνία τους αλλά και λόγω καταστροφής τους. 

Αναπτύξαμε ένα σύστημα προσομοίωσης το οποίο μας επιτρέπει χρησιμοποιώντας 

ένα μικρό αριθμό από πραγματικούς αισθητήρες να αποτιμήσουμε τη συμπεριφορά του 

προτεινόμενου συνεργατικού αλγορίθμου και τις απαιτήσεις του ως προς την 



κατανάλωση ενέργειας, την επεξεργασία και την μνήμη. Τα αποτελέσματα 

προσομοίωσης έδειξαν ότι ο προτεινόμενος αλγόριθμος είναι κατάλληλος για την 

ανάπτυξη ρεαλιστικών εφαρμογών ασυρμάτων δικτύων ευρείας κλίμακας μιας και  

σέβεται τις περιορισμένες δυνατότητες (ενεργειακές, επεξεργασίας και μνήμης) των 

σημερινών ασυρμάτων δικτύων αισθητήρων. 

Τέλος, αναπτύξαμε έναν αλγόριθμο ο οποίος χρησιμοποιώντας ένα μικρό αριθμό 

τοπικών εκτιμήσεων της χώρο-χρονικής εξέλιξης ενός καταστροφικού φαινομένου 

καταφέρνει να ανακατασκευάσει με ακρίβεια τα όρια του εξελισσόμενου μετώπου 

οποιαδήποτε στιγμή επιθυμούμε. Μέσω ενός μεγάλου αριθμού προσομοιώσεων 

αποδείξαμε ότι ο προτεινόμενος αλγόριθμος είναι ικανός να ανακατασκευάζει με 

ακρίβεια τα όρια διαφορετικών τύπων συνεχών αντικειμένων ακόμα και όταν στις 

παραμέτρους εξέλιξης των τοπικών μετώπων υπεισέρχονται σημαντικά σφάλματα.  
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Chapter 1

Introduction

This dissertation addresses the problem of tracking and predicting the boundaries of dif-

fusive hazardous phenomena, often modeled as ``continuous objects'' (i.e. objects that

tend to occupy large areas and their shape and size continuously changing with time),

using Wireless Sensor Networks (WSNs). In this chapter, we present the motivation, the

objectives and the contributions of this research.

1.1 Motivation

Wireless Sensor Networks (WSNs) is a rapidly maturing technology with a wide range of

applications (e.g. target tracking, surveillance, environmental monitoring, patient monitor-

ing to name a few). A WSN typically consists of a large number inexpensive autonomous

electronic devices (sensor nodes) which are deployed over a geographical region and

monitor physical or environmental parameters. Apart from ``sensing'' the environment,

WSN nodes are also able to process data and exchange information. Recent advances

in microelectronics and wireless communication have made WSN technology an ideal

candidate for large-scale decision and information-processing tasks.

Tracking objects (i.e. determining their location over time) has been a well studied

problem with numerous civilian and military applications. Apart from finding the trajectory

of the objects, it is also important to estimate their motion characteristics (i.e. direction

and speed) in real time, since this information can be used to predict their future locations
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and understand their evolution behavior.

Wireless sensor network technology has been extensively used for single and multiple

target tracking applications [1--12]. Due to the rapidly dropping cost of the sensor nodes,

WSNs are also gaining popularity in environmental monitoring applications [13--21]. Re-

cently, sensor network-based methods have been proposed for detecting the boundaries

of diffusive hazardous phenomena [22--44], modeled as ``continuous objects'' (such as

expanding wildfires, oil spills, diffusing bio-chemical materials etc.). The ability to track

and predict, with reasonable accuracy, the location of a diffusive hazard's boundary is of

paramount importance since it helps the authorities to organize efficiently their responses

(hazard suppression, possible evacuation etc). However, traditional target tracking al-

gorithms cannot be applied for continuous object tracking, since the two problems are

fundamentally different. Continuous objects are usually spread in large regions and their

size and shape is dynamically changing with time. In contrast, individual targets (such

vehicles, animals, humans etc) have very small size compared to the WSN's deployment

area and therefore a much smaller number of sensors usually suffices to track their trails.

The key idea behind the reported WSN-based continuous object tracking methods has

been an attempt to identify over time the sensor nodes located closest to the evolving ob-

ject's front line (boundary nodes). Although these methods can estimate implicitly the

boundaries of a continuous object (evolving hazard) using the locations of the boundary

nodes, they have important limitations that renders them impractical for the development

of real world application systems for hazard tracking.

The main limitations that appear in almost all reported WSN-based continuous object

tracking schemes are (see also Chapter 2):

L1: They require unrealistic sensor nodes densities (thousands sensors per km2) to de-

termine with reasonable accuracy the boundary of an evolving continuous object.

Although, the cost of the sensor nodes has been significantly reduced, it still re-

mains prohibitive to cover large geographical regions (many km2) with high density

WSNs.

L2: They do not consider node or communication failures. However, these failures are
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certainly expected in large scale WSNs applications, and especially in the harsh

environments created by the evolving hazardous phenomena (e.g. wildfires).

L3: They require synchronization between the sensor nodes, a capability that is difficult

to achieve even in small scale WSNs.

L4: They assume an idealized sensing mechanism (i.e. fixed sensor nodes detection

distance, do not consider sensing functionality disruptions etc) that renders them

impractical for hazard tracking.

L5: They are incapable to provide information about the spatiotemporal evolution char-

acteristics (e.g. direction and speed) of the continuous object's boundary. This limi-

tation makes them incapable to be used for predictive modeling as part of decision

support systems.

L6: They are incapable to assess the processing, memory and energy requirements be-

fore a real field deployment.

L7: They propose naive techniques to reconstruct the continuous object's boundary or are

incapable to reconstruct it without using the human ability to identify the boundary's

shape from the boundary nodes locations.

1.2 Contributions

The main contribution of this dissertation is the conception, design and development of

a WSN-based continuous object tracking scheme that addresses all the aforementioned

limitations. In particular,

Chapter 2 presents the related work in continuous object tracking; points to severe

limitations that render them impractical for real applications and motivates the original

work that has been performed in the context of this doctoral dissertation.

Chapter 3 presents a novel probabilistic sensing modeling approach that is able to cap-

ture sensor nodes' detection distance uncertainty and possible functionality disruptions as

the front of the diffusive hazard approaches closer than a certain distance (addresses L4).
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Based on the probabilistic sensing modeling we formulate a Bayesian parameter estima-

tion problem which could be solved analytically. The derived closed formed algebraic

expressions of the solution can be easily implemented by the embedded microprocessors

of the WSN nodes in order to estimate the local front evolution characteristics (speed,

orientation and evolution direction) of a continuous object, since they respect the nodes'

processing capabilities and strict energy constraints.

Chapter 4 presents the proposed asynchronous collaborative algorithm that based on

the modeling of Chapter 3 and using WSNs of realistic density can estimate with accuracy

the spatiotemporal evolution parameters (orientation, direction and speed) of a continuous

object's local boundary (addresses L1, L3, L5). The parameters estimation procedure is

implemented in a collaborative fashion by dynamically formed clusters (triplets) of sensor

nodes. The algorithm updates the local front model parameters and propagates them to

sensor nodes situated in the direction of the hazard's propagation in a fully decentralized

fashion. Extensive computer simulations are also presented in this chapter and demon-

strate the ability of the algorithm to estimate accurately the evolution characteristics of

complex continuous objects under different conditions and sensor node and communica-

tion link failures which are expected in harsh environments (addresses L2).

Chapter 5 presents a novel simulation-driven emulation scheme which allows to realis-

tically asses the memory, processing and energy requirements of a cluster based collabo-

rative algorithm before attempting to deploy a large scale WSN in the field (addresses L6).

The key idea of the proposed method is to re-allocate (virtual repositioning) a small num-

ber of available real sensor nodes so that they implement the cluster nodes located closer

to the hazard's boundary. We demonstrate the capabilities of the proposed emulation

scheme to implement the proposed collaborative algorithm presented in Chapter 4 using

a small number of ATMEL's Raven nodes. Finally we present extensive WSN emulation

results that provides convincing evidence that the collaborative algorithm of Chapter 4 is

suitable for large-scale WSN deployment, since it respect the memory, processing and

energy constraints of commodity sensor nodes used in WSN implementations.

Chapter 6 presents a novel algorithm which combines dynamically the information of a

small number of local estimations about the boundary's evolution characteristics, as they

become available to hypothesized fusion center, to reconstruct the continuous object's
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boundary (addresses L7). More specifically the proposed algorithm uses the locations

and evolution parameters of the computed local front estimates and using information

fusion techniques it determines a set of local fronts segments that approximate different

parts of the continuous object's boundary at a specific time instance. Next, using concepts

grounded on computational geometry, it reconstructs a smooth closed curve that approx-

imates the object's boundary. Finally, based on the uncertainty characterization of the

local front models evolution parameters (Chapter 3), the proposed algorithm generates a

probability field that indicates for each point of the considered area the probability to be

reached by the continuous object. Extensive simulations demonstrate that the proposed

boundary reconstruction algorithm can be used to determine with accuracy the boundaries

of different types of continuous objects (e.g. time-varying evolution rates and/or irregular

boundary shapes), using only a small number of local front estimates even in cases where

the evolution parameters have been distorted with error.

Finally, Chapter 7 summarises our findings and point to interesting future research

directions worth pursuing in the field of continuous object tracking under uncertainties that

is fast moving towards an integration with simulation based hazard predictive models.

Most parts of the doctoral dissertation have been published in peer reviewed scientific

journals and high quality referred Conferences Proceedings at the time of its writing.
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Chapter 2

Background and Related Work

During the last few years significant efforts have been invested worldwide in the design

and development of distributed systems for large scale environmental monitoring. The

goal of such efforts is to track, predict and manage the consequences of diffusive haz-

ardous phenomena, such as wildfires, oil slicks, chemical leaks etc. Wireless Sensor

Networks, is a maturing technology which is increasingly expected to play a major role in

the development of such systems. In this chapter we present the state of the art of the

developed continuous object tracking schemes based on the WSNs, and we appoint their

current limitations that make them impractical for hazard tracking applications.

2.1 Continuous object tracking techniques based onWSNs

- Literature Review

Predicting with reasonable accuracy the spatiotemporal evolution of a diffusive hazardous

phenomenon (such as a wild fires, oil slick, etc.) is of paramount importance since it helps

the authorities to organize efficiently their response (hazard suppression, possible evacu-

ations etc.). Research efforts around the globe are focusing in developing hazard specific

predictive models [46--49, 51--62, 89]. However, most of these mechanistic models de-

pend on a large number of space and time varying parameters which are difficult or even

impossible to estimate in real time, making predictions deviate significantly from reality.

To address this limitation many researchers have proposed system architectures which
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attempt to integrate recent sensor measurements and simulation based predictive mod-

eling into closed loop systems. The majority of these works reported so far in literature

rely on remote sensing, where measured data (e.g. satellite spectral images) are used

to re-calibrate simulation models in real-time in order to minimize model prediction er-

rors. These methods, also known as Dynamic Data Driven Assimilation methods, have

recently drawn the attention of the scientific community due to their expected high societal

impact [63--67]. Unfortunately, in many cases, satellite images, or image data in general,

are not available, or are inappropriate for detecting a certain diffusing hazard. Moreover,

in most cases it's almost impossible to exploit directly (in realtime) the sensing data to

calibrate the simulation models.

Wireless Sensor Networks (WSNs), is a mature state of the art technology and and

has been extensively used for tracking the trajectories of single or multiple target [1--

12]. The rapidly dropping cost of WSN technology, makes them a viable alternative for

environmental monitoring applications [13--21]. Recently, a number of collaborativeWSN-

based methods have been proposed for detecting the boundaries of a diffusive hazards

[22--40] often modeled as ``continuous objects''. Below we present in chronological order

the most important works reported so far in continuous object tracking literature.

In their seminal paper [22], Chintalapudi and Govindan propose three methods (sta-

tistical, image processing and classifier) for detecting edges in sensor fields. The key

idea of these methods is to determine the sensor nodes that are located in the interior of

the event and within a pre-specified distance from the object's boundary. To achieve this,

each sensor node collects information from its neighborhood (sensor nodes located within

its communication area) and based on a parameter named ``tolerance radius'' decides

whether it should be considered as an edge node. Using the locations of these sensors

(edge sensors) they implicitly determine the boundary of the continuous object. In the sta-

tistical approach, a sensor node collects information from its neighbors and decides (using

a boolean decision function) if it is an edge sensor node or not. The image processing

approach is based on modified image processing edge detection technique where each

sensor node decides if it is an edge sensor based on the detection values of the sensor

nodes located within its probing area. Finally, the classifier based approach uses a linear

classifier to determine a line (edge) that partitions the probing area of a sensor node in two

Dimitrios V. Manatakis 54



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

areas (interior and exterior). If the line passes through the sensor's tolerance circular area,

it is deemed as edge sensor. Simulation results show that the classifier method is the most

promising since it performs much better than the other schemes. Moreover in contrast to

the statistical method its accuracy is independent from the selection of threshold values

which are very difficult to set them correctly.

In [23] the authors Mitra and Nowak propose a novel technique based on hierarchical

WSN structure that determines a staircase-like approximation of the continuous object's

boundary. Initially the WSN deployment area is virtually partitioned in square cells. In

each cell the algorithm determines a Cluster Head node which is responsible to collect

the measurements from its neighbors (sensors inside the corresponding cell). Process-

ing the collected data, Cluster head determines whether its cell lies on the continuous

object's boundary or not. If the cell lies on the boundary, the algorithm produces a more

fine-grained partition of the corresponding cell and for each one of them it repeats the

aforementioned procedure. The cell partition procedure stops when the cells becomes

small enough such that do not contain sensor nodes. The authors present simulation re-

sults that demonstrate the accuracy, the communication cost and the final cell partition

size as a function of the sensor nodes density.

Based on the observation that the statistical method (proposed in [22]) is robust to

sensor node failures, Liao et al. in [24,25] propose a novel statistical edge detection tech-

nique based on hypothesis testing. Their method uses a set of local and global rules that

help the nodes to decide wether they lie on the continuous object's boundary [24,25]. Al-

though the proposed method had low complexity and it was robust to node failures, it did

not solve the main problem of the statistical method which was the appropriate threshold

value selection. Thus, two years later, the authors proposed a new version of the statistical

method [26] which solved the threshold selection problem based on the Neyman-Pearson

optimality criterion. Simulation results indicate that the proposed statistical method out-

performs the classifier based method (presented in [22]) in terms of boundary estimation

accuracy while being robust to noisy environments and possible node failures.

In [27], Liu et al. present a novel approach based on a dual-space transformation, to

determine the frontier of continuous object using binary sensor measurements. The dual-

space transformation maps the location of the sensor nodes to a set of lines that help us to
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determine the continuous object's frontier. Based on the estimated front line the authors

claim that its information can be used to reduce WSNs energy consumption by switching,

the nodes located away from it, to power saving modes. Using the results of a laboratory

experiment the authors prove that the proposed method is able to determine the front line

of a slowly moving continuous object.

In [28], Ji et al. propose a WSN-base methods which is able to detect and track the

boundary of an evolving continuous object. The proposed method, named ``Dynamic

Clustering Scheme (DCS)'', similar to the aforementioned techniques, it implicitly deter-

mines the boundary of the evolving object using the boundary nodes' locations. A sensor

node is assumed as boundary node when it has detected the continuous object and has

at least one node in its neighborhood (nodes inside its communication range) which has

not detected the object yet. In sequence, these boundary nodes are dynamically orga-

nized into local clusters. Each cluster, determines a special node (Cluster Head node -

CH) which is responsible to collect and fuse the local boundary information and transmit it

to the sink. This dynamic clustering technique significantly reduces the communications

cost compared to the naive technique where each sensor node sends its information to

the sink. When the sink receives the local boundary information from the CHs, it is able

to estimate the global boundary of the continuous object. Extensive simulation results

demonstrate how the number of messages used for collecting the boundary's informa-

tion scales with the number of clusters and how the precision of the boundary's detection

scales with network's density.

In [29] the authors propose a WSN-based method named ``Continuous Object Detec-

tion and tracking Algorithm (CODA), which allows us using a hybrid static/dynamic clus-

tering scheme to detect and track the boundary of an evolving continuous object. The

algorithm uses a number of static clusters that is formed during the network's deployment.

Each cluster has a special node named Cluster Head (CH). When a sensor detects the

presence of a continuous object it transmits a detection message to its CH. Next, the CH

uses a ``local boundary estimation function'' and determines which nodes within its cluster

can be assumed as boundary nodes (nodes that lie on the continuous object's boundary).

In sequence, the CH organizes its boundary nodes into a dynamic cluster, and sends the

boundary information of this cluster to the sink. When the sink receives the boundary
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information from a sufficient number of CHs, it forms the ``global boundary'' of the contin-

uous object. Extensive simulation results show that CODA outperforms the DCS scheme

since it reduces network's communication cost and achieves better boundary estimation

precision.

In [30] the authors present a WSN-based algorithm named ``COntinuous BOundary

Monitoring (COBOM) for detecting the boundary of a continuous object''. In this algorithm

each node maintains a binary array (BN-array) which describes the detection status of

each neighbors. When a sensor node changes its detection status it broadcast a message

that informs its neighbors about this change. The neighbors when receive this message

update the corresponding entry of their BN-arrays. If their BN-arrays contains ``0'' and

``1'' they become Boundary Nodes (BN). Based on the locations of the BNs the proposed

scheme can implicitly determine the boundary of the continuous object. To further reduce

the communication cost the authors introduce mechanism that selects only a subset of the

BNs to report to the sink (Reporting Nodes - RN). Each RN collects the information of its

neighbors compress it and send it to the sink. Simulation results show that this technique

substantially reduces the number of message exchanged in the network. However, the

authors do not provide numerical result to show how their algorithm performs in terms of

boundary estimation accuracy.

Based on [30] the authors in [31] present a scheme named ``Energy-Efficient DEtec-

tion and MOnitoring for Continuous Objects in Wireless Sensor Networks (DEMOCO)''.

In this scheme a sensor node becomes a Boundary Node (BN) when it receives a mes-

sage, from at least one of its neighbors, that has different detection status. Based on the

number of messages received with different detection status in a time period, a BN sets a

random back-off time which is inversely proportional to the number of the received mes-

sages. The BN with the smaller back-off time becomes a Reporting Node (RN) and sends

its information to the sink. Simulation results demonstrate that the DEMOCO outperforms

in terms of energy efficiency the algorithm COBOM under different WSN density scenar-

ios (which are extremely high) and object shapes (smooth and unsmooth). Although the

authors claim that their scheme is able to track with accuracy the boundary of evolving

continuous objects they do not provide sufficient results to support it.

In [32] the authors propose a novel algorithm named ``Two-tier Grid based Continuous
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Object Detection and tracking (TG-COD) for tracking the boundary of an evolving contin-

uous object''. The proposed algorithm is based on the formation of a grid structure which

determined using the location information of a reference point, a grid cell size value and

the sensor nodes' locations. When the sensor nodes deployed in the field, TG-COD cre-

ates a square grid of low density (large cell size) that covers the whole deployment area.

When the boundary of a continuous object inserts in a grid cell, TG-COD produces within

this cell a fine-grained grid which helps us to increase the tracking accuracy of the evolv-

ing boundary. TG-COD reduces the network's communication traffic, using the following

data report method: ``In a fine-grained grid cell, a header node collects the data from

the boundary nodes. In sequence, the header node reports this data to the header node

of coarse-grained grid cell that it belongs. When the header node of the coarse-grained

grid cell collects the reports of its fine-grained grid cell headers, it transmits them to the

sinks''. The authors compare the proposed algorithm to CODA and DEMOCO and pro-

vide results that show that it outperforms with respect to energy communication cost and

boundary detection precision.

In [33] the authors propose a scheme named ``Dynamic Rectangle Zoned-based Col-

laborative mechanism (DRZC) to detect and track the boundary of evolving continuous

objects''. The key idea of this scheme is as follows: The sensor nodes that detect the

continuous object collaborate and determine the sensor node that is located closer to the

center of a rectangular area that contains them. Next, the selected node sends its loca-

tion information to the sensor nodes located within the rectangle and they report him their

data. It is worth to mention that the selection of the node located closer to the center of

the rectanglular area, minimizes the network's communication cost during the data report-

ing phase. The size and the position of the rectangular area may dynamically change

since they depend on continuous object's location and geometrical characteristics (size

and shape). When the continuous object geometrical characteristics change, the rectan-

gular area also changes and the selected node is altered by another node near the center

of the ``new'' rectanglular area. Using the QualNet simulator the authors compare their

algorithm with DCS with respect to the boundary reconstruction accuracy under different

WSN densities and continuous object evolution scenarios. Simulation results shows that

the boundary accuracy of the DRZC is similar with this of the DCS. However it is worth to
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mention that the authors do not provide any information about the algorithm's communi-

cation cost which is expected by design to be high.

In [35] the authors propose a ``Scalable topology control based protocol for COntinu-

ous Object detection and Tracking (SCOOT)'' which is able to reconstruct the boundary

of an evolving continuous object using the information of a small subset of the deployed

sensor nodes. This SCOOT protocol is separated in two phases: a) The collaborative

data processing phase, and b) the object's location reporting phase. The collaborative

data processing phase has two steps. At first step, the algorithm finds the nodes that

have detected the phenomenon and have at least one neighbor which has not detected it

yet. At second step the algorithm uses the information of these nodes and determines a

subset of them (reporters) where their location information suffices to determine the con-

tinuous objects boundary without compromise the accuracy. Next, in the object's location

reporting phase, the reporter nodes periodically transmit their location information to the

sink node. The proposed protocol can track single source and multiple source continuous

objects. Simulation results show that the proposed protocol significantly reduces the com-

munication cost (requires a small number of reporters), the control message overhead and

the data message overhead. Finally, the authors investigate how the effect of destroyed

nodes would affect the protocol's performance.

In [36] the authors propose an interesting scheme that determines the area covered by

the diffusive phenomenon. This scheme named, ``Ring-based Continuous Object Trac-

ing (RCOT)'' uses the protocol described in [45] and organizes the nodes in connected

rings. Using this ring structure the RCOT algorithm applies the following steps to de-

termine the boundary of a continuous object. a) It determines the rings that lies on the

continuous object's boundary. b) For each boundary ring, the algorithm determines the

nodes that belong inside the object and those that belong outside the object and estimates

the coordinates of a point which theoretically lies on the object's boundary. Finally, using

the coordinates of these points the algorithm is able to determine the continuous objects

boundary. Simulation results show that the RCOT performs significantly better to CODA

with respect to communication energy consumption. However, the design of the RCOT

algorithm indicate that its accuracy depends on the sensor nodes density and deployment

strategy. Finally, although the authors claim that RCOT is able to trace the continuous
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object boundary they do not provide numerical results to support it.

In [37,38] the authors propose a novel WSN based predictive continuous object track-

ing scheme named ``PRECO (PREdictive Continuous Object tracking scheme)''. PRECO

proposes a novel sensor nodes' ``wake-up'' mechanism to reduce the WSN's energy con-

sumption. The proposed scheme predicts the future location of the continuous object's

boundary line which provides knowledge for implementing a ``wake-up'' mechanism and

decide which sleeping nodes need to be activated for future tracking. To predict the future

location of the continuous object's boundary line the authors propose a simple method for

the estimation of its spatiotemporal evolution parameters (speed and orientation). PRECO

assumes as a boundary line, a line segment that connects two adjacent special Boundary

Nodes (BN), named Master Boundary Nodes (MBN) (see Figure 5 in [37]). The sequen-

tial connection of all the adjacent boundary lines determines a polygon that approximates

the continuous object. Considering the above we can easily conclude that the accuracy

of PRECO's polygonal representation, depends on the number of the MBNs. However

as the WSN's density decreases, the number of the MBNs is reduced and therefore the

boundary's polygonal representation becomes coarser (imagine Figure 4 in [37] without

the middle MBN). Simulation results show that using very high density WSNs, PRECO

is able to determine with accuracy the boundary of an evolving continuous object (see

Chapter 4 for details). Moreover, the proposed wake up mechanism significantly reduces

the total WSN energy consumption.

All the works described consider the boundary detection problem in 2 dimensions (2D).

In [40] the authors propose a novel flexible and energy efficient scheme that is able to

track the boundary of a continuous object either it evolves in plain (2D) or space (3D).

The proposed scheme implicitly determines the continuous object's boundary based on

the location information of special selected nodes named Event Boundary Nodes (EBN).

For the selection of EBNs the algorithm uses the sensor's measurements and fits a Gaus-

sian mixture model where the number of its mixture components is determined using the

Bayesian Information Critirion (BIC). Next, the mixture model is compared with a thresh-

old value which help us to decide if the node is an EBN or not. Although this algorithm

has larger computational cost than COBOM and DEMOCO, simulation results show that

it outperforms in terms of energy efficiency and number of selected BNs.
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Comparison Table of Continuous Object Tracking Schemes
Name High Fault Prediction Boundary Bourndary Reference

Density Tolerance Ability Accuracy Reconstruction
Chintalapudi ✓ ✓ - - - [22]

Nowak ✓ - - - - [23]
Liao ✓ ✓ - - - [24--26]
Liu ✓ - - - - [27]
DCS ✓ - - ✓ - [28]
CODA ✓ - - ✓ ✓ [29]
COBOM ✓ - - - - [30]
DEMOCO ✓ - - - - [31]
TG-COD ✓ - - - - [32]
DRZC ✓ - - - - [33]
SCOOT ✓ ✓ - - - [35]
RCOT ✓ - - - - [36]
PRECO ✓ - ✓ - - [37,38]
Chen ✓ - - - - [40]

Table 2.1: Comparison of Continuous Object Tracking Schemes based on WSN technology.

2.2 Comparison and Conclusions

From the above analysis of the stat of the art we conclude that the key idea behind WSN-

based continuous object tracking methods has been to identify over time the sensor nodes

located closest to the evolving object's front line (boundary nodes). Although these meth-

ods can estimate implicitly the boundaries of an evolving hazard, they use assumptions

which renders them impractical for real applications.

Table 2.1 summarizes themain characteristics of the aforementioned reported schemes.

The first column contains the name of the algorithms or the names of the corresponding

authors. In second column we mark the schemes that require unrealistic density networks

(thousand of sensors per km2). In third column we mark the schemes that consider possi-

ble sensor node failures during the continuous object's propagation. In fourth column we

mark the schemes that are capable to estimate the boundary's evolution characteristics

(speed and direction). In the fifth column we mark the schemes that provide results about

the boundary reconstruction accuracy. Finally, in the sixth column we mark the schemes

that propose a technique that is able to automatically reconstruct the continuous object's

boundary without requiring the human ability to delineate it form the boundary nodes' lo-

cations.
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2.3 Current Limitations - Objectives of our method

After a thorough review of the related literature we conclude this chapter by presenting the

main pitfalls of the reported schemes, which consist the motivation of this dissertation.

• L1: The reported continuous object tracking schemes require unrealistic sensor

node densities (thousands sensors per km2) a fact the render them impractical for

real applications.

• L2: The majority of the proposed schemes do not consider nodes or communication

failures which are totally expected in harsh environments created by the hazardous

phenomena (e.g. wildfires, chemical leaks etc).

• L3:They require synchronization between the nodes. However, synchronizing the

clocks of the sensor nodes is very difficult to achieve even in small scale WSNs.

• L4: All the reported schemes consider a perfect sensing mechanism which cannot

be achieved in real application.

• L5: Themajority of the reported schemes (with few exceptions [37,38]) are incapable

to estimate the spatiotemporal evolution characteristics (e.g. direction and speed)

of the diffusing phenomenon and therefore they cannot by exploited directly to make

valuable predictions.

• L6: They are incapable to assess their processing, memory and energy require-

ments before their real field deployment.

• L7: The use naive techniques to reconstruct the boundary of a continuous object or

are incapable to reconstruct it without using the human ability identify its shape from

the locations of the boundary nodes.

Based on the above limitations in this dissertation we propose a scheme which:

• Is able to determine the boundary of an evolving continuous object using WSNs of

realistic density.
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• Is robust to node and communication failures which may be permanent or intermit-

tent.

• Does not require synchronisation between the nodes.

• Assume a realistic sensing model that can capture the sensor nodes' detection dis-

tance uncertainty and the possibility of their functionality disruptions due to the haz-

ards passing.

• Is able to estimate with accuracy the continuous object's boundary evolution param-

eters and to predict its spatiotemporal evolution.

• Allow us to asses with accuracy the WSN functionality as well as its energy, pro-

cessing and memory requirements.

• It can reconstruct with accuracy continuous objects boundary at any time instance

of its evolution.
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Chapter 3

Local Front Probabilistic Modeling

Approach and Parameters Estimation

One of the main contributions of this research is the relaxation of the sensor nodes' deter-

ministic sensing mechanism assumption. This idealized sensing mechanism implies that

the sensor nodes detect the boundary of a continuous object at a fixed distance. However,

this assumption is unrealistic for hazard tracking, since the highly stochastic behavior of

hazardous phenomena may affect the sensors and their detection distance. In this chap-

ter we introduce a flexible probabilistic sensing modeling approach which allows us not

only to capture the sensor nodes� detection distance uncertainty but also to account for

the possibility of sensor node malfunctions in the harsh environmental conditions poten-

tially created by an approaching hazard. The proposed modeling, allows us to formulate

the local front�s speed estimation problem in a Bayesian manner. We analytically solve

this Bayesian problem and derive closed-form algebraic expressions for updating all local

front parameters (orientation, direction and speed) which can be easily implemented by

the microprocessors of today's commodity WSN nodes.

3.1 Preliminaries

The key idea of the proposed in-network collaborative algorithm is the following: As soon

as the deployed sensor nodes detect the evolving front line of a propagating hazard they
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are dynamically organized into ad-hoc local clusters of 3 nodes (triplets). Each triplet

consists of a Master sensor (SM
i ) who initiates cluster formation and two Helper sensors

{SH
j , SH

k } that the Master selects among the nodes in its neighborhood and uses (without

them knowing it!) to update its current (prior) local front evolution belief model. The pa-

rameters of the updated (posterior) model are then propagated forward to other sensor

nodes residing in the area where the evolving phenomenon is moving into.

In this section we state the basic assumptions made, the notation used, and everything

else needed to facilitate the presentation of the modeling approach and collaborative in-

network processing algorithm presented in later sections.

3.1.1 Sensor Network Assumptions

We assume that the deployed sensor nodes are stationary with their positions known.

A sensor Si can communicate directly only with the nodes located within its neighbor-

hood Ni that may change dynamically (grey shaded area in Figure 3.1) and is a subset

of Si's ideal communication range (a disk of radius r). We have to note that the proposed

scheme has been designed to be tolerant to communication link failures, since in real

WSN deployments we expect that the parameters such as physical obstacles, adverse

local conditions created by propagating hazardous phenomena, may affect the operation

and/or communication capabilities of sensor nodes.

We assume that each sensor node is aware of:

• Its own location.

• The locations of its neighbors.

• A parametric model consisting of its prior belief about the local front line's evolution

characteristics (see Section 3.1.3).

We assume that in a valid WSN deployment:

• Each sensor node has at least two neighbors (two nodes inside its communication

range).

Dimitrios V. Manatakis 66



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

Figure 3.1: The neighborhood (grey) and local front model characteristics of sensor SM
i .

• The local clocks of sensor nodes do not need to be synchronized to a global clock

reference.

• Sensor nodesmay fail at any time due to the hazard's propagation. Once a node fails

it is assumed that it cannot communicate with its neighbors. Sensor node failures

may be either permanent or intermittent.

3.1.2 Sensor Node Status

A sensor node Si (subscripts will be used to uniquely identify a sensor node when neces-

sary) may assume one of the following statuses:

Quiescent (SQ
i ): Default initial status.

Master (SM
i ): A node that has become responsible for updating the local front's model.

Master Candidate (SC
i ): This transitional state is entered when a sensor node checks if

it satisfies the necessary conditions to become a Master (details are provided in Chapter

4).

To denote a status transition we will use the right arrow symbol (→). e.g. SQ
i → SC

i de-

notes that the Quiescent sensor node SQ
i becomes a Master Candidate SC

i .

Slave (SL
i ): A Slave node is responsible for monitoring the phenomenon upon receiving a
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request from a Master. A Slave may serve more than one Masters at any given time.

As we can see in Figure 3.1 the neighborhood Ni of Master node SM
i is partitioned

into two half planes (positive and negative) by the local front line (a line segment of length

equal to the diameter of SM
i 's ideal communication range). To refer to the neighbors of SM

i

located in the positive (negative) half plane we will use the notation N+
i (N−

i ) respectively.

It holds that Ni = N+
i ∪N−

i . Furthermore, we denote by N0
i the subset of neighbors of Si

which have not detected the phenomenon yet. It holds thatN0
i = N+0

i ∪N−0
i , whereN+0

i ⊆

N+
i (N−0

i ⊆ N−
i ) are the subsets of neighbors which have not detected the phenomenon

yet and are residing in the positive (negative) half plane respectively. Similarly we will use

notation NH
i = {SH

j , SH
k } to refer to two special Slave nodes of SM

i , called Helpers, that

the Master SM
i selects and uses to help him update its local front model; SH

j is assumed

to be the first selected and SH
k the second selected Helper of SM

i . (Details on how the

Helpers are selected by the Master are provided in Chapter 4).

3.1.3 Local Front Models Parameters

Each sensor node Si uses a parametric model to represent its belief about the local front's

evolution characteristics, namely its orientation, direction and speed. This model approx-

imates the local front as an evolving line segment of length equal to the diameter (2r) of

the sensor's circular communication range (see Figure 3.1).

For Master node SM
i the Prior Model (before a model update) and the Posterior model

(after a model update) will be denoted as mi = {ϕi, δi, ui, si} and m∗
i = {ϕ∗

i , δ
∗
i , u

∗
i , s

∗
i }

respectively, where:

• ϕi (Orientation): Is the tangent of the angle formed between the local front's line and

the x-axis (see Figure 3.1).

• δi (Direction): It is assumed to be always perpendicular to the local front's line segment.

The direction coefficient may take one of the following values: 0, if the evolution direction

is unknown; +1(−1), if the local front evolves into the positive (negative) neighborhood's

half plane respectively (see Figure 3.1).

• ui, si (Speed model parameters): The speed Ui of the local front's line segment is con-
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sidered to be a random variable that follows a Normal distribution N (ui, s
2
i ). The source

of stochasticity and the use of the Normal distribution are discussed in Section 3.2.

3.1.4 Sensor Node Information and Tables

Each sensor node maintains locally the following information about itself:

Identity (IDi): An integer that uniquely identifies a sensor node Si in the network.

Local Timer (ti): Each sensor Si starts a local timer ti when it detects the phenomenon.

Location (Li = (xi, yi)): The coordinates of the physical location of sensor node Si.

Detection Status Flag (DSFi): A Boolean flag, with value 1(0), indicating that Si has (has

not) detected the phenomenon. It is set, DSFi ← 1, when the hazard is detected by node

Si.

Sensor Status (SSi): A small integer encoding the current status of node Si. Possible

values are {0: Quiescent, 1: Master Candidate, 2: Slave, 3: Master)}.

Prior Model (PMi): The model mi = {ϕi, δi, ui, si} which captures node's Si current belief

about the evolution characteristics of the local front.

Updated Model (UMi): The posterior model, after the Master SM
i has updated the PMi

parameters, i.e. m∗
i = {ϕ∗

i , δ
∗
i , u

∗
i , s

∗
i }.

A sensor node organizes and stores locally the above information into the following

tables:

Sensor Information Table (T S
i ): Sensor node Si keeps in this table the following information

about itself: {IDi, Li, DSFi, SSi, PMi}.

Sensor Neighborhood Table (TN
i ): Sensor node Si maintains in a separate row of this table

information about each one of its neighbors Sm, i.e. {IDim, Lim, tim, DSFim} ∀{Sm ∈ Ni},

where tim is the value of the timer of Si when it is notified that its neighbor Sm has detected

the phenomenon. If this notification arrives before the timer of Si is initiated (i.e. if Sm

detects the phenomenon before Si) then the value of tim is set to null. The subscript

``im'' is used to uniquely identify the information of a sensor node Sm that is stored in TN
i

of sensor node Si. At deployment time, a sensor node Si retrieves the IDs and location

coordinates of its neighbors using the following simple procedure: Si broadcasts a special

message asking its neighbors to provide their IDs and location coordinates. When the
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neighbors receive this request they return their information which is stored in TN
i .

The above tables, are formed when a sensor node is initialized. In addition, each node

also creates dynamically and maintains the following tables:

Helpers Table (TH
i ): It is created when a sensor node SM

i becomes a Master. It stores

the IDs of legitimate pairs of neighbors which may potentially become its Helpers. (How

these pairs are selected and how this table is used is explained in Chapter 4).

Masters Status Table (TM
m ): Each Slave node SL

m creates this table and stores in a separate

row the following information about each one of the Masters (SM
i ) it is serving: {IDi, UMi}.

How this table is used is explained also in Chapter 4.

3.2 Modeling Detection Distance Uncertainty

It is usually assumed that a sensor node can detect an event inside a disk area of radius

Rd. Although this may not always hold in real applications, it is frequently adopted since

it simplifies the analysis [68--77]. Many disk based sensing models have been proposed

in the literature e.g. the binary, staircase, probabilistic, etc. [74]. Among the most popular

ones is the probabilistic sensing model given below,

p(x) =


1 x ≤ Rs

eλ(x−Rs)γ Rs < x < Rd

0 x ≥ Rd

(3.1)

where the probability for a sensor node to detect an event is exponentially decreasing with

distance x in the range [Rs, Rd] and it is assumed that the sensor will detect an event with

probability 1 (perfect sensor) if it occurs within the inner circle of radius Rs (see Figure

3.2a). The value of Rs (in the range [0, Rd]) is application dependent. The parameters

γ and λ in equation (4.2) control the rate of probability decrease and can be determined

considering the physical properties of the sensor, the noise in sensor measurements, the

characteristics of the sensed physical quantity etc. [72].

We introduce a novel variation of the probabilistic sensing model which, in addition

to describing the detection distance uncertainty, it also accounts for the real possibility of
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Figure 3.2: Sensing Modeling: (a) Probabilistic exponential sensing model. (b) The proposed
shifted Gaussian sensing model.

a sensor node malfunctioning in a harsh environment as the hazard's front gets closer.

This sensing model variation was inspired by the analysis of real WSN data collected

from two outdoor experimental burns that took place at Gestosa's experimental field site

in Portugal [78]. The data analysis has shown that in many cases the sensors were unable

to detect the approaching fire front since abrupt increases in temperature (usually due to

sudden flame fluctuations) destroyed the sensors before they detected the phenomenon

(their measurements overcome a predetermined threshold).

The sensing range of a node Si is assumed to be a circular region of radius Rd (see

dotted circle in Figure 3.2b) centered at the sensor's location (Li), as for the probabilistic

model. The value of Rd is hazard specific and depends on: (i) The sensor's technical

specifications (e.g. its sensitivity), (ii) how the monitored phenomenon affects the physical

quantity measured by the sensor. Using this information we can estimate the expected

distance at which the evolving front is detected by the sensor [49]. We set this distance

equal to αRd

2
, where 0 ≤ α ≤ 1 (see Figure 3.2b). However, due to the stochastic nature

of a hazard's detection this distance may actually deviate from its expected value. To

account for this stochasticity we treat the detection distance as a normally distributed

random variable, Di ∼ N (µd, σ
2
d), with parameters:

µd =
αRd

2
, 3σd = Rd(1−

α

2
)⇒ σd =

Rd

3
(1− α

2
). (3.2)

In setting the standard deviation as in (4.1) above we assumed that the probability for

a sensor to detect the approaching diffusive phenomenon at a distance larger than Rd is
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negligible.

As observed in Figure 3.2b the probability of detection increases monotonically as the

distance of the local front from the sensor decreases in the range
[
αRd

2
, Rd

]
. However,

in close range
[
0, αRd

2

]
the probability of detection decreases. This modeling decision is

justified considering that the inability of a sensor to detect the approaching front at the ex-

pected detection range
[
αRd

2
, Rd

]
is an indication of a potential hazard-induced malfunction

reducing the probability of detecting the hazard as it gets closer to the sensor node. This

simple and realistic, sensing model in the presence of propagating hazards allows us to

capture both the inherent stochasticity associated with the detection distance as well as

the sensor node's increasing probability to malfunction as the hazard gets in close range.

Importantly, it does not harm at all the generality since by setting the parameter α = 0

in equation (4.1) (i.e. µd = 0) we can relax the assumption that a node may malfunction

and revert back to a monotonic probabilistic sensing model centered at the sensor node's

location. The proposed "shifted" Gaussian model is therefore very flexible since it can

cover both scenarios: diffusive hazards which may, or may not, affect the functionality of

deployed sensor nodes. This is in contrast to the classical monotonic probabilistic model

which ignores the real possibility of sensing mechanism failures as the hazard propagates

in close range. We have tested how the proposed algorithm (to be presented in Chapter

4) performs when the ``real'' sensing distance model deviates from the assumed ``shifted''

Gaussian model (mismatch conditions).

We also remark that the Gaussian distribution has been used by many researchers to

describe the dependence of sensor node detection probability to distance ( [71, 75--77])

since it has all the necessary ingredients to characterize the uncertainty while offering a

simple parameterization. We will show later in this section that an added advantage is that

it also leads to simple algebraic expressions for updating the local front model parameters.

This is important because such calculations can be easily performed by the embedded

microprocessors of WSN nodes which have limited computing power and operate under

a strict energy budget.
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Figure 3.3: Updating the local front model.

3.3 Modeling Speed Uncertainty

Let us now consider the cluster of three sensor nodes (triplet) shown in Figure 3.3. As

soon as the Master node SM
i receives two Detection Messages (DM), one message from

each one of its two Helpers, {SH
h , where h ∈ {j, k}}, it has all the information it needs to

start updating its prior model.

Using the coordinates of its Helpers (Lh = (xh, yh) stored in its table TN
i ) and the

coordinates of their projection points {pih = (xih, yih), h ∈ {j, k}} on its local front line,

Master SM
i can calculate the Euclidean distances {dih, h ∈ {j, k}} using equation (3.3)

below (see also Figure 3.3),

dih ≡ dist(Lh, pih) =
√

(xh − xih)2 + (yh − yih)2. (3.3)

Let's now call Dih the distance that the local front at node Si has to travel before it gets

detected by a Helper node.

Dih = dih −Dh, h ∈ {j, k} (3.4)

Since Dh, the detection distance of the progressing front from Helper Sh, h ∈ {j, k},

follows a Normal distributionN (µd, σ
2
d),Dih will also follow a Normal distributionN (µih, σ

2
ih)
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with parameters:

µih = dih − µd = dih −
αRd

2
, σih = σd =

Rd

3
(1− α

2
), (3.5)

where dih has been computed using equation (3.3), h ∈ {j, k}.

Upon estimating the parameters µih and σih, h ∈ {j, k} using equation (3.5), Master

node SM
i can calculate the speed at which the two Helper projection points, pij and pik,

have to move forward in order to cover the distances Dij and Dik in the measured time

intervals tij and tik respectively (see Figure 3.3). Since Dij and Dik are random variables

that follow a Normal distribution, it can be shown that the corresponding speeds of the

two projection points, Uij and Uik, will also follow Normal distributions of the form Uih ∼

N (uih, s
2
ih). Their parameters can be computed easily using equations (3.6) below, h ∈

{j, k}:

uih =
µih

tih
=

2dih − αRd

2tih
, sih =

σih

tih
=

Rd(1− α
2
)

3tih
(3.6)

3.4 Model Parameters Updating

3.4.1 Speed

The model of the speed random variable is updated based on a sequential Bayes pro-

cedure which however has been designed to respect the limited processing capabilities

and energy constraints of the WSN nodes. As in every Bayesian method, to compute

the posterior distribution we need: (i) an assumption about the random variable's current

``behavior'' (prior) and (ii) the likelihood of the observed data.

As discussed in Section 3.1.3 the local front's speed is a Normal random variable. To

update its parameters (mean and variance), Master node SM
i uses its prior speed informa-

tion Ui ∼ N (ui, s
2
i ) (parameters are stored in its prior model mi) as well as the likelihood

computed using information related to the ``observed'' speeds (Uih) of the two Helper node

projection points on the current local front, namely {pih, where h ∈ {j, k}}.

Since the number of the available "observations" is very small (only two), we intro-

duce below a technique which exploits the availability of information about the uncertainty
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(sih) associated with the speed ``observations'' (Uih) to improve the likelihood estimation

accuracy.

Having available its local prior model and the parameters of the speed models Uih ∼

N (uih, s
2
ih) (computed using the equations in (3.6)), the Master node SM

i computes the

weights {wih, h ∈ {j, k}} of a Gaussian mixture model with two components (see Figure

3.4b)

p(u) =
∑

h∈{j,k}

wihN (u|uih, s
2
ih), (3.7)

as follows:

wij =
1

1 + C
, wik =

C

1 + C
, C =

sij|ui − uij|
sik|ui − uik|

. (3.8)

Fixing the mixture weights as in (3.8) is justified based on the following arguments:

• The speed model Uih, h ∈ {j, k} with the smaller standard deviation (smaller uncertainty)

should be trusted more by the Master.

• Since in short time periods (e.g. the time interval between two successive local model

updates) environmental diffusive phenomena tend to exhibit smooth changes in terms

of their evolution characteristics (speed and direction), more trust should be assigned to

the speed ``observation'' with mean value (uih) closer to that of the prior model (ui).

Estimating the posterior parameters by using directly the Gaussian mixture likelihood

(3.7) and Bayes rule would be computationally expensive since analytical closed form

expressions cannot be derived. Due to the limited processing capabilities and low power

constraints of microprocessors used in WSN nodes, in this work we consider prohibitive

the use of an iterative, slowly converging, parameters estimation procedure. Therefore, in

order to be able to derive closed form algebraic expressions for the posterior distribution

parameters we employ variational calculus and approximate the Gaussian mixture by a

Normal distribution. To this end, we estimate the parameters of the Normal distribution

that minimizes the Kullback-Leibler (KL) divergence (maximizes the similarity) from the

Gaussian mixture. The general form of the equations which can be used to compute the

parameters of this Normal distribution are [79,80]:
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Figure 3.4: Speed model updating procedure. (a) The prior model (Ui), and the two ``ob-
servation'' models (Uij, Uik). (b) The mixture model p resulting by combining speed ``ob-
servation'' models; the normal distribution q̂ that best approximates p by minimizing the
Kullback Lebier divergence (KL(p||q̂)); the resulting posterior speed model U∗

i .

µ̂ =
∑
n

wnµn (3.9)

Σ̂ =
∑
n

wn(Σn + (µn − µ̂)(µn − µ̂)T ) (3.10)

In our specific case these equations reduce to:

ûi = wijuij + wikuik (3.11)

ŝ2i = wijs
2
ij + wiks

2
ik + wijwik(uij − uik)

2 (3.12)

Having computed the mixture weights using (3.8), Master SM
i calculates the Normal distri-

bution parameters ûi and ŝ2i using equations (3.11) and (3.12). By applying simple manip-

ulations on the Bayes theorem it can be proved [81--83] that since the prior N (ui, s
2
i ) and

the likelihoodN (ûi, ŝ
2
i ) are both Gaussian, the posterior will also be a GaussianN (u∗

i , s
∗2
i )

(conjugate distributions, see Figure 3.4b) with parameters provided by the following easy

to compute closed form expressions:
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u∗
i =

uiŝ
2
i + ûis

2
i

ŝ2i + s2i
, s∗2i =

ŝ2i s
2
i

ŝ2i + s2i
(3.13)

3.4.2 Orientation

Let K1 (K2) be the point to be reached by pij (pik) as it moves in the direction of the local

front's evolution with speed uij, (uik) respectively for a time interval tik (see Figure 3.3).

The coordinates of K1 and K2, to be called (x1, y1) and (x2, y2), can be found by solving

a system of a linear and a quadratic equation. This problem is formulated and solved

analytically in Appendix A. Using the calculated coordinates, Master SM
i can update the

orientation parameter of its local front model using equation (3.14) below,

ϕ∗
i =

y2 − y1
x2 − x1

. (3.14)

3.4.3 Evolution Direction

To update the direction parameter δ∗i , node SM
i derives the equation of line f ∗

i (x) that is

defined by points K1(x1, y1) and K2(x2, y2) (see Figure 3.3).

f ∗
i (x) = ϕ∗

ix+ b∗i (3.15)

where b∗i = y1 − ϕ∗
ix1

Subsequently, node SM
i substitutes its abscissa (xi) in (3.15) and checks the sgn(f ∗

i (xi)).

If sgn(f ∗
i (xi)) > 0 (sgn(f ∗

i (xi) < 0) then Master node SM
i infers that the new local front

line evolves into the negative (positive) half plane and it updates the direction parameter

δ∗i = −1(1) accordingly.

In this chapter we presented a novel flexible Gaussian sensing model that allow us to

capture sensor nodes' detection distance uncertainties and possible disruptions of their

functionality. Based on the detection distance uncertainty we formulate a Bayesian pa-

rameter estimation problem which solved analytically. As we will present in Chapter 4

the derived algebraic closed formed expressions allow us to estimate with accuracy the

local evolution parameters of a continuous objects boundary, while respecting the strict
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processing and energy constraints of the commodity sensor nodes (see Chapter 5).
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Chapter 4

Collaborative Algorithm for Estimating

the Spatiotemporal Evolution of

Continuous Objects

In this Chapter we present the proposed collaborative WSN algorithm for estimating and

tracking the local evolution characteristics of continuous objects. Using extensive simula-

tion results, we demonstrate its ability to estimate with accuracy the evolution character-

istics of complex continuous objects, using realistic WSN densities while allocating also

sensor node and communication link failures.

4.1 Preliminaries

4.1.1 Sensor Messages

The proposed in-network algorithm assumes that each sensor node can handle the fol-

lowing messages (the attributes carried by each message are provided in parenthesis):

Broadcast type Messages:

Detection Message (DM(IDi)): It is broadcasted by a sensor node Si to notify its neighbors

that it has detected the phenomenon (detection event).

Master Declaration Message (MDM): It is broadcasted by a node to notify its neighbors that
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it satisfies the necessary conditions to assume a Master's role (to be presented in Section

4.2.1). This message has two slightly different versions: MDM1(IDi, PMi) and MDM2(IDi).

Update Prior Message (UPM(IDi, UMi)): It is broadcasted by a Master node SM
i after it has

updated its prior model.

Free Slaves Message (FSM(IDi)): It is broadcasted by a Master node SM
i in order to re-

lease its Slaves.

Pass My Posterior Message (PMPM(IDi)): It is broadcasted by a Master node SM
i when

none of its Helpers satisfies the necessary conditions to become the new Master.

Pass Posterior Message (PPM(UMi)): It is broadcasted by the sensor nodes {SL
m ∈ Ni}

enslaved to a Master node (SM
i ) after they have received a PMPM(IDi).

Unicast type Messages:

Master Declaration Message Acknowledgement (MDMA(IDj)): it is sent by a Slave node

(SL
j ) to notify its Master (SM

i ) that it has received its MDM message and has become its

Slave.

Master Offer Message (MOM(IDi)): It is sent by a Master node (SM
i ) to one of its Helpers

to make it an offer to become the new Master.

Accept Master Offer Message (AMOM(IDj)): It is sent by a Helper (SH
j ) to a Master to ac-

knowledge that it accepts the offer to become the new Master.

Decline Master Offer Message (DMOM(IDj)): It is sent by a Helper (SH
j ) to a Master to notify

it that it does not accepts the offer to become the new Master.

4.1.2 Sensor Network Assumptions

To better explain the proposed in-network algorithm we will use a running example to

facilitate the understanding of its operations. Let's assume, without loss of generality

(w.l.o.g.) that a part of the evolving front has just entered the WSN's deployment region

and none of the sensor nodes, (which are currently in the default Quiescent status), has

detected the phenomenon yet (DSF = 0). Each node is equipped with sensors that can

measure physical parameters affected by the phenomenon's presence when it enters in

its sensing range (a circle of radius Rd - see Chapter 3 for details). All sensor nodes are
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initialized with the same prior model with parameters mi = {ϕi, δi, ui, si} and δi = 0.

4.2 Collaborative In Network Algorithm

4.2.1 Forming a Local Cluster

Let's now assume that the evolving front enters the sensing range of node Si (see Figure

4.1a). As soon as Si detects the front, it initiates the Detection Procedure described below

and also summarized by the UML sequence diagram of Figure 4.2.

Detection Procedure: Sensor node Si starts a local timer, changes the value of its detec-

tion status flag DSFi from 0 to 1 (stored in its information table T S
i ) and checks its status

variable SSi, which may have value 0 (Quiescent) or 2 (Slave).

• If SSi = 0 (Si is Quiescent, as in the example's case) the node makes a status transition,

SQ
i → SC

i (SSi ← 1), and initiates the Master Check Necessary Conditions Procedure

(presented in the next paragraph).

• If SSi = 2 (Si is a slave), node SL
i broadcasts a Detection Message DM(IDi). Each

neighbor {Sm ∈ Ni, wherem = {j, k, l}} in Figure 4.1a when it receives this message it

updates in its neighborhood table TN
m (in the row corresponding to Si) the attributes tmi

and DSFmi (see Figure 4.2). The value assigned to tmi is the time value tm indicated

by the local timer of Sm when message DM(IDi) was received. If Sm receives message

DM(IDi) before its local timer has been started (this can happen if Sm has not sensed

the phenomenon yet) it assigns to attribute tmi a null value.

Master Check Necessary Conditions Procedure: Sensor node SC
i finds in its table TN

i

the subset of neighbors which have not detected the phenomenon yet (i.e. {Sm ∈ N0
i }).

Based on the cardinality |N0
i | of this set, SC

i proceeds as follows: (see UML sequence

diagram in Figure 4.3).

• If |N0
i | < 2 : Node SC

i transitions back to the Quiescent state, SC
i → SQ

i , and broad-

casts a DM(IDi) message. Each receiving neighbor {Sm ∈ Ni} updates its attributes tmi

and DSFmi in its table TN
m , in the way already discussed in the Detection Procedure

paragraph and shown in Figure 4.2.
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Figure 4.1: Local front model updating procedure: (a) Node Si becomes Master candidate
and checks if it satisfies the conditions to become a Master, (b) node Si becomes a Master
and ``enslaves'' its neighbors Sj, Sk and Sl, (c) Master SM

i uses the information received
from its two Helpers (SH

j and SH
k ) and updates the local front's line parameters, (d) node

Sk becomes the new Master and Si releases its slaves.
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Figure 4.2: Detection Procedure (UML sequence diagram).

• If |N0
i | ≥ 2 (example's case): Node SC

i initiates the Local Front Line Derivation activity

and then checks the evolution direction parameter δi of its initial model mi. Based on

the value of δi, SC
i initiates the appropriate Create Helpers Table activity followed by the

Master Declaration activity (see Figure 4.3).

Local Front Line Derivation: Node SC
i uses the orientation parameter ϕi of its initial model

mi and its location information Li = (xi, yi), to derive the equation of the line where the

local front segment belongs, fi(x) = ϕix+ bi, where bi = yi − ϕixi (see Figure 4.1a).

Create Helpers Table: Node SC
i checks the value of the front evolution direction parameter

δi in mi.

• If δi = +1 (the local front evolves into the positive half plane), SC
i searches in its neigh-

borhood table TN
i to find the subset of neighbors that belong to the positive neighbor-

hood half plane and have not detected the phenomenon yet (N+0
i ). If |N+0

i | ≥ 2, SC
i

calculates the coordinates of these neighbors' projections on the local front line (see

Appendix A for details). These are the points pij, pik, pil in the example (Figure 4.1a).

Then SC
i calculates the Euclidean distances among all possible projection pairs and

identifies those pairs with distances larger than a pre-specified threshold (that is appli-

cation dependent). These pairs are considered to be the legitimate Helpers pairs, in
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Figure 4.3: Master Check Necessary Conditions Procedure (UML sequence diagram).

the sense that any one of them could be used by SC
i to update its prior model. Finally

SC
i stores the IDs of nodes of legitimate Helper pairs in its respective Helpers table TH

i .

How a particular Helpers pair is selected among the legitimate ones will be discussed

in Section 4.2.2.

• If δi = −1 (the local front evolves into the negative half plane), SC
i performs the same

aforementioned steps but for the nodes which belong to the negative neighborhood half

plane and have not detected the phenomenon yet (subset N−0
i ).

• If δi = 0 (the local front's evolution direction is unknown - example's case), SC
i searches

in table TN
i and finds the sensor nodes that belong to its neighborhood and have not

detected the phenomenon yet (N0
i ). Then SC

i partitions them into two half planes defined

according to the local front line fi(x) (see Local Front Line Derivation). For each subset

(N+0
i andN−0

i ) SC
i performs the steps described above for the cases δi = +1 and δi = −1

respectively.

Master Declaration: After the end of the Create Helpers Table activity node SC
i checks

its Helpers Table TH
i :

If TH
i = ⊘: SC

i does not become a Master, transitions back, SC
i → SQ

i , and broadcasts a
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Figure 4.4: Master's Declaration (UML sequence diagram).
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DM(IDi). The receiving neighbors {Sm ∈ Ni} update their attributes tmi and DSFmi in their

tables TN
m (see Figure 4.4).

If TH
i ̸= ⊘ (i.e. there exist at least one pair of legitimate Helpers for SC

i ): Node SC
i becomes

a Master, SC
i → SM

i , and checks its model's evolution direction parameter (δi):

• If δi ̸= 0, SM
i broadcast a Master Declaration Message of type 1, (MDM1(IDi, PMi)). Each

neighbor {Sm ∈ Ni} when it receives this message it updates the attributes tmi and

DSFmi in the corresponding row of its table TN
m , as shown by the UML sequence diagram

of Figure 4.4. Moreover, each {Sm ∈ N0
i } uses the Master's SM

i initial model (PMi is

carried in MDM1), derives the equation of the local front line fi(x) and substitutes its

abscissa (xm) in the argument of fi(x). If sgn(fi(xm)) = sgn(δi) (i.e. if Sm belongs

to the half plane, with respect to the Master, that the front evolves into), Sm becomes

a slave, Sm → SL
m, adds a row in its Masters table TM

m for Master SM
i with attributes

{ID ← IDi, UM ← null} and sends a Master Declaration Message Acknowledgement

(MDMA(IDm)) back to node SM
i . Otherwise Sm keeps its status unchanged.

• If δi = 0 (example's case), Master SM
i broadcasts aMaster Declaration Message of type

2 (MDM2(IDi)). Each neighbor {Sm ∈ Ni} receiving this message updates the attributes

tmi and DSFmi in the corresponding row of its table TN
m (see Figure 4.4). Moreover, if

{Sm ∈ N0
i } it becomes a slave (Sm → SL

m) (see Figure 4.1b) adds a row in his TM
m for

Master SM
i with attributes {ID ← IDi, UM ← null} and sends a Master Declaration

Message Acknowledgement (MDMA(IDm)) to node SM
i .

When node SC
i becomes a Master it waits until it receives two detection messages

(DMs), one message from each one of the two nodes of a legitimate Helpers pair (among

those pairs stored in its local Helpers Table TH
i - see Figure 4.5). However, the potentially

adverse conditions created by the propagation of a diffusive hazard may impair the com-

munication between the Master and its Helpers. In the a worst case scenario the Master

may never receive the DM messages sent by its Helpers and thus never update its local

model parameters (formation of a ``zombie'' cluster). We should emphasize that the possi-

ble formation of ``zombie'' clusters does not affect the global functionality of the algorithm

since the model updates within "healthy" clusters will normally take place. Nevertheless,
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Figure 4.5: Updating Model Parameters (UML sequence diagram).

to reduce the probability of a ``zombie'' cluster formation the Master node implements the

following procedure:

Master Neighbourhood redefinition: Master node SM
i waits (the waiting time is ap-

plication dependent) to receive the MDMAs from its slaves. After this time, it uses the IDs

of its Slaves (contained in the received MDMAs) and checks if these IDs correspond to at

least one of its legitimate Helper pairs stored in its Helpers Table (TH
i ):

• If they do, Master node SM
i keeps its status unchanged and waits until it receives the

two detection messages (DMs) that will be used to update its model parameters (see

Section 4.2.2).

• If they do not, Master node SM
i broadcasts a Free SlavesMessage FSM(IDi) and changes

its status (SM
i → SQ

i ). When the slaves {SL
m ∈ Ni} receive the FSM message, they re-

move from their tables TM
m the information corresponding to Master SM

i and if they do

not serve any other Master(s), they change their status back to Quiescent (SL
m → SQ

m).

4.2.2 Model Updating

In our example we assume w.l.o.g. that the two messages received by SM
i come from

NH
i = {SH

j , SH
k } (see Figure 4.1c). Furthermore it is assumed that the two Helpers have
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detected the evolving front at time instances tij and tik respectively, wherew.l.o.g. tij < tik.

When the Master SM
i receives the DMs from the pair of Helpers it updates its neighborhood

table TN
i and initiates the procedure described below.

Model Updating Procedure: The updating starts with the calculation of the ``new''

(posterior) local front speed model parameters (U∗
i ∼ N (u∗

i , s
∗2
i )). Master node SM

i uses

the expressions in (3.6) and calculates the parameters of the Normal speed models of the

two Helper projection points pij and pik (see Section 3.3). By substituting these parameter

values in (3.8), SM
i calculates the Gaussian mixture weights wij and wik (see Section 3.4).

Then, by applying the resulting mixture weight values into (3.11) and (3.12) the Master

calculates the parameters (ûi and ŝi) of the Normal distribution that best approximates

the Gaussian mixture. Finally, having available these parameters (ûi and ŝi), along with

the prior model parameters (ui, and si), SM
i applies them to equation (3.13) to obtain

parameters (u∗
i , s

∗2
i ) of the posterior speed model.

Next, Master SM
i estimates the local front's orientation, ϕ∗

i . As discussed in Section

3.4.2 to update this parameter the Master finds the coordinates of two points,K1 = (x1, y1)

and K2 = (x2, y2) (see Appendix A), which are expected to lie on the ``new'' local front

line (see Figure 4.1c), and applies them directly to equation (3.14). Finally, SM
i follows

the procedure described in Section 3.4.3 and updates the evolution direction parameter,

δ∗i . All model parameters are updated using closed form expressions that can be realized

easily by embedded microprocessors commonly used in WSN node architectures.

4.2.3 Model Propagation

After updating its model, Master SM
i initiates the Model Propagation Procedure (see the

UML sequence diagram of Figure 4.6).

Master node SM
i first broadcasts an Update Prior Message (UPM(IDi, UMi)). The sen-

sors which serve it {SL
m ∈ Ni} when they receive it update the prior model information in

their tables T S
m using the received model m∗

i . Moreover, they update attribute UMi ← m∗
i

in the corresponding row of their Masters' table TM
m . In addition, SM

i sends a Master Offer

Message (MOM(IDi)) to the Helper who detected most recently the phenomenon (it is SH
k

w.l.o.g. in the running example of Figure 4.1c) and asks it to become the new Master. This
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sensor node becomes temporarily a Master candidate (SH
k → SC

k ) and uses the updated

model parameters (m∗
i ) to initiate theMaster Check Necessary Conditions procedure (see

Section 4.2.1).

If Helper SC
k meets the conditions to become the new Master (example's case), it

accepts the offer (SC
k → SM

k ) and responds to SM
i with an Accept Master Offer Mes-

sage (AMOM(IDk)). When SM
i receives this message it broadcasts a Free Slaves Message

FSM(IDi) and changes its status back to default (SM
i → SQ

i , see Figure 4.1d). Each Slave

SL
m, when it receives the FSM removes from its table TM

m the information corresponding

to Master SM
i and if it does not serve any other Master(s), it changes its status back to

Quiescent (SL
m → SQ

m).

On the other hand, if Helper SC
k does not satisfy the necessary conditions to become

the new Master, it rejects the offer made by SM
i by responding with a Decline Master Offer

Message (DMOM(IDk)). This forces SM
i to try exactly the same negotiation with its second

Helper SH
j . If SH

j also rejects the offer to become the new Master, then SM
i gives up with

its Helpers, resets in its updated model m∗
i the value of the evolution direction (δ∗i ← 0),

broadcasts a Pass My Posterior Message (PMPM(IDi)) and returns to default Quiescent

status. The neighbors ({Sm ∈ Ni}) which are enslaved to SM
i , when receiving the PMPM

they broadcast a Pass Posterior Message (PPM(UMi)) containing the Master's SM
i updated

model m∗
i . The neighbors of nodes Sm when receiving the PPM they update their prior

model in their table T S with the updated model m∗
i . Finally each neighbor {SL

m ∈ Ni}

deletes from its Masters table TM
m the information related to SM

i and if it does not serve

another Master it changes its status back to Quiescent (SL
m → SQ

m).

At this point we want to mention the following interesting scenario that can be handled

without any problem: A Helper node may be enslaved to more than one Masters (if it

belongs to the intersection of their clusters). If this Helper node receives a MOM from one

of its Masters it may accept the offer (if it satisfies the necessary conditions) while it also

continues to serve as Helper to another Master. If now this new Master receives (before

it updates its model parameters) a MOM from a second Master, it will checks (for the cor-

responding model) the ``Master check Necessary Conditions'' and if they are satisfied it

will accepts that offer as well. By the end of this procedure the new Master has formed

for each accepted offer a TH table that contains the legitimate Helper pairs that could be
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Figure 4.6: Model Propagation Procedure (UML sequence diagram).
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used for updating each model. The new Master waits to receive the DMs from two of its

neighbors that constitute a legitimate Helpers pair in at least one of its TH tables. If the

pair that responds is contained in only one of its TH tables then the node updates only

the corresponding model and discards the rest. Otherwise, if the same Helpers pair is

present in more than one TH tables, the node updates the corresponding models and se-

lects among them to propagate the one with the smallest speed variance (smallest speed

uncertainty).

4.3 Evaluation Setup

We present next simulation results demonstrating the ability of the proposed collaborative

WSN algorithm to estimate accurately the local evolution characteristics (speed and direc-

tion) of a continuous object. The phenomenon may include multiple diffusion processes

(hazards), possibly expanding at a time varying rate and/or assuming irregular shapes.

For the evaluation we have developed a flexible simulation workflow which allows us

to generate and execute realistic WSN simulation scenarios with different sensor node

densities, deployment strategies, sensor node failure probabilities, communication (Rx

and Tx) failure probabilities, and propagating hazard front properties (shape, speed and

acceleration).

4.3.1 WSN Simulation Workflow

The WSN simulation workflow includes two main components: i) The flexible WSN sim-

ulator COOJA (COntiki Os JAva) [84] for the Contiki sensor node operating system, and

ii) a Matlab-based component which prepares the COOJA input file and evaluates the

estimation accuracy of the proposed in-network algorithm.

As shown in the UML component diagram of Figure 4.7, the Matlab component takes

as input information about: a) the deployed sensor nodes (location, prior model parame-

ters, etc.), and b) the propagating hazard's front properties, and determines the sequence

in which the deployed sensor nodes detect the evolving hazard. After that, it generates a

file (Detection Events Sequence) which contains for each sensor node the following infor-
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Figure 4.7: UML component diagram of Matlab-COOJA based simulation workflow.

mation: {ID, location, time of detection, prior model parameters}. This file is passed as

input to COOJA used to simulate the behavior of the proposed distributed algorithm, as if

it was implemented by a WSN consisting of Atmel's AVR RAVEN nodes [85]. To achieve

this, the code every sensor node needs to run to implement the proposed in-network algo-

rithm was programmed in C on the Real Time Operating System (RTOS) Contiki. Using

COOJA we simulate the IEEE 802.15.4 MAC protocol's byte stream (preamble, start of

frame delimiter, data, and checksum) which is also used by the Atmel's AVR Raven nodes.

Moreover using COOJA's Unit Disk Graph Medium (UDGM) with a distance loss propaga-

tion model [86] (that considers interferences), we can evaluate the proposed algorithm's

behavior under different Rx/Tx failure probabilities.

At the end of a simulation, a COOJA Output file is produced which contains: a) The

updated model parameters, b) the number of Rx and Tx messages/Bytes exchanged in

the WSN, and c) the energy consumed for communication (Rx and Tx). To evaluate the

estimation accuracy of the proposed algorithm, the updated models information is passed

back as input to the Matlab component which compares the corresponding models' orien-

tation and speed with the ground truth values (see Appendix B).

4.3.2 Experimental Setup

A notable advantage of the proposed in-network processing algorithm is that it can es-

timate accurately the evolution characteristics of a local front using low density sensor

networks. To demonstrate this feature in all the conducted experiments we have used
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WSN densities that are considered low for environmental monitoring applications. Specif-

ically the used densities 7.5× 10−5, 10−4, 1.25× 10−4 sensors/m2, which correspond to 75,

100 and 125 sensor nodes respectively deployed within an 1km2 square area. For each

WSN density value we use a large number of randomly drawn sensor node deployments

and demonstrate how the proposed algorithm performs under different sensor node as

well as communication (Rx and Tx) failure probabilities (equal to 0, 0.1, 0.2 and 0.3).

For all experiments the radius of the communication range of a node was set to r =

150m, such as to guarantee that we have a connected network (every node has at least

one neighbor) for every density scenario. Furthermore, in order to evaluate how the size

of the sensing radius Rd affects the accuracy of the proposed algorithm we repeated the

experiments with different Rd values equal to 0.1m and 15m. For the sensing models the

parameters were calculated using the equations in (4.1) for α = 1. Each sensor node is

initialized with the same prior model mi = {ϕi = 0, δi = 0, ui = 5m/min, si = 2m/min}.

The mean speed value in the prior model was intentionally chosen to differ significantly

from the simulated hazard front speeds in order to demonstrate the ability of the proposed

distributed algorithm to estimate the true model parameter values even when the initial

prior belief model of the sensor nodes deviates significantly from the reality. The commu-

nication energy consumed by the simulated AVR Raven nodes, was measured using: a)

their maximum power (3dBm) for transmission (at this power level communication range

of the AVR RAVEN nodes is approximately 150m) and b) reception sensitivity -101dBm

which is fixed for the AVR Raven nodes. Finally, in all the conducted experiments we

used a policy where a sensor node retransmits once its message if it does not receive an

acknowledgement from the message recipient(s).

4.4 Results and Discussion

In the conducted experiments the diffusive phenomenon (continuous object) was simu-

lated using either a Matlab program or FLogA a wildfires behavior simulator developed in

our group [87]. To evaluate the accuracy of the proposed distributed algorithm, we com-

pared the estimated direction and speed of the local fronts to the corresponding ground

truth values. A detailed description of the evaluation metrics used is provided in Appendix
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B.

4.4.1 Experiment 1: Multi-source diffusive hazards

In the first experiment a complex diffusive phenomenon is modeled as two circles of fixed

centers and radii that are increasing with equal but time varying rates. The circles repre-

sent two distinct diffusive hazards which have just started entering the WSN deployment

area at the beginning of the simulation. The two circles start to overlap as they grow to

form a complex front line before covering half of the deployment area. A detailed pre-

sentation of the experimental setup is presented in Appendix C. Moreover, in order to

help the reader visualize the complex phenomenon and get a sense of the model up-

dates taking place during its propagation, we provide a video animation (see file Exper-

iment1TwoFronts.mp4 [88]) created using Matlab. A discussion of what is shown in the

video can also be found in Appendix C.

Modeling propagating hazards with circular shapes is justified because: a) Fick's sec-

ond law of diffusion (which in two or more dimensions is analogous to the heat equation)

indicates that the diffusion of a substance emanating from a single point source covers a

circular area whose size is increasing at a rate indicated by the diffusion coefficient [89].

b) The circle's geometrical properties allow us to evaluate analytically the speed and di-

rection estimation errors (see Section Appendix B).

As observed from Table 4.1, for each sensing radius case the parameters estimation

accuracy of the proposed algorithm seems to be insensitive to changes in sensor nodes

density, node failure probability, and Rx/Tx failure probability. This was also confirmed

by comparing pairwise the means of the error densities using Student's t-test. For all

cases the difference of the means was found to be insignificant at the 0.05 significance

level. Moreover, the results indicate that the accuracy of the proposed algorithm slightly

decreases when the sensing radius Rd increases. This can be explained if we consider

that an increase of the sensing radius implies increasing the uncertainty associated with

the front line's location at the time of the hazard's detection. This in turn implies increasing

the uncertainty regarding the estimatedmean speed values uih, h ∈ {j, k} used to estimate

the local front's orientation and speed (see Section 3.3 for details).
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Experiment 1
Sensing Radius (Rd = 0.1m)

P (f)
75 nodes 100 nodes 125 nodes

Orient. Speed% Orient. Speed% Orient. Speed%
0 4.69/10.78 13.04/13.2 4.22/10.31 12.43/13.9 3.97/9.89 12.15/13.19
0.1 4.91/10.32 13.29/12.91 4.31/10.17 12.91/14.11 4.04 /10.03 13.01/13.41
0.2 5.01/10.2 12.97/13.13 4.63/10.82 13.22/13.67 3.86/10.41 12.88/13.01
0.3 5.23/10.97 13.53/13.66 5.08/10.74 13.09/14.42 4.24/10.19 12.92/13.38

Sensing Radius (Rd = 15m)
0 5.21/11.12 13.92/14.25 4.67/10.3 13.54/13.66 4.59/10.25 13.59/13.97
0.1 4.99/10.83 14.07/14.88 4.54/10.88 14.81/13.31 4.63/10.16 13.82/14.24
0.2 5.07/10.74 13.96/14.91 5.19/10.46 13.27/14.82 5.11/10.72 13.64/14.4
0.3 4.86/10.89 13.71/14.7 5.03/10.97 14.35/14.69 4.97/10.58 14.01/14.82

Table 4.1: Experiment 1 results summary: The Median/Inter Quartile Range of the orien-
tation error (in degrees) and percent speed error under different nodes density, probability
of node failure, and sensing radii conditions. For each entry the reported statistics were
computed based on 200 simulation runs (50 WSN random deployments x the 4 Rx/Tx
failure probability cases considered).

In Figure 4.8(a) we see that the total number of model updates is reduced as the nodes

failure and Rx/Tx failure probabilities increase. A higher node failure probability implies

a reduction of the operational sensor nodes participating in the distributed algorithm (in

the fixed deployment area) i.e. a reduction of the effective network's density. This in turn

implies fewer neighbors within a sensor's communication range, thus increasing the diffi-

culty for a Master Candidate to satisfy the necessary conditions to become a Master (see

Section 4.2.1 - Forming a Local Cluster). Moreover, increasing the Rx/Tx communication

failure probability implies higher difficulty for the sensor nodes to collaborate with their

neighbors in order to update the parameters of a local front model. Another interesting

observation in Figure 4.8(a) is that the number of updates is affected more by increasing

the node failure probability rather than the Rx/Tx failure probability. This can be explained

if we consider that: a) in contrast to node failures (considered as permanent) the Rx/Tx

failures do not necessarily imply a reduction of the effective network's density, since nodes

which may fail to receive or transmit some of the messages remain functional. b) The sin-

gle message retransmission policy used in this experiment increases the probability for

successful communications between the nodes, which in turn increases the probability for

a local model update to eventually succeed.
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Figure 4.8: Experiment 1: Total number of model updates, mean number of messages
and Rx/Tx energy consumed per model update, for each node failure and Rx/Tx failure
probability considered (density = 100 sensor nodes per km2).
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Figures 4.8(b) and 4.8(c) show (for the 100 sensor nodes per 1km2 density case) the

mean number of Rx and Tx messages exchanged in the network per model update. From

the presented line plots when the Rx/Tx failure probability increases in the range [0, 0.1] we

observe a significant increase of messages per model update for each node failure prob-

ability curve. This can be explained if we consider that Rx/Tx failures trigger message

retransmission which increases the number of messages exchanged over the network.

Another interesting observation is that this trend becomes less profound as the nodes fail-

ure probability increases. This behavior can be explained if we consider that: a) increasing

node failures imply an effective network density reduction and therefore a reduction of the

mean number of neighbors within a node's communication range and thus a reduction

of the mean number of the Rx and Tx messages exchanged in the neighborhoods. b)

When the node failure probability is non-zero, retransmission is triggered even when the

Rx/Tx failures probability is zero, since the failing nodes are not able to send the required

acknowledgments. These triggered retransmissions increase in turn the mean number of

the Rx and Tx message exchanged over the network. Thus, the already increased num-

ber of messages for the non-zero node failure probability cases explains why we observe

a smoother increment of the mean number of messages when the Rx/Tx failure probability

increases in the range [0, 0.1].

Figures 4.8(b) and 4.8(c) also suggest that for zero Rx/Tx failure probability the mean

number of Rx and Tx messages per model update for all the non-zero nodes failure prob-

ability cases is almost equal (Rx) to or larger (Tx) than the corresponding Rx and Tx mean

number of messages of the zero node failure probability case. At first glance this be-

havior may seem counter-intuitive since for the non-zero nodes failure probability cases

the effective density of the network is reduced and therefore we would expect the mean

number of messages exchanged per model update to be smaller. However, this is not

the case since the potential retransmission triggered if node failure probability is non-zero

increases the number of messages exchanged over the network.

Moreover, in Figures 4.8(b) and 4.8(c) we also observe that as the Rx/Tx failure prob-

ability increases in the range [0.1, 0.3] the mean number of the Rx and Tx messages per

model update remains almost unchanged for node failure probabilities 0 and 0.1 and in-

creases only slightly for larger node failure probabilities with values 0.2 and 0.3. To explain
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this behavior we have to consider the following four mechanisms which affect the number

of messages exchanged per model update: a) The increase of node and Rx/Tx failure

probabilities increases the mean number of messages exchanged over the network due

to the triggered retransmissions. b) The increase of the node and Rx/Tx failure probabil-

ities increases the probability of ``zombie'' clusters formation (see Section 4.2.1 - Master

Declaration), i.e. clusters in which the sensor node malfunctions and Rx/Tx failures render

the Master node incapable to update its model parameters. The messages exchanged

(wasted) within ``zombie'' clusters combined with the smaller number of model updates

increase the mean number of messages required per model update. c) On the other hand,

the increase of the nodes failure probability reduces the effective network's density and

therefore the mean number of the Rx and Tx messages exchanged over the network. d)

Finally, the increase of the Rx/Tx failure probability reduces the probability for a sensor

node to receive or transmit successfully a message, which in turns reduces the total num-

ber of Rx and Tx messages. The line plots in Figures 4.8(b) and 4.8(c) suggest that for

node failure probability 0 and 0.1 the increse of the mean number of messages, caused

due to mechanisms (a) and (b) is counterbalanced by the message traffic reduction mech-

anisms (c) and (d) and therefore no significant changes are observed as the Rx/Tx failure

probability increases in the range [0.1,0.3]. However, for higher node failure probabilities,

i.e. 0.2 and 0.3, the more frequent formation of ``zombie'' clusters combined with the more

frequent triggering of retransmissions results to a small increase of the mean number of

messages per model update in the same Rx/Tx probability of failure range.

Figures 4.8(d) and 4.8(e) show the mean energy consumed for Rx and Tx commu-

nications per model update. As expected, due to the direct relation between the Rx/Tx

messages (Bytes) and Rx/Tx communication energy, the energy andmessages per model

update line plots follow similar trends. However, as the Rx/Tx communication failure prob-

ability increases we observe a small increase of the gradient of the energy line plots as

compared to the corresponding line plots for the messages. This behavior can be ex-

plained if we consider that an increase of the Rx/Tx failure probability makes it more dif-

ficult for a Master node to find a qualified new Master and eventually forces it to broad-

cast a message to its Slaves so that they propagate its updated model to their neighbors

(see Section 4.2.3 - Model Propagation). The message broadcasted by the Slave nodes
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Experiment 1
Average Percent Change Compared to 100 Nodes Density Scenario
Nodes Total Mean Mean Mean Mean
Density Updates Rx Mess. Tx Mess. Rx Energ. Tx Energ.

75 -37.4/2.9 -15.8/3.7 -8.9/5.1 -15.2/3.9 -5.8/4.5
125 +31.9/5.3 +18.3/4.9 +12.6/4.7 +17.3/5.4 +7.6 /4.1

Table 4.2: The average percent change (increase(+), decrease(-))/stdvs of the a) total
number of model updates, b) mean number of Rx and Tx messages exchanged per up-
date, and c) mean Rx and Tx energy consumed per update, for the 75 and 125 nodes (per
km2) density scenarios relatively to the 100 nodes density scenario.

(PPM(UMi)) carries the information of theMaster's updatedmodel and therefore requires

the transmission of many bytes which increases the mean Rx and Tx energy consumption.

Figures 4.9 and 4.10 show, for the 75 and 125 sensor nodes per km2 density scenarios

respectively, the line plots for the: (i) total number of updates, (ii) mean number of Rx and

Tx messages per model update, and (iii) the mean energy consumed for Rx and Tx per

model update for all the considered nodes and Rx/Tx failure probability cases. The line

plots follow similar trends with these of the 100 sensor nodes density scenario and are

therefore subject to similar interpretations.

In Table 4.2 we summarize the differences (average percent change) relatively to the

100 nodes per km2 density scenarios. The provided statistics were computed by consid-

ering as sample points all local front model updates from all node density ({75, 100, 125})

and failure probability cases ({0, 0.1, 0.2, 0.3}). We observe that as the network density in-

creases (decreases) the total number of model updates also increases (decreases). This

is as expected since a higher (lower) nodes density implies more (fewer) neighbors within

a sensor's communication range, making it more easy (difficult) for a Master Candidate

node to satisfy the necessary conditions to become a Master (see Section 4.2.1 - Forming

a Local Cluster). Finally, the increased (decreased) number of neighbors also explains

why the mean number of Rx and Tx messages exchanged and energy consumed per

model update increases (decreases) with the increase (decrease) of the network density.

Dimitrios V. Manatakis 99



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

Figure 4.9: Experiment 1: Total number of updates, mean number of messages and Rx/Tx
energy consumed per model update, for each node and Rx/Tx failure probability case
considered (density = 75 sensor nodes per km2).
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Figure 4.10: Experiment 1: Total number of updates, mean number of messages and
Rx/Tx energy consumed per model update, for each node and Rx/Tx failure probability
case considered (density = 125 sensor nodes per km2).

Dimitrios V. Manatakis 101



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

Evaluation under Sensing Models Mismatch:

Below we provide additional results that demonstrate the efficiency and robustness of the

proposed in-network algorithm in estimating with accuracy the evolution parameters of an

evolving front line under different sensing model mismatch assumptions. As a sensing

model mismatch we consider the situation where the ``actual'' sensing distance is drawn

from a different distribution than the one assumed by the sensor nodes.

In all simulation scenarios of Experiment 1 we have assumed that the ``actual'' sensing

behavior matches the one assumed by the sensor nodes i.e. a Gaussian model with

parameters µd and σd calculated using the equations in (4.1) below with Rd = 15m and

a = 1 (see Section 3.2),

µd =
αRd

2
, σd =

Rd

3
(1− α

2
). (4.1)

For the evaluation of the proposed algorithm under sensing model mismatch condi-

tions, we repeated the simulation scenarios of Experiment 1, but this time the sensing

distance was drawn from either: (i) A Gaussian distribution with parameters µd and σd

derived using the equations in (4.1) when Rd = 15m and a = 0. By setting the parameter

a = 0 we essentially relax the assumption that the node may malfunction as the hazard

approaches (see Chapter 3). (ii) An exponential distribution (see equation (4.2)) below

with parameters {Rd = 15m,Rs = 0m,λ = 0.35}.

p(x) =

λe−λ(x−Rs) x ≥ Rs

0 x < Rs

(4.2)

The plots of the three different models used to draw the detection distance are shown in

Figure 4.11. All models assume that the probability for a sensor node to detect the evolv-

ing front line at distance larger than Rd = 15m is negligible. Moreover, a sensor node is

assumed to be located at the origin.

Table 4.3 provides for each sensor node density value (75, 100, 125), node failure

probability and Rx/Tx failure probability scenario (0, 0.1, 0.2, 0.3) considered, the param-
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Figure 4.11: Scenario 1: The red curve corresponds to the shifted Gaussian sensing
model assumed by the sensor nodes. The black (blue) curve corresponds to the Gaussian
(exponential) monotonic sensing model used to draw the detection distance under the
model mismatch conditions considered (see text for details).
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Experiment 1: Parameter estimates under Sensing Model Match and Mismatch Conditions

P (f)
75 nodes 100 nodes 125 nodes

Orient. Speed% Orient. Speed% Orient. Speed%
Sensing Model Match

0 5.21/11.12 13.92/14.25 4.67/10.3 13.54/13.66 4.59/10.25 13.59/13.97
0.1 4.99/10.83 14.07/14.88 4.54/10.88 14.81/13.31 4.63/10.16 13.82/14.24
0.2 5.07/10.74 13.96/14.91 5.19/10.46 13.27/14.82 5.11/10.72 13.64/14.4
0.3 4.86/10.89 13.71/14.7 5.03/10.97 14.35/14.69 4.97/10.58 14.01/14.82

Gaussian Sensing Model (a = 0) Mismatch
0 5.1/10.28 14.12/13.4 4.85/10.07 13.72/12.97 4.69/9.72 13.22/13.29
0.1 5.03/10.33 14.31/13.69 4.68/10.24 14.22/13.19 4.72/9.79 13.94/13.86
0.2 5.21/10.25 14.37/13.92 5.24/10.32 14.39/13.39 4.99/10.06 14.16/13.73
0.3 5.28/10.42 14.26/13.81 5.21/10.36 14.47/13.66 5.08/10.03 14.37/13.95

Exponential Sensing Model Mismatch
0 5.18/10.01 14.28/13.07 4.96/9.76 14.06/12.82 4.83/9.31 13.97/12.97
0.1 4.97/9.93 14.6/13.52 4.82/10.06 14.34/13.03 4.77/9.68 14.36/13.22
0.2 5.29/10.2 14.44/13.7 5.27/10.09 14.51/13.28 5.05/9.59 14.21/13.19
0.3 5.36/10.14 14.71/13.59 5.22/9.98 14.4/13.15 5.14/9.85 14.53/13.61

Table 4.3: Summary of Estimation Results under Sensing Model Match and Mismatch
Conditions: The Median/Inter Quartile Range of the orientation (in degrees) and percent
speed errors of the proposed algorithm for different nodes density, probability of node
failure and sensing models assumptions. For each table entry the statistics were com-
puted based on 200 simulation runs (50 WSN random deployments x the 4 Rx/Tx failure
probability cases considered). The sensing model match case and two sensing model
mismatch cases have been considered.

eter estimation error statistics of the proposed algorithm under sensing model match and

mismatch conditions. We observe that the median orientation error (in degrees) and the

median percent speed error increase only slightly under sensing model mismatch condi-

tions. Specifically, the maximum increase of the median orientation and median percent

speed errors are: a) for the Gaussian mismatch case: 0.42o and 1.12% and, b) for the

exponential mismatch case: 0.5o and 1.24% respectively.

The slightly larger median errors observed for the mismatch cases are justified if we

consider that the Gaussian centered at the origin and the exponential models generate

with high probability detection events closer to the sensors' locations (the origin in Figure

4.11) when the sensor nodes assume for the calculation of the orientation and speed pa-

rameters (see equations (3.5) and (3.6) in Section 3.3) that detection has a higher prob-

ability to occur at the distance indicated by the mean of their shifted Gaussian sensing

model (Rd

2
= 7.5m in our case see red curve in Figure 4.11). However, despite the fact
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that the difference between the ``actual'' and the "assumed" expected detection distance

is considerable for the sensing models mismatch cases, the increase of the estimation

errors is small. Finally, the slightly larger estimation errors observed for the exponen-

tial mismatch case, are justified if we consider that the smaller variance of the exponential

sensing model (blue curve in Figure 4.11) increases the probability of generating detection

events closer to the sensors' locations (and further from the expected detection distance

assumed by the sensors). Overall these results indicate that our algorithm is robust to

sensing model mismatch conditions, a fact that further supports its applicability in real

hazard tracking applications where sensing behavior variations are expected for different

types of hazards and sensors.

4.4.2 Experiment 2: Complex diffusive hazardswith irregular shapes

This experiment was designed to evaluate the ability of the proposed distributed algo-

rithm to estimate accurately the evolution parameters of more complex and more realistic

hazardous phenomena, having irregular shapes, large speed variations, etc. To generate

hazards with such realistic behavior, we employed FLogA [87], a web-based interactive

software tool (developed in our group) which allows us to draw a forest area anywhere in

Europe using Google Earth [90], insert fire ignition points, define wind condition scenarios

and then simulate and geo-animate the behavior of the evolving fire line under different

conditions.

Setup and Visualization of the Wildfire Evolution Scenarios:

FLogA (Fire Logic Animator) is a web-based software tool which allows us to draw a forest

area on Google Earth anywhere in Europe, insert interactively fire ignition points, simulate

and animate the behavior of the evolving fire line under different conditions (see reference

[87] in the paper). Using FLogA we defined a square forest area (of 1km2) at Hymettus

mountain in Attica Greece and simulated 5 different wildfire scenarios in the same area.

Forest's topographic parameters (slope, aspect, fuel model, fuel moisture) were the same

for all the scenarios. However differences in: a) the prevailing wind conditions (speed and

direction) and b) the number and the location(s) of the fire ignition point(s) were responsible
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for the generation of very different wildfire evolution patterns. Below we describe the set

up of the simulated wildfire scenarios.

Similarly to Experiment 1, for each wildfire evolution scenario we tested and evaluated

the behavior of the proposed algorithm under different: a) sensor node densities (75, 100,

125 nodes per 1km2), b) sensor node arrangements (10 random deployments per wildfire

scenario), c) sensor node failure andRx/Tx failure probabilities with values {0, 0.1, 0.2, 0.3},

and d) small and large sensing range radii, {0.1m, 15m}. The detailed setup of the wildfire

simulation scenarios is provided below.

Using FLogA we defined a square forest area (of 1km2) at Hymettus mountain in At-

tica Greece and simulated 5 different wildfire scenarios in the same area. Figures 4.12

- 4.16 show for each one of the five wildfire evolution scenarios simulated with FLogA,

four snapshots that help us visualize on Google Earth the ignition point(s) as well as the

corresponding part(s) of the forest area that has (have) been affected by the fire (area

covered with red color) 45, 90 and 135 minutes after the ignition respectively. The cyan

``stars'' correspond to randomly deployed sensor nodes within the square forest area of

1km2.

Scenario 1: In this scenario the fire was initiated from a single ignition point source which

was placed at the bottom right corner of the considered 1km2 squared forest area. The

wind speed and direction parameters were fixed within the forest area and their values

were set to 2m/s (light breeze) and 135o (with respect to the x axis) respectively (see Fig-

ure 4.12).

Scenario 2: Similar to scenario 1 and in this case the fire was initiated from a single ig-

nition point source which was placed outside the bottom right corner of the considered

1km2 squared forest area. The wind speed and direction parameters were fixed within the

forest area and their values were set to 9m/s (fresh breeze) and 135o (with respect to the

x axis) respectively (see Figure 4.13).

Scenario 3: In this scenario the fire was initiated using two ignition points which were

placed near to the top left corner of the forest's square area. The wind speed and direc-

tion parameters were fixed within the forest area and their values were set to 2m/s (light

breeze) and −45o (with respect to the x axis) respectively (see Figure 4.14).
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Scenario 4: In this scenario the fire was initiated using two ignition points which were

placed outside the left side of the considered 1km2 squared forest area. The wind speed

and direction parameters were fixed within the forest area and their values were set to

9m/s (fresh breeze) and 0o (with respect to the x axis) respectively (see Figure 4.15).

Scenario 5: In this scenario we uses as ignition source a burn stripe (multiple ignition

points that form a line) located at the top left corner of the considered 1km2 square forest

area. The wind speed and direction parameters were fixed within the forest area and their

values were set to 5m/s (fresh breeze) and −45o (with respect to the x axis) respectively

(see Figure (see Figure 4.16).
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Figure 4.12: Wildfire Scenario 1: Snapshot (a) shows the wildfire's ignition point, located at
the bottom right corner and a random deployment of sensor nodes (cyan stars) within the
1km2 square forest area. The yellow arrow indicates prevailing wind direction. Snapshots
(b), (c) and (d) show the corresponding parts of the forest area that have been affected by
the fire (area in red color) 45, 90 and 135 minutes after the ignition respectively.
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Figure 4.13: Wildfire Scenario 2: Snapshot (a) shows the wildfire's ignition point, located
at the bottom right corner outside the 1km2 forest area and a random deployment of sen-
sor nodes (cyan stars) within the 1km2 square forest area. The yellow arrow indicates
prevailing wind direction. Snapshots (b), (c) and (d) show the corresponding parts of the
forest area that have been affected by the fire (area in red color) 45, 90 and 135 minutes
after the ignition respectively.
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Figure 4.14: Wildfire Scenario 3: Snapshot (a) show the wildfire's ignition points, located
near to the top left corner and a random deployment of sensor nodes (cyan stars) within the
1km2 square forest area. The yellow arrow indicates prevailing wind direction. Snapshots
(b), (c) and (d) show the corresponding parts of the forest area that have been affected by
the fire (area in red color) 45, 90 and 135 minutes after the ignition respectively.
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Figure 4.15: Wildfire Scenario 4: Snapshot (a) shows the wildfire's ignition points, located
outside the left side of the square forest area respectively and a random deployment of
sensor nodes (cyan stars) within the 1km2 square forest area. The yellow arrow indicates
prevailing wind direction. Snapshots (b), (c) and (d) show the corresponding parts of the
forest area that have been affected by the fire (area in red color) 45, 90 and 135 minutes
after the ignition respectively.
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Figure 4.16: Wildfire Scenario 5: Snapshot (a) shows the wildfire's multiple ignition points
(burn stripe), on the top left corner of the square forest area and a random deployment of
sensor nodes (cyan stars) within the 1km2 square forest area. Snapshots (b), (c) and (d)
shows the corresponding parts of the forest area that have been affected by the fire (area
in red color) 45, 90 and 135 minutes after the ignition respectively.
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Experiment 2
Sensing Radius (Rd = 0.1m)

P (f)
75 nodes 100 nodes 125 nodes

Orient. Speed Orient. Speed Orient. Speed
0 7.37/12.31 17.01/16.1 6.44/12.09 16.92/16.22 6.13/11.92 16.51/15.94
0.1 7.22/12.49 17.22/16.54 6.82/12.31 17.17/16.36 6.21 /12.03 16.23/16.01
0.2 7.81/12.37 17.46/16.8 7.17/11.93 17.4/16.81 7.02/11.87 17.04/16.42
0.3 7.64/12.23 18.01/16.92 7.29/12.2 17.32/16.6 6.75/12.17 17.13/16.77

Sensing Radius (Rd = 15m)
0 7.32/12.14 18.14/16.51 6.73/11.85 17.96/16.45 7.64/11.86 17.45/16.07
0.1 7.14/12.2 17.53/16.27 7.22/12.61 17.82/16.91 7.29/11.43 17.93/15.89
0.2 7.51/12.17 18.41/17.11 6.85/11.91 18.26/17.04 6.92/12.07 18.11/16.48
0.3 8.13/12.48 18.64/17.42 7.76/12.43 17.95/17.21 7.5/11.91 17.76/15.99

Table 4.4: Experiment 2 results summary: The Median and Inter Quartile Range of the
orientation (in degrees) and speed errors under different sensor density, probability of node
failure and sensing range radii assumptions. For each entry the statistics were computed
based on 200 simulation runs (10 WSN random sensor node deployments for each of the
5 wildfire evolution scenarios x the 4 Rx/Tx failure probability cases considered).

Table 4.4, similarly to Table 4.1, provides the median and IQR of the orientation (in

degrees) and percent speed estimation errors respectively computed over all simulated

scenarios, for sensing radii cases 0.1m and 15m.

As for Experiment 1, the results indicate that the parameters estimation accuracy of

the proposed algorithm is robust to changes in sensor nodes density, sensor node failures

and Rx/Tx communication failures. This was also confirmed by comparing pairwise the

means of the error densities using Student's t-test. For all cases the difference of the

means was found to be insignificant at the 0.05 significance level. Finally, the presented

results indicate that the accuracy of the proposed algorithm slightly decreases when the

sensing radius increases.

Figures 4.17, 4.18 and 4.19 show the line plots for all the sensor node densities (75,

100 ,125 nodes per km2) of Experiment 2. As observed for all the experiments and for each

density scenario the provided line plots follow similar trends with the corresponding line

plots of Figures 4.8, 4.9 and 4.10 respectively and therefore the interpretation of the results

is similar. The trends and therefore the interpretation of line plots for the total number of

updates, the mean number of Rx/Tx messages and the mean energies consumed per

model update remain similar with those of Experiment 1 (Figure 4.8).
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Figure 4.17: Experiment 2: Total number of updates, mean number of messages and
Rx/Tx energy consumed per model update, for each node and Rx/Tx failure probability
case considered (density = 75 sensor nodes per km2).
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Figure 4.18: Experiment 2: Total number of updates, mean number of messages and
Rx/Tx energy consumed per model update, for each node and Rx/Tx failure probability
case considered (density = 100 sensor nodes per km2).
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Figure 4.19: Experiment 2: Total number of updates, mean number of messages and
Rx/Tx energy consumed per model update, for each node and Rx/Tx failure probability
case considered (density = 125 sensor nodes per km2).
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Comparing corresponding results (corresponding table entries) we observe that the

mean speed and direction errors are on average larger for Experiment 2 (relatively to

Experiment 1) but only by 4.26% and 2.74o degrees respectively (with standard deviations

0.46% and 0.42o degrees). The slightly larger estimation errors observed for Experiment 2

are due to the more irregular front shapes and the more dynamic evolution of the hazard

front's characteristics.

It is well recognized that the "captain wind" is the most critical factor affecting a wild-

fire's behavior. As we discuss, two of the five wildfire scenarios were simulated using

light winds (speed 2m/s), two using strong winds (9m/s) and one using intermediate wind

conditions (5m/s). In order to investigate how wind speed affects the parameters estima-

tion accuracy we compared the estimation errors for light and the strong wind cases. For

strong wind scenarios the mean speed and direction estimation error increases on av-

erage by 3.92% (standard deviation 0.69%) and 1.91o degrees (standard deviation 0.53o)

respectively compared to the corresponding errors obtained for light wind speed scenar-

ios. This modest error increase is justified since strong winds result to larger front line

speed variations (acceleration/decelerations) which are more difficult to track.

In the wildfire scenarios described above the wind speed and direction values were

constant within the forest area. In order to investigate how spatial wind speed and direc-

tion variations may affect the estimation accuracy of the proposed algorithm we repeated

the wildfire scenarios simulation of Experiment 2 using spatially varying wind fields. To

generate realistic wind speed and direction perturbations we used WindNinja [91], which

generates spatially varying wind parameters bymodulating a reference value based on the

terrain's morphology. The analysis revealed (results not shown) that when using spatially

varying wind parameters the speed and direction estimation errors increased on average

by 1.41% and 0.88o degrees (with standard deviations 0.61% and 0.38o) respectively. This

modest increase is justified if we consider that wind speed and direction variations result

to more irregular wildfire evolution patterns and larger front line speed variations which

are more difficult to track.
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4.4.3 Comparison to PRECO sheme

As mentioned in the Introduction, most in-network processing schemes reported in the

literature try to delineate dynamically the boundaries of an evolving continuous object us-

ing a dense array of deployed sensor nodes [22--40]. These schemes do not attempt

to estimate the local front line's evolution characteristics or predict their spatiotemporal

evolution. One notable exception is the work in [37, 38] where the authors introduced a

simple way to estimate, as we do, the speed and direction of the local front. They use

them to implement a ``wake up'' mechanism to decide which ``sleeping'' nodes to activate

selectively for near term front tracking in order to reduce the network's overall energy con-

sumption. However, PRECO (PREdictive Continuous Object tracking scheme) requires

global sensor nodes synchronization [32] rendering it impractical even for medium size

WSNs. Nevertheless, for completeness purposes we compared it to our method under

the scenarios of Experiment 1, Experiment 2, and Experiment 2 with spatially varying wind

parameters.

Tables 4.5, 4.6, 4.7 provide for each sensor nodes density case (75, 100, 125 nodes

per km2) and node failure probability case (0, 0.1, 0.2, 0.3) of Experiment 1, Experiment

2 and Experiment 2 with spatially varying wind speed parameters (using WindNinja) re-

spectively, the orientation error (in degrees) and the precent speed error when using the

proposed in-network algorithm and the PRECO algorithm. For each scenario the provided

statistics were computed by considering as sample points all local front updates for all the

50 simulation runs. A scenario corresponds to a set of simulation runs with a specific num-

ber of sensor nodes deployed in the area (e.g. 100) and a fixed nodes failure probability

(e.g. 0.1).

Ourmethod is shown to outperform considerably (for all sensing radii scenarios) PRECO,

resulting to smaller estimation errors. When using very high node densities (thousand of

sensor nodes per km2) PRECO achieves reasonable accuracy, however it fails to esti-

mate correctly the spatiotemporal characteristics of the continuous object in WSNs with

practical sensor densities. This behavior can be explained if we consider the following:

PRECO considers as a local front (boundary line), a line segment that connects two

adjacent special Boundary Nodes (BN), called Master Boundary Nodes (MBN). It uses the
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Sensing Radius (Rd = 0.1m)

P (f)
75 nodes 100 nodes 125 nodes

Orient. Speed Orient. Speed Orient. Speed
0 4.46/11.01 12.77/13.09 4.07/10.22 12.58/13.86 4.26/10.01 12.07/13.1
0.1 4.84/10.41 13.11/13.13 4.19/10.31 12.74/13.73 4.07 /10.26 12.82/12.97
0.2 4.93/10.27 13.07/12.84 4.72/10.59 12.96/13.41 4.19/10.16 12.7/12.83
0.3 5.03/11.02 13.24/13.21 4.96/10.47 12.89/13.83 4.16/10.04 12.76/13.03

Sensing Radius (Rd = 15m)
0 4.87/10.71 13.36/13.89 4.51/10.42 13.17/13.31 4.44/10.62 13.33/13.75
0.1 4.69/10.39 13.71/14.33 4.32/10.61 13.75/13.76 4.76/10.55 13.92/13.92
0.2 5.03/11.09 13.64/14.03 4.9/11.13 13.43/13.91 4.88/10.47 13.29/14.18
0.3 5.13/10.97 13.82/14.06 5.11/10.77 13.64/13.88 4.93/10.32 13.61/14.07

PRECO Algorithm
0 28.44/23.31 41.27/90.83 27.09/21.73 37.91/90.1 25.73/19.15 36.13/86.42
0.1 28.86/22.66 40.76/91.28 27.56/23.04 39.18/88.47 26.84/20.64 37.18/84.21
0.2 29.32/23.11 43.17/94.21 28.16/23.72 41.03/89.9 26.67/19.72 38.89/87.5
0.3 31.04/23.89 45.82/97.64 28.81/24.18 42.17/92.16 28.46/21.18 38.46/90.63

Table 4.5: Summary of Experiment 1 Results: The Median/Inter Quartile Range of the
orientation (in degrees) and percent speed errors of the proposed and the PRECOmethod
( [37, 38]) under different density, probability of node failure conditions and sensing radii
assumptions. For each condition the statistics were computed based on 50 simulation
runs (50 WSN random deployments).

Sensing Radius (Rd = 0.1m)

P (f)
75 nodes 100 nodes 125 nodes

Orient. Speed Orient. Speed Orient. Speed
0 6.94/11.97 16.83/15.76 6.21/11.71 16.48/15.82 6.26/11.79 16.16/15.62
0.1 7.19/12.13 16.68/15.91 6.99/12.45 16.73/16.21 6.32 /11.7 16.42/16.44
0.2 7.35/12.09 17.27/16.62 6.61/11.79 16.97/15.99 6.7/11.62 16.71/15.97
0.3 7.33/12.07 17.14/16.48 7.16/12.36 17.13/16.09 7.09/12.13 16.94/16.49

Sensing Radius (Rd = 15m)
0 7.18/12.17 17.25/17.05 6.79/12.26 16.87/16.9 6.68/11.73 17.22/15.78
0.1 7.24/12.36 17.39/16.83 6.91/11.85 17.27/17.16 6.93/11.52 17.51/16.27
0.2 7.43/11.98 17.66/17.4 6.74/12.02 17.81/16.73 6.85/11.9 16.99/16.14
0.3 7.86/12.09 17.86/16.68 7.47/12.06 17.72/17.58 7.27/12.14 17.18/16.03

PRECO Algorithm
0 28.09/24.62 42.55/93.41 27.36/23.01 39.07/93.25 26.61/21.77 37.24/89.48
0.1 29.17./23.79 42.78/95.06 27.09/22.9 41.21/92.82 26.82/20.83 39.19/91.8
0.2 31.7/24.18 44.08/95.13 28.61/23.11 41.56/94.1 27.27/21.35 38.36/93.72
0.3 32.41/24.62 44.81/96.47 29.82/23.82 42.99/93.74 28.02/21.47 39.9/92.94

Table 4.6: Summary of Experiment 2 Results: The Median and Inter Quartile Range of the
orientation (in degrees) and speed errors of the proposed and the PRECO method ( [37,
38]) under different sensor density, probability of node failure conditions and sensing radii
assumptions. For each condition the statistics are computed based on 50 simulation runs
(10 random sensor node deployments for each one of the 5 wildfire evolution scenarios).
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Sensing Radius (Rd = 0.1m)

P (f)
75 nodes 100 nodes 125 nodes

Orient. Speed Orient. Speed Orient. Speed
0 8.14/12.79 18.92/17.03 7.63/12.22 17.98/16.93 7.01/12.35 17.32/16.81
0.1 8.23/12.61 19.09/17.95 7.89/12.48 18.25/17.17 7.53 /12.19 17.74/17.65
0.2 8.11/12.32 19.41/17.5 8.03/12.36 18.66/17.35 7.92/12.4 17.9/17.44
0.3 8.32/12.56 19.26/17.86 8.31/12.82 19.09/17.91 7.74/12.66 18.23/17.59

Sensing Radius (Rd = 15m)
0 8.24/12.57 19.55/17.14 7.85/12.35 18.21/17.09 7.24/12.62 17.2/17.02
0.1 8.63/12.95 19.07/17.28 8.01/12.49 18.38/17.86 7.71/12.45 17.69/17.26
0.2 8.4/13.11 19.33/17.61 8.23/12.76 18.89/18.18 7.6/12.79 18.23/17.18
0.3 8.63/13.26 19.74/17.36 8.47/13.01 19.27/18.11 8.22/12.55 18.59/17.83

PRECO Algorithm
0 29.55/23.31 43.7/94.22 27.02/22.52 41.29/93.31 26.19/20.92 39.41/93.64
0.1 30.71./23.57 44.94/94.57 28.16/21.97 42.18/94.17 26.512/21.2 39.78/93.26
0.2 30.96/24.46 45.61/95.89 28.18/22.86 42.86/94.08 27.13/22.11 40.37/93.81
0.3 31.16/24.27 45.89/95.71 29.21/23.69 43.26/95.45 27.97/21.93 41.41/94.52

Table 4.7: Summary of Experiment 2 Results using space varying wind parameters: The
Median and Inter Quartile Range of the orientation (in degrees) and speed errors of the
proposed and the PRECO method ( [37,38]) under different sensor density, probability of
node failure conditions and sensing radii assumptions. For each condition the statistics
are computed based on 50 simulation runs (10 random sensor node deployments for each
one of the 5 wildfire evolution scenarios).
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location coordinates of the corresponding fixed MBNs to calculate the orientation parame-

ter of a local front. In contrast, our method calculates the orientation of a local front based

on the coordinates of two points (K1 and K2) estimated using two local speed observa-

tions of the diffusive hazard's front line (see Section 3.4.2). Our orientation estimation

approach, which is independent from the sensor node locations, explains why this param-

eter's estimation accuracy is almost insensitive to WSN's density variations (see Section

4.4.1 paragraph 3). Moreover, the small number of MBNs present at low and realistic

WSN density scenarios leads to a coarser piece-wise linear approximation of the diffusive

hazard's boundary, which in turn explains the larger orientation estimation errors when

using PRECO.

Finally, to estimate the evolution speed of a boundary line, PRECO uses the locations

and time of detection of the MBNs and of their neighbors. As indicated by PRECO's speed

equations (see formulas on page 4 in [37]), the speed's estimation accuracy depends

on the number of MBN neighbors and their positions relatively to the continuous object

front's evolution direction. In general, it is expected that as the number of MBN neighbors

increases the accuracy of the local front speed estimates will also increase. It is important

to mention that, in contrast to our algorithm PRECO, requires global synchronisation of

the nodes which is difficult to achieve even in small scale WSNs.

We presented a distributed WSN algorithm for estimating accurately the spatiotempo-

ral evolution parameters (orientation, direction and speed) of the local front of a diffusive

hazard. The algorithm updates the local front model parameters and propagates them

to sensor nodes situated in the direction of the hazard's propagation in a fully decentral-

ized manner. Extensive simulation results show that the proposed scheme can estimate

accurately the time-varying local parameters of different types of irregular fronts, while

using WSNs of realistic density. Moreover, its estimation accuracy is robust to changes

in WSN density, sensor node failures and communication link failures. Model parameters

are updated based on closed form algebraic expressions making the presented approach

practical and appealing for real-world hazard tracking applications. Relatively to other pub-

lished schemes, our in-network algorithm exhibits the following unique characteristics: It

works with low and realistic density WSNs, it is robust to sensor node and communica-

tion link failures which are certainly expected in harsh environments, and does not require

Dimitrios V. Manatakis 121



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

any sensor node clocks synchronization, which is very difficult to achieve anyway even in

small scale WSNs operating in non-harsh environments. In next Chapter we will present

emulation results that further support our claim that the proposed algorithm is suitable for

large-scale WSN deployments.
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Chapter 5

Assesing Requirements for Large Scale

implementation using

Simulation-Driven WSN Emulation

In this Chapter we present a novel method for emulating the operation of collaborative al-

gorithms in large-scale WSNs by re-using a small number of available real sensor nodes.

We demonstrate the potential of the introduced simulation-driven WSN emulation ap-

proach by using it to estimate how communication and energy costs scale with the net-

work�s size when implementing our collaborative WSN algorithm (presented in Chapter

4) for tracking the spatiotemporal evolution of a continuous object.

5.1 Motivation

For all WSN schemes, computer simulations can be used to assess the expectedWSN be-

havior as a function of its density. However simulations fail to provide: a) accurate energy

consumption estimates and how they scale with the size of the network, and b) information

about the processing and memory requirements of the distributed algorithm's implemen-

tation. Since having such estimates is very important before attempting to deploy a large-

scale WSN for environmental monitoring application the real question becomes, how can

we meet this requirement without having to deploy a large-scale WSN?
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To address this question we introduce a method which allows us to emulate the opera-

tion of a large-scale WSN deployment for environmental applications by reutilizing only a

small number of real sensor nodes. The key idea of the proposed method is to re-allocate

(virtually reposition) the available sensor nodes so that they implement WSN nodes lo-

cated close to the hazard�s front line as it evolves. Sensor nodes re-allocation has been

used before in [92] to evaluate the performance of geographical routing protocols in large

scale WSN. The scheme used in [92] has been specifically designed for evaluating routing

protocols before network deployment and cannot be applied for the evaluation of energy

aspects of collaborative WSN algorithms in general. To the best of our knowledge our

proposed emulation scheme is the first attempt to use a small number of sensor nodes to

realistically estimate the energy consumption of a collaborative algorithm in a large-scale

WSN implementation. We demonstrate its capabilities using the distributed algorithm we

introduced in Chapter 4 for estimating the spatiotemporal evolution parameters of diffusing

environmental hazards. WSN emulation provides convincing evidence that the collabora-

tive algorithm is suitable for large-scale WSN deployment since it respects the memory,

processing and energy constraints of commodity sensor nodes used in WSN implemen-

tations.

5.2 WSN Implementation

5.2.1 WSN Platform Specifications

The WSN implementation of the proposed collaborative algorithm was based on the af-

fordable Atmel Raven evaluation kit [85] consisting of AVRRAVEN boards (sensor nodes

- see Figure 5.1a) and RZUSBSTICK boards (sink node - see Figure 5.1b). The AVR-

RAVEN board has three main modules [93]: The ATmega3290 8-bit MCU which has 32

KB ISP flash memory, 1 KB EEPROM, 2KB SRAM and is responsible for handling the on

board sensors. The ATmega1284P MCU, which has 128 KB ISP flash, 4KB EEPROM,

15KB SRAM, and is responsible for handling the 2.4GHz AT86RF230 radio transceiver de-

signed for low-cost IEEE 802.15.4 applications. Its transmission power can be adjusted

in the range [-17dBm, 3dBm] and its reception sensitivity was fixed to -101dBm.
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(a) (b)

Figure 5.1: AVR Raven evaluation kit: (a) AVRRAVEN board (sensor node), (b) RZUSB-
STICK boards (sink node) (adopted from [94]).

Figure 5.2: AVR Dragon programmer (adopted from [95]).
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The distributed algorithm was coded in C on the IPv6 ready RTOS Contiki [84]. Contiki

is an open source operating system for networked, memory-constrained systems with a

particular focus on low-power wireless Internet of Things devices. The RTOS and the

C code were loaded on the AVRRAVEN boards using the AVR Dragon programmer [96]

(see Figure 5.2) and occupied 71KB on the ATmega1284P, i.e. 55.4% of its total ISP flash

memory. We also designed a Java application, called RavenObserver, running on the

host PC, to monitor the WSN and collect data from the sensor nodes during the conducted

experiments.

5.2.2 Simulation-Driven Emulation Workflow

Deploying a large-scale WSN to validate an in-network algorithm is unrealistic. To over-

come this fundamental limitation we developed a simulation-driven emulation procedure

which allows us to mimic the behavior of a large-scale WSN, during the evolution of a

diffusive hazard, using only a small number of real sensor nodes. The basic idea of the

proposed scheme is to cleverly re-use sensor nodes which are no longer able to partici-

pate in the distributed algorithm. Specifically we developed a technique which allows us to

virtually re-position these nodes forward, in the direction of the hazard�s front movement.

For its virtual repositioning to be possible, a node should satisfy the following conditions:

a) it must be at Quiescent state, and b) it must have detected the front of the phenomenon.

These conditions guarantee that the sensor node cannot participate to the distributed al-

gorithm any more.

Using the Matlab-based WSN simulator presented in (Chapter 4) we were able to cre-

ate simulation scenarios with different sensor node densities, deployment strategies, and

progressing hazard front evolution characteristics. For our evaluation we modified the

simulator so that it can also generate an ASCII file containing the following setup record

for each sensor node: {node ID, location coordinates, time of hazard�s detection, IDs of

its neighbors}. Using this file as input, the RavenObserver coordinates the re-use and

virtual repositioning of the available sensor nodes (6 in our case), in order to emulate the

behavior of the large-scaleWSN as prescribed by the Matlab simulation. Figure 5.3 shows

a UML diagram of the proposed simulation driven emulation workflow.
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Figure 5.3: Simulation driven emulation workflow.

Assuming that N real sensor nodes are available when a WSN emulation experiment

is initiated, RavenObserver checks the Matlab generated file and extracts, for theN nodes

that have detected the phenomenon first, the aforementioned setup records. Then, the

WSN sink node takes over and sends this information to the available N real sensor

nodes. Upon reception, the RavenObserver starts an internal timer and checks in the

Matlab generated file the hazard's expected detection times for the aforementioned sen-

sor nodes. When the timer reaches the detection time of a sensor node, RavenObserver

asks the sink to send a special message to it in order for that node to start emulating the

detection of the hazard. Upon reception of this message, the node changes its status and

acts as prescribed by the algorithm. Finally, when a node is no longer able to participate

in the algorithm (satisfies the necessary aforementioned conditions), it sends a special

message to the sink, which in turn informs RavenObserver that this sensor is available for

re-allocation. Then RavenObserver finds the record for the node that is expected to detect

the phenomenon next (according to the hazard's evolution simulation) and asks the sink

to forward this record to the freed sensor node. This emulation method works w.l.o.g with

any number N of available sensor nodes (N > 3), albeit the emulation time depends on

that number.
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5.3 Evaluation Results

We now present experimental results, obtained using the available ATMEL Raven sensor

nodes that helped us assess the processing, communication and energy efficiency of the

collaborative algorithm and how it is expected to scale with the WSN's size in practice.

Since the main contribution of the specific algorithm is its ability to estimate accurately

the hazard's evolution parameters using low density WSNs, in our experiments we used

node densities that are considered low for environmental applications. Specifically we

used 5 × 10−5, 7.5 × 10−5, 10−4 sensors/m2, which correspond to 50, 75 and 100 sensor

nodes deployed within an area of 1km2. In order to establish that we have a connected

network we use the transmission (Tx) powers shown in Figure 5.5. A Matlab program was

used to generate random sensor node deployments. With N AVR Raven nodes available,

we can emulate deployments in which every sensor node has at most N − 1 neighbors,

and N is larger than 3. To simulate realistically the behavior of a diffusive hazard we used

a wildfire simulation software called FLogA (Fire Logic Animator) developed in our group

[87]. FLogA is a web-based interactive software tool which allows us to draw a forest area

on Google Earth [90] anywhere in Europe, insert ignition points, simulate realistically and

geo-animate the behavior of the evolving fire line under different prevailing wind conditions.

Using FlogA we have generated five different fire scenarios affecting the same square

forest area of 1km2 in Hymettus mountain, Attica, Greece (see Experiment 2, Section 4.4,

Chapter 4). For each scenario, the fire ignition points were placed at different locations,

giving rise to very different wildfire front evolution patterns. The duration of each wildfire

experiment was set to 180min in order to guarantee that most of the forest area would be

affected by the wildfire.

During the emulation of the network's operation RavenObserver collects the following

information from the available Raven sensor nodes: a) the number of the received/transmitted

(Rx/Tx) messages b) the number of the Rx/Tx Bytes c) the energy consumed by Rx/Tx

operations and d) the computation time required for each model update. This data is

collected by the sink node. At the end of the emulation, it is analyzed at two levels:

• Network-level: Considers the data of all sensor nodes participating in the simulation.

• Cluster-level: Analyzes the data of the nodes participating in the local front's model
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Figure 5.4: Mean and stdev of received/transmitted Messages/Bytes, at the Cluster and
Network level for different WSN densities.

updating procedure (Master and its two Helpers).

Figure 5.4 provides, for each analysis level, the mean of the Rx/Tx Messages and

Bytes and their stdev, for three density scenarios. The statistics for each scenario were

computed considering all the corresponding Rx and Tx Messages/Bytes for the 50 dif-

ferent simulation runs (10 random deployments * 5 wildfires). We observe that the bar

plots for the Messages (Bytes) follow similar trends as the number of deployed sensors

increases. This is as expected due to the direct relation between Messages and Bytes

for a given density. From the cluster-level analysis, we observe that as the number of de-

ployed sensors increases the number of the Rx and Tx Messages and Bytes decreases

a little. This behavior is justified if we consider that: a smaller number of sensor nodes

in a given area implies fewer neighbors which in turn implies that it is more difficult for a

Master node to �inherit� its Master status to one of its Helpers. As discussed in in Sec-

tion 4.2.3 (Model propagation) in Chapter 4, when a Master cannot find a new qualified

Master, it is forced to broadcast a message to its Helpers, so that they can propagate its

updated model to their neighbors. These extra �negotiations� are responsible for the

small increase of Messages (Bytes) as the number of the deployed sensors decreases.
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Figure 5.5: Mean and stdev of energy consumed for Rx and for Tx operations (as a func-
tion of the node�s Tx power). Network and Cluster-level analysis for the 50 nodes sce-
nario.

However, at the network level an increase in the number of deployed sensor nodes leads

to an increase in the total number of model updates, and therefore the total number of the

Rx and Tx Messages and Bytes increases accordingly.

Figures 5.5, 5.6 and 5.7 provides, for the 50, 75 and 100 sensor nodes density scenario

respectively, the mean and stdev of energies consumed for Rx/Tx. For both levels of

analysis, the energy plots show that the required Rx energy is on average larger than the

Tx energy. At a first glance this may seem counterintuitive, but it can be explained if we

consider that most of the messages are of broadcast type, which means that a single Tx

corresponds to many Rxs (by nodes in the same neighborhood). Furthermore, a more

detailed analysis at the cluster level shows that the Master consumes for Tx (blue line)

about 5 times more energy than both of its Helpers combined (green line). This happens

because the Master transmits many more messages than its Helpers during the model�s

forward propagation (see Section 4.2.3 in Chapter 4). The large stdev observed for the

Helpers Tx energy is due to the negotiation which takes place between the Master and

either one, or both, of its Helpers (in sequence) during the model's propagation phase.

Measuring the energy consumed by the nodes for processing and sensing tasks during

emulation was not feasible since the AVRRAVEN nodes do not provide such functions.

However, since it is well known [97, 98] that the radio communication is the prominent
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Figure 5.6: Mean and stdev of energy consumed for Rx and for Tx operations (as a func-
tion of the node�s Tx power). Network and Cluster-level analysis for the 75 nodes sce-
nario.

Figure 5.7: Mean and stdev of energy consumed for Rx and for Tx operations (as a func-
tion of the node�s Tx power). Network and Cluster-level analysis for the 100 nodes sce-
nario.
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energy consumer in a WSN, we can safely conclude that the provided Rx/Tx Network

level energy results provide a good estimate of the lower bound of the total WSN energy

consumed by the nodes during the 180min of operation captured by the wildfire simulation.

This conclusion is further supported by the fact that the sensor nodes activate (exit the

Quiescent status) only for the time period where the fire front line is close to their vicinity

(emulated period). Furthermore, the mean computation time for a model update, required

by the 8-bit ATmega1284P MPU of the Raven sensor node clocked at 8MHz, is about 523

ms (492 ms fro computation and 31ms for communication).

We presented a simulation driven emulation procedure which allow us to realistically

evaluate even by using a small number of ``real'' sensor nodes the behavior of the collab-

orative WSN algorithms. We demonstrate the validity of the approach by evaluating the

proposed collaborative algorithm presented in Chapter 4. The results clearly indicate that

our algorithm algorithm is suitable for a large-scale WSN deployment, since it respects

WSNs' communication, processing, memory and energy constraints. The proposed emu-

lation approach can be followed to assess the practicality of large-scale WSN deployment

of other in-network algorithms of similar nature for environmental monitoring applications.
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Chapter 6

Continuous Object Boundary

Reconstruction Algorithm

In this Chapter we present a novel algorithm which reconstructs with accuracy the bound-

ary of an evolving continuous object using a small number of local front estimates. Each

local front estimate describes locally the evolution characteristics (orientation angle, di-

rection and speed) of the continuous object's boundary. When a sufficient number of

local front estimates becomes available at a fusion center the algorithm combines their

information and determines a ``smooth'' curve that approximates the object's boundary.

Simulation results demonstrate its ability to reconstruct with accuracy the boundary of

complex evolving objects, even in cases where the local front estimates are distorted with

error.

6.1 Preliminaries

The key idea of the proposed boundary reconstruction algorithm is as follows: Let's as-

sume that a monitoring system (e.g. based on WSN technology - see Chapters 4) is able

to estimate the evolution characteristics (orientation angle, direction and speed) of a con-

tinuous object at different locations and/or time instances (see black segment in Figure

6.1a). As soon as a sufficient number (application dependent) of local front estimates be-

comes available, the proposed algorithm combines their information and determines the
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Figure 6.1: a) The green curves show different instances of an evolving continuous ob-
ject's boundary; each boundary corresponds to the time instance where a local front esti-
mate (black segments) takes place. The black segments correspond to the selected local
front estimates that will be used to determine the continuous object's boundary at time t12.
c) The new locations of the selected local front estimates after their space-time evolution
at time t12. d) The polygon (black dashed polygon) and the smooth curve (red curve) that
approximate the continuous object's boundary.
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Figure 6.2: Orientation angle uncertainty of a local front model.

set of local front estimates (black segments in Figure 6.1b) that will be used to reconstruct

the boundary of the continuous object. In sequence, using their evolution characteristics it

determines their locations at the time instance that we wish to reconstruct the continuous

object's boundary (time t12 see Figure 6.1c). Using the ``new'' location coordinates and

the evolution direction parameters of the local fronts, the proposed algorithm determines

a polygon that approximates the continuous object's boundary (see black dashed poly-

gon in Figure 6.1d). Next, based on the uniform cubic B-splines the algorithm determines

a curve (see red curve in Figure 6.1d) that approximates the object's boundary. Finally,

based on the estimation uncertainties of local fronts' parameters, the algorithm produces

a probability field, that indicates for each point of the considered area, the probability to

be affected by the continuous object.

6.1.1 Local Front Parameters

In this section we state the notation used, and everything else needed to facilitate the

presentation of the proposed boundary reconstruction algorithm.

As discussed in Section 3.4.2, the orientation parameter of a local front model is cal-

culated using the coordinates two points K1 = (x1, y1) and K2 = (x2, y2). To calculate the

coordinates of these points, the algorithm uses the mean speed values {uij, uik} of the
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Figure 6.3: The local front estimate mi and its evolution parameters.

projections points {pij, pik} respectively (see Figure 6.2). As indicated by equation (3.6),

the speeds of the projection points follow normal distributions of the form Uih = N (uih, s
2
ih)

where h ∈ {j, k}. However, the speed uncertainties (s2ih) of projection points, imply in turn

uncertainty about the locations ofK1 andK2 and therefore uncertainty about the estimated

orientation parameter (see Figure 6.2). It can be proved that the orientation angle of an

updated local front will also follow Normal distribution with mean value ϕi and standard

deviation σi =
θi
3
(see Figure Figure 6.3).

A local front estimate mi (subscript i is used to uniquely identify a local front estimate)

described by a line segment with the following parameters (see also Figure 6.3):

• PM
i = (xM

i , yMi ) (Location): The coordinates of the physical location of the line's

segment middle point.

• li (Length): The length of the line segment that approximates locally (within a circle

of radius Ri =
li
2
) the continuous object's boundary.

• δi (Evolution direction): A vector perpendicular to the local front's line segment. The
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Figure 6.4: The space-time evolution of the local front estimate mi at time tj.

direction coefficient may take one of the following values: +1(-1), if the local front

evolves into the positive (negative) half plane that determined by the line on which

the local front's line segment lies (line εi in Figure 6.3).

• ti (Local front parameters estimation time): The time (subject to a global time refer-

ence) where the local front's parameters estimation occurs.

• ϕi, σi (Orientation parameters): The angle Φi that formed between the local front's

line segment and the horizontal axis (x-axis) is considered to be a random variable

Φi that follows a Normal distribution Φi = N (ϕi, σ
2
i ).

• ϕ̂i (Angle realization): The angle ϕ̂i is a realization of Φi (random sample) and con-

sists the angle value ofmi that will be used by the boundary reconstruction algorithm.

• ui, si (Speed parameters): The speed Ui of the local front's line segment is consid-

ered to be a random variable that follows a Normal distribution Ui = N (ui, s
2
i ).

• ûi (Speed realization): The speed ûi is a realization of Ui (random sample) and

consists the speed value of mi that will be used by the boundary reconstruction
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algorithm.

Using the middle point's coordinates PM
i = (xM

i , yMi ), the length li, and the orientation

realization ϕ̂i of a local front estimatemi, we can calculate the coordinates of its end points

PEz
i = (xEz

i , yEz
i ) where z = {1, 2} (see Figure 6.3 and Appendix D).

We will use the notation mi(tj) to denote the space-time evolution of the local front

estimate mi at time instance tj (where ti < tj). The middle point, the end points and

the circular area of the space-time evolved local front mi(tj) will be denoted as PM
i (tj) =(

xM
i (tj), y

M
i (tj)

)
, PEz

i (tj) =
(
xEz
i (tj), y

Ez
i (tj)

)
(where z = {1, 2}) and Ci(tj) respectively

(see Figure 6.4). The algebraic expressions used to calculate the location coordinates

of a space-time evolved local front are presented in Appendix E. Finally, we will use the

notation Ai(tj) to denote the area covered by mi after its space-time evolution at time tj

(see green shaded area in Figure 6.4).

6.2 Finding Parts of the Boundary

In this section we present the procedure that determines the set of the local front estimates

that will be used to reconstruct the continuous object's boundary.

Let's assume that at time instance tn, we decide to determine the continuous object

boundary at time instance tb (where tb ∈ R+). From the available local front estimates

we select those that have estimation times ti ≤ tb, and form a setMn that contains their

parameters (see Section 6.1.1).

• If {|Mn| < N}: The algorithm exits sinceMn does not contain the minimum number

N (determined by the user) of local fronts estimates to reconstruct the continuous

object's boundary.

• If {|Mn| ≥ N}: The algorithm initiates the local fronts' information processing pro-

cedure (presented below).
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Figure 6.5: Model selection procedure: Local front mi and mj (where ti ≤ tj) is assumed
to describe the evolution behavior of the same part of an evolving boundary. Only the
more recently estimated local front (mj) is kept inMn (see text for details).

6.2.1 Local Front Information Processing

This procedure combines the information of the local front estimates inMn and gener-

ates a new set of local fronts estimates that describes the location and evolution behavior

of the continuous object's boundary at time instance tb. The procedure has three steps

(described below).

First step

We assume that two local front estimates (mi and mj) describe the evolution behavior of

the same part of the boundary, if the Euclidian distance of their middle points (||PM
i , PM

j ||)

is smaller or equal to the larger radius of the corresponding local front circular areas (see

Figure 6.5).

||PM
i , PM

j || ≤ max(Ri, Rj) (6.1)

For each pair of local front estimates inMn (e.g. {mi,mj}) that satisfies the condition

in (6.1), we keep (inMn) only the more recently updated local front estimate (mj in Figure
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6.5, where we assume w.l.o.g ti ≤ tj). The reason we keep the more recently updated

local front estimate is based on the assumption that it describes better the current time

varying evolution characteristics of the continuous object. At the end of this step, we sort

the remained local fronts inMn in estimation times ascending order and form a new set

Mf ⊆Mn that contains their parameters. In sequence, we check the following conditions:

• If {|Mf | < N}: The algorithm exits sinceMf does not contain the minimum number

N (determined by the user) of local fronts estimates to reconstruct the continuous

object's boundary.

• If {|Mf | ≥ N}: The procedure continuous to the second step (see below).

Second step

This step determines the set of local front estimates that provides information about the

location and the evolution characteristics of the continuous object's boundary at time in-

stance tb. Finding the space-time evolution of the local front estimates inMf at time tb,

without considering possible intersections of their evolution paths, usually results the con-

struction of boundary shapes that deviates from reality. Below we propose a method that

identifies and handles the events that are responsible for the boundary's shape deviations.

Event identification procedure: For each pair of local front estimates inMf (e.g. {mi,mj},

where w.l.o.g. ti ≤ tj), we check if any of the following (mutually exclusive) events occur:

Event 1: If {{PM
i (tj) ∈ Cj} or {PM

j ∈ Ci(tj) and PM
j ̸∈ Ai(tj)}} holds (see Figure

6.6a), we capture as event's time the time instance tj.

Event 2: If {PM
j ∈ Ai(tj)} holds (see Figure 6.6b), we capture as event's time the time

instance tj.

Event 3: If there is a time instance td (ti ≤ tj < td ≤ tb) where the condition{{PM
i (td) ∈

Aj(td)} or {Pj(td) ∈ Ai(td)}} holds (see Figure 6.6c), we capture as event's time the time

instance td.

Event 4: If there is a time instance tf (ti ≤ tj < tf ≤ tb) where {{PM
i (tf ) ∈ Cj(tf ) and

PM
i (tf ) ̸∈ Aj(tf ) and ||Pi(tf ), Pj(tf )|| = max(Ri, Rj)} or {PM

j (tf ) ∈ Ci(tf ) and Pj(tf ) ̸∈
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Figure 6.6: The four events that require special handling during the space-time evolution
of the local fronts estimates (see text for details).
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Ai(tf ) and ||Pi(tf ), Pj(tf )|| = max(Ri, Rj)}} holds (see faded grey local fronts in Figure

6.6d), we capture as event's time the time instance tf .

After determine the local fronts' pairs inMf that participate to an event, we find the

pair with the smallest captured event time. We have to note that if more than two pairs

of local fronts have equal event times, we select the pair with the smallest sum of local

fronts' estimation times (e.g. ti + tj).

Event handling procedure: This procedure takes as input the local fronts' pair (e.g.

{mi,mj}) that determined by the events identification procedure, and acts as follows:

Handling Event 1: In this event the local front estimates mi(tj) and mj describe at time

instance tj the evolution behavior of the same part of the continuous object boundary (see

Figure 6.6a). Using the assumption that the more recently estimated local front describes

better the current evolution behavior of the continuous object's boundary we keep inMf

only the most recently estimated local front (mj).

Handling Event 2: In this event the local estimate mj appears inside the area which has

already been covered by mi(tj) (see green shaded area in Figure 6.6b). This event im-

plies that the local frontmi(tj), fails to describe with accuracy the evolution behavior of the

continuous object boundary, since the local front mj at time tj, should be located on the

continuous object's boundary and not inside the affected area. Based on this assumption

we keep inMf only the local front estimate mj.

Handling Event 3: In this event the evolution path of a local front estimate (mi(td)) in-

tersects the evolution path of another local front estimate (mj(td)) (see Figure 6.6c). To

handle this event we erase fromMf the local front estimate (mi(td)) that inserts into the

area which has already been covered by the other local front (mj(td)).

Handling Event 4: In this event the local front estimates (mi(tf ) andmj(tf ) in Figure 6.6d)

meet during their space-time evolution. To handle this event we apply a technique that

fuses the information of the local front estimates {mi(tf ),mj(tf )} and produces ``new'' lo-

cal front estimate {mf} that describes at time tf the local evolution behavior of the contin-

uous object's boundary (see black local frontmk Figure 6.6d). To estimate the parameters

of the ``new'' local front estimate we apply the following equations:
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Zf =
∑

h={i,j}

whZh where Z = {ûf , ϕ̂f , lf , xf , yf}

uf =
∑

h={i,j}

whuh, s2f = wis
2
i + wjs

2
j + wiwj(ui − uj)

2

ϕf =
∑

h={i,j}

whϕh, σ2
f = wiσ

2
i + wjσ

2
j + wiwj(ϕi − ϕj)

2

(6.2)

As the local front's parameters estimation time tk we assume the event's time instance

tf . The derivation of the equations in (6.2) and the calculation of the weights {wi, wj} are

presented in detail in Appendix F.

To estimate the evolution direction parameter δf we use the local fronts orientations

(ϕ̂h), the evolution directions (δh) and the weights (wh) and determines two vectors which:

a) are perpendicular to the corresponding local fronts segments, b) point to the corre-

sponding local fronts' evolution directions and c) the ratio of their lengths is equal to the

corresponding ratio of their weights wi

wj
. In sequence, using these vectors the algorithm

calculate their resultant which determines the evolution direction of the ``new'' local front

estimate mf . Using the equation of the line where the ``new'' local front estimate mf lies,

we determine in which half plane (positive or negative) the vector of the resultant points

and we assign the corresponding value (+1 or -1) to the direction parameter δf .

After calculating the parameters of mf , we add its information in Mf and erase the

information of its ``parents'' (mi and mj).

When handling an event, the procedure repeats the second step from the beginning.

The second step completes when there are no events between the local fronts estimates

inMf . At the end of the second step the procedure checks:

If |Mf | ≥ N : If the condition holds, the procedure finds the space-time evolutions of

the local fronts inMf at time tb, forms a new set (Mb) that contains their information and

proceeds to the third and final step of the local fronts' information processing procedure

(described below).

Else, the algorithm exits.
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Figure 6.7: The local fronts' lengths adjustment procedure. a) The overlap of the local front
segments, results a curly B-spline curve during the boundary reconstruction procedure,
b) After applying the size adjustment procedure we avoid the curly curve formation.

Third step

In this step the procedure adjusts the lengths of the local front estimates inMb, to avoid

possible boundary shape's irregularities. The procedure checks if there is (are) any pair(s)

of local front estimates inMb where their local circular areas overlap (e.g. see {mi(tb),mj(tb)}

Figure 6.7a). If there is (are), we adjust their lengths such as to satisfy the following equa-

tion:

R′
i +R′

j = ||PM
i (tb)P

M
j (tb)|| (6.3)

The equation in (6.3) indicates that the circular areas of the adjusted local front seg-

ments should osculate externally (see Figure 6.7b). We propose a technique that appro-

priately adjusts the lengths of the local fronts radii {Ri, Rj}, based on the confidence we

have (wi and wj, see Appendix F) about the local front estimates (mi(tb) and mj(tb)).

Using equations (6.4) and (6.5) we calculate the ``new'' radii R′
i and R′

j of the local

fronts' circular areas:

R′
i = Ri − c

wi

R′
j = Rj − c

wj

(6.4)

c =
wiwj(Ri +Rj − ||PM

i (tb)P
M
j (tb)||)

wi + wj

(6.5)

The equations in (6.4) indicate that the decrease of the initial radii {Ri, Rj}, is inversely
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proportional of the corresponding local fronts' confidence values (weights {wi, wj} see

Appendix F). Equation (6.5) consists the solution of the system of equations (6.3) and

(6.4).

Using the new radii R′
i and R′

j, we calculate the end points coordinates PEz
i (tb) =

(xEz
i (tb)), y

Ez
i (tb))where z = {i, j} of the local front estimates (see Appendix D), update the

corresponding information inMb and repeat the third step form the beginning. The third

step completes when there are no overlaps between the circular areas of the local front

estimates inMb. When the third step completes, we initiate the boundary reconstruction

algorithm.

6.3 Boundary Reconstruction

In this section we present the proposed algorithm which using the information of the local

front estimates inMb, it determines the boundary of the continuous object. The algorithm

has to two phases:

• At the first phase it determines a polygon that approximates the continuous object's

boundary.

• At the second phase it produces a ``smooth'' representation of the boundary, based

on the uniform B-spline curves.

To better explain the two phases of the algorithm, we will use a running example: Let's

assume thatMb contains 14 local front estimates (see Figure 6.8). In Figure 6.8 the black

arrows indicate the evolution directions of the local front segments and the black dots their

corresponding middle and end points.

6.3.1 First Phase: Polygonal Approximation of the Boundary

This procedure has two steps: The first step determines the order in which the local front

estimates inMb have to be connected, to form the polygon that approximates the con-

tinuous object's boundary. The second step uses the local fronts connection order and

based on their parameters it determines the boundary's polygon.
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Figure 6.8: First step: Finding the connection sequence of the local front segments.
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To produce a realistic approximation of the continuous object's boundary, the formed

polygon should satisfy the following conditions:

• It should be simple (no intersections between its edges)

• All the local fronts' evolution direction vectors should point outside the polygon's area

(the diffusive phenomena increase their size with time)

Before initiating the first step, we form the following sets:

C: It contains the middle points PM
i of the local front estimates inMb.

V: It contains the middle points of the local front estimates that belong on the convex

hull of C (in our example, V = {PM
3 , PM

4 , PM
7 , PM

8 , PM
11 , P

M
13 , P

M
14 }, see Figure 6.8a ). It holds

that V ⊆ C.

Q = C ∩Vc: It contains the middle points in C that do not belong to the convex polygon.

In Figure 6.8a, Q = {PM
1 , PM

2 , PM
5 , PM

6 , PM
9 , PM

10 , P
M
12 }. We have to note that C = V ∪ Q.

First step

We check the set Q :

• If {Q = ∅} : We continue to the second step, since all the local fronts middle points

are contained in V. The order of the middle points in V, determines the order in

which the local front segments inMb have to be connected to form the polygon that

approximates the continuous object's boundary.

• If {Q ̸= ∅} (example's case): We repeat the following procedure until Q becomes an

empty set:

Using the polygon determined by V (e.g. see convex polygon in Figure 6.8a), we find the

relative positions (on, inside, outside) of the middle points that contained in Q, and form

the following sets:

Qon: It contains the middle points that lies on the polygon's edges.

Qout: It contains the middle points located outside the polygon's area.
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Qin: It contains the middle points located inside the polygon's area.

We have to note that Q = Qon ∪Qout ∪Qin.

After forming these sets we check:

If {Qon ̸= ∅}: We select a point from Qon (e.g. PM
2 in Figure 6.8c), determine the

polygon edge on which it lies (e.g. PM
1 , PM

3 in Figure 6.8c) and apply an edge split. An

edge split is the procedure where a point from Q becomes a vertex of the polygon (moves

to V). In our example the point PM
2 (Figure 6.8c) becomes a polygon vertex moves to V,

between points PM
1 , PM

3 that determine the edge on which it lies. After an edge split we

delete the ``new'' polygon vertex (PM
2 ) fromQ. The aforementioned procedure is repeated

until Qon becomes an empty set.

If {Qon = ∅ and Qout ̸= ∅}: We use the points in Qout and form the following sets:

QI
out: It contains the middle points of the local front segments that intersect at least one

edge of the polygon (e.g. PM
9 in Figure 6.8e).

QT
out: It contains the middle points of the local front segments that are located totally out-

side the polygon (e.g. PM
5 in Figure 6.8g).

It holds that Qout = QI
out ∪QT

out.

After forming these sets we check:

If {QI
out ̸= ∅}: We find the middle point in QI

out which has the smallest distance from

the polygon's edge that intersected by the corresponding local front segment (e.g. PM
9 in

Figure 6.8e). Using this point we split the intersected edge (see PM
8 PM

10 in Figure 6.8f) and

update the sets V and Q. After an edge split we repeat the first step from the beginning.

If {QT
out ̸= ∅}: We calculate for each middle point in QT

out, the corresponding minimum

distances from all the polygon's edges. In sequence, we find the middle point which has

the smallest distance from a polygon's edge, split the corresponding edge and update the

sets V and Q. After an edge split we repeat the first step from the beginning.

If {Qon = ∅ andQout = ∅ andQin ̸= ∅}: We use the points inQin and form the following

sets:

QI
in: It contains the middle points of the local front segments that intersect at least one

edge of the polygon (e.g. {PM
1 , PM

6 , PM
10 } in Figure 6.8a).

QT
in. It contains the middle points of the local front segments that are located totally inside

the polygon (e.g. {PM
2 , PM

12 } in Figure 6.8h).
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It holds that Qin = QI
in ∪QT

in.

After the formation of these sets we check:

If {QI
in ̸= ∅}: We find the middle point inQI

in (e.g. PM
1 (tb), in Figure 6.8a) which has the

smallest distance from the polygon's edge that intersected by the corresponding local front

segment. Using this point we split the intersected edge (see PM
2 , PM

14 , in Figure 6.8c), and

update the sets V and Q. After an edge split we repeat the first step from the beginning.

If {QT
in ̸= ∅}: We derive for each point QT

in the equation of the line (e.g. line ε in Figure

6.8h) that emanates from it and is perpendicular to the corresponding local front segment.

For each of these lines, we determine their intersection points with the polygon (see points

A,B in Figure 6.8h). In sequence, for each local front segment we select the point that

belongs to its evolution direction (point A in Figure 6.8h). We have to note that if there are

more than one intersection points at its evolution direction (e.g. this case may hold only for

non-convex polygons), the procedure selects the point which has the smaller Euclidean

distance from the local front's middle point. In sequence, we find the middle point with

the the smaller distance from its corresponding intersection point, and split the polygon's

edge on which it lies (e.g. PM
11 P

M
13 , in Figure 6.8h). After the edge split we update the sets

V, and Q and repeat the first step from the beginning.

At the end of the first step, the ordered set V, uniquely determines a polygon (see

Figure 6.8i) that indicates the local front's connection sequence.

Second step

This step uses the local fronts' middle points in V and the local fronts' end points (contained

inMb) and constructs a more detailed polygonal approximation of the continuous object's

boundary.

Based on the order of the local fronts' middle points in V, we sort the local fronts in

Mb. Next, using the coordinates of the end points of the first two local front segments in

Mb ({PE1
1 , PE2

1 , PE1
2 , PE2

2 } in Figure 6.9a) we find the minimum distance pair, excluding the

pairs that belong to the same local front segment, and connect them (see red dashed edge

PE1
1 , PE2

2 in Figure 6.9a). In sequence, using the non-connected end point of the second

local front segment (PE1
2 ) and the end points of the third local front segment (PE1

3 , PE2
3 ), we

find the minimum distance pair and connect the points (see edge PE1
2 , PE1

3 in Figure 6.9a).
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Applying the aforementioned method for all the local front segments inMb, we construct

a polygon which has as vertices the middle and the end points of the local front segments

(see Figure 6.9b).

The aforementioned construction method does not guarantee that the formed polygon

will satisfy boundary's polygon conditions that discussed in Phase I. To guarantee that

the formed polygon will satisfy these conditions, we do the following: For each local front

segment we check: a) if the edges that connects it with its adjacent local fronts segments

intersect with other polygon's edge(s) and b) if its evolution direction vector points inside

the polygon's area. If at least one of these conditions is satisfied (e.g. in Figure 6.9b the

direction vectors ofm1 andm10 points inside the polygon), we interchange the correspond-

ing local front segments end points connections (see Figure 6.9c). In case where after a

connection interchange, the aforementioned conditions are still not satisfied, we erase the

corresponding local front estimate fromMb and we form a new polygon by connecting the

end points of its two adjacent local fronts segments.

The polygon formed at the end of this step is passed as input to the smooth boundary

reconstruction procedure (described below).

6.3.2 Second Phase: Smooth Boundary Reconstruction using Uni-

form Cubic B-Splines

This phase uses the uniform B-spline [102] and generates a smooth curve that approxi-

mates the continuous object's boundary.

A spline is a smooth polynomial function that is piecewise defined and consist a con-

venient form for representing complicated, smooth curves. Due to the simplicity of their

construction and to their capacity to approximate complex shapes with accuracy, spline

curves have been extensively used in the fields of computer graphics, image analysis and

CAD (marine, aeronautical, automobile etc.).

Basis splines (B-splines) are the most commonly used spline curves since they trade-

off complexity and flexibility [102]. An elegant way to describe a B-spline curve is pre-

sented below:
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Figure 6.9: a) The middle points of each local front is connected with its end points (forma-
tion of black segments); the red dashed lines show the first steps of local front segments
connection. b) First polygonal boundary approximation (note that the direction vectors of
m1 and m10 points inside the polygon) c) The polygonal approximation that satisfies the
boundary's polygon conditions (direction vectors of m1 and m10 points outside the poly-
gon after interchanging the connections of their end points.) d) The smooth boundary
construction using a B-spline curve (red curve).
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X(t) =
n∑

i=0

PiNik(t) (6.6)

Where Nik(t) describes the basis functions of the B-spline. The basis functions are

computed using the Cox de Boor algorithm.

Nik(t) =

1 if ti ≤ t ≤ ti+1

0 otherwise

k = 1 (6.7)

Nik(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1

Ni+1,k−1(t)k > 1 (6.8)

From equations (6.6), (6.7), (6.8) it is obvious that to construct a B-spline curve we

need the following information:

The B-splines degree k.

A vector P = {P0, ..., Pn} of size n+ 1 that contains the B-spline's control points (polygon

vertices in our case).

A vector T = {t0, t1...tn+k+1} of size n+k+2 that contains the knots of the B-spline curve.

The knot points divide a B-spline curve into curve segments each of which is defined on a

knot span. These curve segments are all Bezier curves of degree k. If we want to define

a B-spline curve of degree k with n + 1 control points we have to supply n + k + 2 knots.

Using the constraint of equally spacing knot points (ti+1 − ti = constant) we obtain the

uniform B-spline curves.

To produce a smooth representation of the continuous object's boundary we selected

the uniform cubic B-spline curves (degree k = 3). These curves uses cubic functions (3rd

degree polynomial) to represent each curve segment and constraints the points that joint

the curve segments to meet the following requirements:

1. Positional Continuity (C0): i.e. the end point of segment i is the same as the starting

point of segment i+ 1.

2. Tangential Continuity (C1): i.e. no abrupt change in slope occurs at the transition be-

tween segment i and segment i+ 1.

3. Curvature Continuity (C2): i.e. no polarity changes in slope at the transition between

segment i and segment i+ 1.
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In our case the cubic spline curve uses as first control point the end point of a local front

segment (PE1
1 see Figure 6.9a). This selection guaranties that the formed cubic spline will

be tangent to middle points of the local fronts segments. The red curve in Figure 6.9d

corresponds to the formed B-spline curve that approximates the polygonal boundary of

the continuous object. To draw a closed spline curve curve, we add at the end of the the

control points set (vertices set V) the first 3 polygon's vertices (e.g. {PE1
1 , PE1

2 , PM
2 }).

As discussed in Section 6.1.1, the evolution characteristics (orientation and speed) of

the local fronts mi that participate to the boundary reconstruction algorithm are described

by scalar values {ϕ̂i, ûi} which are randomly sampled from the corresponding Normal

distributions (Φi and Ui). This random sampling implies that if we run the boundary recon-

struction algorithm several times, we will get similar but not the same boundary shapes.

Based on this observation, we developed a technique which allows us to calculate a spa-

tial probability field that indicates for each point of the continuous object's evolution area

the probability to be affected by the continuous object. To calculate the spatial probability

field we do the following:

We consider the continuous object's evolution area as a grid of squares cells. A cell

is assumed to be affected by the evolving continuous object, when its center is located

inside the continuous object's area. To calculate the probability for a cell C to be affected

by the continuous object, we run the boundary reconstruction algorithm N times and we

count the number NC of simulations scenarios that cell C contained inside the object's

area. The probability for the continuous object to arrive at the cell C can be estimated as:

P (C) =
NC

N
. (6.9)

6.4 Evaluation Setup

We present next simulation results demonstrating the ability of the proposed algorithm to

track accurately the boundary of a diffusive phenomenon under different number of local

front estimates, local front parameters estimation errors and continuous object evolution
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scenarios.

6.4.1 Simulation Workflow

For the evaluation of the proposed boundary tracking algorithm we developed a flexible

simulator in Matlab which allows us to generate scenarios with different a) propagating

diffusive object's properties (shape, speed and acceleration), b) local fronts estimates

densities, deployment strategies and evolution parameters errors. Before initiating a sim-

ulation, a Matlab procedure takes as input the coordinates of the local fronts segments

middle points, and the diffusive object's propagating properties, and determines: a) the

time instances where the diffusive object reaches the local fronts' middle points (local

fronts' estimation times), and b) the speed and orientation of the diffusive object's front

line at the middle points locations (see Appendix G for details). Using these speed and

orientation values, the Matlab procedure determines the evolution characteristics (speed

and direction) of the deployed local fronts segments, after distorting them with error (its

value is determined by the user). The distorted speed and orientation values consist the

mean values of the corresponding local fronts' normal distributions (Ui, Φi see Section

6.1.1). The standard deviations of the corresponding normal distributions are also de-

termined by the user. Using this information, the Matlab procedure generates a structure

that contains for each local front estimate, the parameters presented in Section 6.1.1. The

generated local fronts structure is passed as input along with the propagating properties of

the diffusive object to the Matlab simulator which initiates the evaluation of the proposed

boundary tracking algorithm accuracy.

6.4.2 Evaluation Metrics

To evaluate the accuracy of the proposed algorithm, we compare the ``similarity'' of the

areas occupied by the real and constructed boundaries as described below:

We consider the diffusive hazard's evolution area as a grid of square cells (see Figure

6.10). For all the conducted experiments we set the size of the cells equal to 20m× 20m.

Based on the real and reconstructed boundary of the continuous object, we classify the

square cells to the following categories:
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Figure 6.10: The blue (red) curve correspond to the reconstructed (estimated) boundary
of the diffusive phenomenon. Classifying the square cells of the gridified area (as shown
in the figure), we can evaluate the accuracy of the proposed boundary reconstruction
algorithm using the F1-score metric.

• True Positive (TP): Contains the square cells that located inside the actual and re-

constructed boundary.

• False Positive (FN): Contains the square cells that located outside the actual and

inside the reconstructed boundary.

• False Negative (FN): Contains the square cells that located inside the actual and

outside the reconstructed boundary.

To calculate the boundary reconstruction accuracy we used the F1-score which is the

harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision+ recall

(6.10)

where,

precision =
TP

TP + FP
, recall =

TP

TP + FN
. (6.11)
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6.4.3 Experimental Setup

A notable advantage of the proposed continuous object boundary tracking algorithm is that

it can track with accuracy the boundary of a diffusive phenomenon using a small number

of local front estimates. To demonstrate this feature we have used local fronts' densities

that are considered low for environmental monitoring applications. Specifically we used

densities {10−6, 2×10−6, 3×10−6, 4×10−6} local fronts
m2 , which correspond to 10, 20, 30 and 40

local front estimates deployed within a 1km2 square area respectively. For each density

value we used a large number of randomly drawn local fronts' deployments and demon-

strate how the algorithm performs under different densities as well as errors to the local

fronts evolution parameters (speed and direction). For all the experiments the length of

the local fronts segments was set to l = 100m. The evolution parameters (speed, orien-

tation angle and direction) of the local estimates were set equal to the true values that

had the diffusive phenomenon when it reached them (perfect estimation, see Appendix

G). However, to evaluate how the algorithm performs under local fronts' orientation and

speed estimation errors, we repeated 6 times the experiment and tested the accuracy

of the boundary construction. Specifically the error values used for the orientation and

percent speed errors were {10o, 20o and 30o} degrees and {10%, 20% and 30%} deviation

from the ground truth boundary's speed respectively.

6.5 Results and Discussion

In the conducted experiment the spatiotemporal evolution of the continuous object was

simulated using either the developed Matlab program or FLogA a wildfire behavior simu-

lator developed in our group [87].

6.5.1 Experiment 1: diffusive hazard with regular shape

In this experiment the continuous object is modeled as a circle of fixed center located

at the center of a 2km × 2km square area. Considering the area's bottom left corner

as the origin, the circle is centered at point (1000m, 1000m) and has radius equal to 1m.

The speed at which the radius is increasing is described by a triangular function with
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initial value 2.5m/min. The speed increases with time varying rate (0.0265m/min2) until

it reaches its maximum value (5m/min) when the radius of the circle becomes 250m.

Beyond that point the speed starts decreasing at the same rate until it returns back to its

initial value. Therefore when the radius of the circle becomes equal to 500m its speed is

again back to (2.5m/sec). At the end of a simulation the circle becomes circumscribed to

the 1km2 local fronts' deployment square area (centred at point (1000m, 1000m)). Modeling

propagating hazard with circular shape is justified because Fick's second law indicates that

the diffusion of a substance emanating from a single point source covers a circular area

whose size is increasing at a rate indicated by the diffusion coefficient [89]. To help the

reader visualize the phenomenon and get sense of the boundary tracking algorithm that

takes place during the evolution of the diffusive object, we provide a video animation (see

Experiment1RegularFront.mov [103]) created using Matlab.

To evaluate the boundary tracking accuracy of the proposed algorithm we attempt

to construct the boundary of the diffusive phenomenon 20 times during its evolution at

equally spaced (every 188/20min) sequential time intervals. The boxplots in Figure 6.11a

summarize the distribution of the boundary tracking accuracy considering 1000 random

deployments (1000 runs) per local fronts estimates density scenario. For the generation

of each boxplot we used as sample points the F1-scores estimated at the time instants

where a boundary construction has occurred. As we observe from the provided boxplots

the boundary construction accuracy increases with the local fronts estimates density. An-

other interesting observation is that the standard deviation of the boundary construction

accuracy decreases as the density of local estimates increases. This implies that as the

number of local estimates increases we become more certain that the proposed algorithm

will produce an accurate representation of the diffusive object's boundary.

Figure 6.11b shows the boundary tracking accuracy (F1-score) as a function of time for

different local front estimates density scenarios. As shown in Figure 6.11b, the accuracy

of the boundary tracking drops for a certain time interval and then recovers again. The

time extent and experienced accuracy drop increases as the number of available local es-

timates decreases. To explain this behavior we have to consider the following: At the first

time steps the size of the continuous object is small and therefore a small number of local

estimates suffices to produce an accurate representation of its boundary. As the size of
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Figure 6.11: Experiment 1: a) Boxplots summarizing the distribution of the boundary track-
ing accuracy under different local estimates density scenarios. b) The boundary tracking
accuracy as a function of time for different densities of local estimates. c) The mean num-
ber of the available local estimates that participate at each time instance to the boundary
construction algorithm, for different local estimates density scenarios. d) The boundary
construction probability as a function of time for different local estimates density scenarios.
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the diffusive phenomenon gets bigger with time the accuracy of the boundary construction

drops until more local estimates (sufficient number) become available to participate in the

boundary construction algorithm. In Figure 6.11c we see that as the local estimates den-

sity increases, the number of the available local estimates to participate to the boundary

tracking algorithm at each time step of the diffusive phenomenon evolution also increases.

This larger number of available local estimates explains why the time period where the ac-

curacy drops are smaller at larger local estimates densities. Finally, the small decreasing

trend of the boundary tracking accuracy observed beyond 140min is explained if we con-

sider that up to this time instant most local estimates have become available (see Figure

6.11c) and therefore the construction of the boundary beyond that point is based mostly

on ``old'' local front estimates.

Figure 6.11d shows the probability to have a boundary construction event at each

one of the considered time instances. We observe that as the local estimates density

increases, the probability for a boundary construction event also increases for all time

instants. This behavior is justified if we consider that the higher local estimates density

implies more available local estimates at each time instant which in turn increases the

probability for a boundary construction to occur.

Boundary tracking evaluation under orientation and speed estimation errors

In this experiment we evaluate the boundary tracking accuracy of the proposed algorithm

under different orientation and percent speed error values. For each scenario (specific

density and error values) the evolution parameters (orientation or speed) of each local

estimate are distorted by the selected error values (see Section 6.4.3). The distortion

occurs by adding or subtracting (randomly selected operation) the selected error value

from the corresponding parameter.

Figures 6.12a and 6.12b show for each angle and percent speed error value respec-

tively, the boundary construction accuracy for all the local estimates density scenarios

considered. For each case (e.g. 20 local estimates, 10 degrees error) the results are

generated using as sample points the F1-score values estimated from all the boundary

constructions occurred using 1000 different (randomly selected) local estimates deploy-

ments. The line plots in Figures 6.12a and 6.12b indicate that as the angle and speed error
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Figure 6.12: Experiment 1: Boundary tracking accuracy under different local estimates
densities and (a) orientation errors, (b) speed errors. For all the orientation (speed) error
scenarios the speed (orientation) error was set to 0 in order to focus on how the orientation
(speed) errors affect the boundary tracking accuracy.

values increase, the boundary construction accuracy decreases. Another interesting ob-

servation is that the difference, between the boundary construction accuracies achieved

for each speed or percent speed error value, reduces as the number of local estimates

increases. This behavior is justified if we consider that for larger densities, the mean dis-

tance that the local fronts segments (that participate to the boundary construction) have

to travel in order to construct the diffusive objects boundary is smaller (they continuously

replaced from more recent estimates). Traveling smaller distances with erroneous evo-

lution parameters implies smaller boundary location errors and therefore better boundary

construction accuracy.

Boundary tracking evaluation under orientation and speed estimation uncertainties

In this experiment we evaluate for each local fronts' density scenario, how the boundary's

tracking accuracy is affected under different orientation and speed uncertainties (stds).

For each local fronts' density scenario we used the deployment that scored the median

boundary tracking accuracy from the 1000 considered random deployments. The orienta-

tion and speed uncertainty values pairs used were {10o, 10%}, {20o, 20%} and {30o, 30%}.

For each density and uncertainty value pair (e.g. 20 local fronts, {10o, 10%}) we attempt
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Figure 6.13: Experiment 1: Boxplots summarizing for the uncertainty pairs of values a)
{100, 10%} b) {20o, 10%}, c) {30o, 30%} the distribution of the boundary tracking accuracy
under different local estimates density scenarios. d) The mean boundary tracking accu-
racy under different local estimates density scenarios and uncertainty pairs of values.

to track the boundary 1000 times, where at each time, the evolution parameters (orienta-

tion ϕ̂i and speed ûi) of each local front mi, were randomly drawn from its corresponding

normal distributions (Ui, Φi).

Figures 6.13a, 6.13b, 6.13c summarize for each uncertainty value pair, the distribution

of the boundary's tracking accuracy, for all the considered local fronts densities scenarios.

For the generation of each boxplot we used as sample points the F1-scores estimated

at the time instants where a boundary construction has occurred. As we observe from

the provided boxplots the boundary tracking accuracy increases with the sensors density
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for all the evolution parameters uncertainty scenarios. Another interesting observation is

that the standard deviation of the boundary tracking accuracy decreases as the density

of sensors increases. This implies that as the number of sensors increases we become

more certain that the proposed algorithm will produce an accurate representation of the

diffusive object's boundary.

Figure 6.13d shows for each pair of evolution uncertainty parameter values, the mean

boundary tracking accuracy for all the local fronts densities scenarios considered. For

each case (e.g. 20 local fronts, {10o, 10%}) the results are generated using as sample

points the F1-score values estimated from all the boundary constructions occurred using

1000 runs. The line plots in Figures 6.13d indicate that as the orientation and speed un-

certainty values increase, the boundary tracking accuracy decreases. Another interesting

observation is that the difference, between the boundary tracking accuracies achieved for

each orientation and speed uncertainty values pairs, reduces as the number of local es-

timates increases. This behavior is justified if we consider that for larger local estimates

densities, the mean distance that the local front segments (that participate to the bound-

ary construction) have to travel (space-time projection) in order to construct the diffusive

phenomenon boundary is smaller. Traveling smaller distances with erroneous evolution

parameters implies smaller boundary location errors and therefore better boundary con-

struction accuracy.

6.5.2 Experiment 2: diffusive hazard with irregular shape

In this experiment we evaluate the proposed boundary reconstruction algorithm using dif-

fusive hazards with irregular evolution patterns (e.g. non-geometric front shapes, large

propagation speed variations). To generate hazards realistic characteristics we use FLogA

[87], a web-based interactive tool (developed in our group) which allow us to draw a forest

area anywhere in Europe over Google Earth [90], insert fire ignition points (``hotspots''),

define wind direction and speed scenarios, and then simulate and geo-animate the evolv-

ing wildfire.

Using FLogA we define a square forest area 3km× 3km at Hymettus mountain in At-

tica Greece and generate a wildfire scenario. Considering the area's bottom left corner
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as the origin, the fire ignite at point (1500m, 1500m). The wind speed and direction pa-

rameters were fixed within the forest area and their values were set to 2m/s (light breeze)

and 0o (with respect to the x axis) respectively. Similarly to Experiment 1, we evaluate

the proposed boundary reconstruction algorithm under different: a) local fronts estimates

densities ({10, 20, 30, 40} local fronts estimates per 1km2), b) local fronts' deployments

(1000 random deployments), c) local fronts orientation and percent speed errors scenar-

ios ({10o, 20o and 30o} degrees and {10%, 20% and 30%}) and d) orientation and percent

speed estimation uncertainties scenarios {10o, 10%}, {20o, 20%} and {30o, 30%}.

We summarize the simulation results in Figures 6.14 - 6.16. Their interpretations are

similar with these of Figures 6.11 - 6.13 of experiment 1. In this experiment the mean

boundary reconstruction accuracy (F1-scores) was on average smaller by 3.91 percent

(standard deviation 1.15 percent) relatively to Experiment's 1 considering the results from

all simulation scenarios. This accuracy decrease is justified if we consider the complex

evolution behavior of the wildfire's front line (irregular accelerations/decelerations, see

also the video provided in [104]) which makes the boundary tracking more difficult.

We presented an algorithm which is able to reconstruct with accuracy the boundary of

evolving continuous object using a small number of estimates that describe locally the ob-

ject's evolution characteristics. The algorithm exploits the uncertainty about the estimated

evolution parameters and generates the probability for each point of the considered area

to be affected by the continuous object. Extensive simulation results demonstrate that the

proposed algorithm is able to track accurately the boundary of different types of contin-

uous objects (e.g. time-varying evolution rates and/or irregular boundary shapes), while

using a small number of local fronts estimates which may be distorted with error.
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Figure 6.14: Experiment 2: a) Boxplots summarizing the distribution of the boundary track-
ing accuracy under different local estimates density scenarios. b) The boundary tracking
accuracy as a function of time for different local estimates densities. c) The mean num-
ber of the available local estimates that participate at each time instance to the boundary
construction algorithm, for different local estimates density scenarios. d) The boundary
reconstruction probability as a function of time for different local estimates density scenar-
ios.
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Figure 6.15: Experiment 2: Boundary tracking accuracy under different local estimates
densities and (a) orientation errors, (b) speed errors. For all the scenarios orientation
(speed) errors scenarios the speed (orientation) error was set to 0 in order to focus on
how the orientation (speed) errors affect the boundary tracking accuracy.
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Figure 6.16: Experiment 2: Boxplots summarizing for the uncertainty pairs of values a)
{100, 10%} b) {20o, 10%}, c) {30o, 30%} the distribution of the boundary tracking accuracy
under different local estimates density scenarios. d) The mean boundary tracking accu-
racy under different local estimates density scenarios and uncertainty pairs of values.
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Chapter 7

Conclusions and Further Research

Directions

During the last decade there has been a fast growing interest on developing efficient sys-

tems for tracking and predicting the evolution of hazards. Recently, a large number of

WSN-based schemes have been proposed for tracking the boundaries of continuous ob-

jects [22--40]. However, all the proposed schemes suffer from severe limitations (see

Chapter 1) that make them impractical for real world applications. In this doctorate disser-

tation we have presented a continuous object tracking scheme aimed at addressing these

limitations. We summarize below the contributions of this work:

Probabilistic sensing mechanism modeling in presence of hazards (Chapter 3)

We proposed a flexible probabilistic sensing modeling approach which in contrast with

the existing works that assume a perfect sensing mechanism (see L4 in Chapter 1), can

capture the detection distance uncertainty and the possibility for a sensor node to malfunc-

tion in a harsh environment created by an approaching hazard. This simple, yet realistic,

sensing model which was inspired by the analysis of real sensing data collected from two

outdoor experimental burns that (conducted at Gestosa's experimental field site in Portu-

gal [78]), allow us to formulate a local front models' parameters estimation problem in a

Bayesian manner. We analytically solved this Bayesian problem and derived closed-form

algebraic expression that can be easily implemented by microprocessors of the commod-

ity sensor nodes (see Chapter 5).
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Collaborative WSN algorithm for estimating the spatiotemporal evolution char-

acteristics of local fronts of continuous object (Chapters 4)

To address limitations L1, L3, L4 and L5 (presented in Chapter 1) of the state of the

art schemes, we developed an asynchronous collaborative algorithm that is able, using

WSNs of realistic density, to estimate with accuracy the spatiotemporal evolution param-

eters (orientation, direction and speed) of a continuous object's boundary. The proposed

parameters estimation procedure implemented in a collaborative fashion by dynamically

formed clusters (triplets) of sensor nodes. The algorithm updates the local front model

parameters and propagates them to sensor nodes situated in the direction of the hazard's

propagation in a fully decentralized manner. For the evaluation of the proposed collabo-

rative algorithm we developed a flexible simulation workflow which allows us to simulate

scenarios with different i) sensor node densities, ii) deployment strategies, iii) sensor node

and communication (Rx and Tx) failure probabilities, and iv) propagating hazard proper-

ties (shape, size and acceleration). Extensive simulation results show that the proposed

scheme can estimate with accuracy the time-varying local parameters of different types of

irregular fronts, while using WSNs of realistic density. Moreover, its estimation accuracy

is robust to changes in WSN density, sensor node failures and communication link failures

a fact that makes the presented approach very appealing for real-world hazard tracking

applications.

Simulation-driven emulation deployment in the field to assess the requirements

of the collaborative WSN algorithm (Chapters 5)

To realistically asses the requirements and behavior of the proposed algorithm (see L6

in Chapter 1), we developed a simulation-driven WSN emulation workflow which allows

us to estimate, before attempting to deploy a large scale WSN, the energy, processing

and memory requirements of collaborative algorithms as the WSN's size increases. Ex-

tensive emulation results demonstrate that our scheme is suitable for a large-scale WSN

deployment, since it respects WSNs' communication, processing, memory and energy

constraints.

Continuous object boundary reconstruction algorithm (Chapters 6)
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As discussed in Chapter 1, the state of the art are incapable to delineate automatically

the boundary of an evolving continuous object (see L7 in Chapter 1). To address this

limitation we developed an algorithm which combines dynamically the information of a

small number of estimated local front models, as they become available to a fusion center,

and determines a smooth curve that approximates the boundary of the continuous object

at a specific time instance. By exploiting the estimation uncertainty of the local fronts

evolution parameters, the proposed algorithm generates a probability field that indicate

for each point of the considered area, the probability to be affected by the continuous

object. Extensive simulations results demonstrate that the proposed algorithm is able to

reconstruct with accuracy the boundaries of different types of continuous objects (e.g.

time-varying evolution rates and/or irregular boundary shapes), using a small number of

local estimates where their evolution parameters may be distorted with error.

Further Research directions

Let us conclude this document by identifying some research directions worth pursuing:

An interesting open problem, is the development of efficient WSN-based methods able

to determine the number of continuous objects that evolve simultaneously into the area

of interest. Another challenging problem is the development of methods able to success-

fully associate the estimated local front estimates to their originating continuous objects.

Solving these problems can help us to develop continuous object tracking systems able

to track the boundaries of multiple continuous objects that evolve simultaneously in the

considered area. Moreover, by making simple modifications to the proposed boundary re-

construction algorithm we will be able to capture possible merges of the continuous object

boundaries which are expected to occur during their evolution.

Another worth pursuing research direction is the development of efficient Dynamic Data

Driven Assimilation Systems (DDDAS) based on the proposed WSN-based continuous

object tracking scheme. As discussed in Chapter 2, a major limitation of the DDDAS

systems is that in most cases the sensing data cannot be exploited to calibrate the pa-

rameters of hazard predictive models. However, the proposed continuous object tracking

scheme can help us to overcome this difficulty since the produced boundary's information

can be directly compared with the information of the boundary extracted by a hazard-
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specific model. The direct comparison of the boundaries information can help us to de-

velop appropriate parameter calibration methods able to improve the predictions of the

hazards-specific models.
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Appendix A

Local Front Orientation Updating

Procedure

In this section we present the details of the local front's orientation parameter (ϕ∗
i ) updating

procedure (see also Section 3.4.2, Chapter 3). LetK1 andK2 be the points that determine

the updated local front's orientation. For the calculation of the coordinates of points K1

andK2, namely (x1, y1) and (x2, y2), Master node SM
i implements the following procedure:

When SM
i receives two detection messages (DMs), one message from each one of its

Helpers (SH
h , where h ∈ {j, k}, see Figure A.1) it checks in its neighborhood table TN

i to

find which Helper has detected the phenomenon most recently (it will be assumed to be

Helper SH
k w.l.o.g). Using the detection time of this sensor (tik) and the corresponding

estimated speed values uih (see Section 3.3, Chapter3) SM
i can calculate the expected

distances {lih, h ∈ {j, k}} (see Figure A.1) that the two Helpers projection points, pih,

would cover if they were to move with the estimated speeds {uih, h ∈ {j, k}} for a time

interval equal to tik respectively on a line perpendicular to the local front.

lih = uihtik, h ∈ {j, k}. (A.1)

The coordinates of the projection points pih = (xih, yih) are determined during the Cre-

ate Helper Table Procedure (see Section 4.2.1, Chapter 4), where the Master SM
i solves

the following linear system of equations for each one of the Slaves:
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Figure A.1: Updating the local front orientation parameter.

ϵi : yih − yi = ϕi(xih − xi)

ϵih : yih − yh = − 1
ϕi
(xih − xh)

(A.2)

where (xi, yi) are the coordinates of Master SM
i . Solving this system leads to the following

equations for the coordinates of the projection points:

xih = ϕi(yh−yi+ϕixi)+xh

ϕ2
i+1

yih =
ϕ2
i yh+ϕixh+yi−ϕixi

ϕ2
i+1

(A.3)

To find the coordinates (to be called (xz, yz), z ∈ {1, 2}) of the two points Kz we can

solve the following two systems of equations, where for K1 (z ← 1,h ← j) and for K2

(z ← 2,h← k) we have:

ϵih : yz − yih = − 1
ϕi
(xz − xih)

Cih : (xz − xih)
2 + (yz − yih)

2 = l2ih

(A.4)
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The first equation in (A.4) defines a line which is perpendicular to the local front and

emanates from the corresponding Helper's projection point pih = (xih, yih). The second

equation defines a circle centered at the corresponding projection point pih that has radius

equal to lih.

Solving this system of equations provides us with two closed form algebraic expres-

sions (A.5) for computing the intersection points of the line and the circle (yellow and

magenta points in Figure A.1). From these solutions we accept only the one which lies in

the half plane (determined by the local front line) where the Helper nodes reside.


xz = xih ±

lihϕi

√
ϕ2
i+1

ϕ2
i+1

yz = yih ∓
lih
√

ϕ2
i+1

ϕ2
i+1

(A.5)

where xih, yih are computed according to (A.3).

Using (A.5), ϕ∗
i can be computed as shown in equation (3.14) in the main text.

ϕ∗
i =

y2 − y1
x2 − x1

. (A.6)
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Appendix B

Performance Evaluation

B.1 Experiment 1

As discussed in the paper (see Section 4.4.1) in this experiment the diffusive phenomenon

(continuous object) was modeled as two growing circles that start overlapping to form a

complex front line, before they cover half of the WSN deployment area. The experimental

setup indicates that at each time instance the time-varying speeds at which the two cir-

cles are expanding are equal. The evaluation metrics used to assess the accuracy of the

proposed scheme are described below:

Percent Speed Error: For a model update i at time t it is defined as:

SEi(t)% = 100 · |u
∗
i (t)− uR(t)|

uR(t)
(B.1)

where u∗
i (t) is the estimated local front's mean speed value and uR(t) is the reference

(ground truth) evolution speed of the circular fronts at the time t of a model update.

Orientation Error: For the evaluation of the local front's orientation error we use the

following procedure:

Let us consider first the case in which the Helper nodes of a triplet have been affected

by the same circular front. In Figure B.1a the sensor node SM
i has just updated its prior
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(a) (b)

Figure B.1: The orientation error evaluation method followed when the Helper nodes of a
triplet have been affected from (a) the same circle, (b) different circles.

model. The real front is represented by the dashed red line curve (an arc of the evolving

circular front), and the updated local front line ε1 is defined by points K1 and K2, as dis-

cussed in Section 3.3.2. Using the coordinates of the projection points pij and pik and the

coordinates of pointsK1 andK2 we can derive the equations of the lines ε4 and ε5 respec-

tively. By solving the system of equations of the circle (modeling the evolving front) with

the aforementioned lines, we can find the coordinates of the corresponding intersection

points A and B (see Figure B.1a) which define a chord of the circle. Points A and B corre-

spond to the points where K1 and K2 would lie respectively if we had estimated correctly

their locations (see Section S4). By assuming that the orientation of the real local front

is represented by the tangent line ε3 that osculates the circle at the middle of its arc
⌢

AB

(point Z), we can compute the orientation error between the ``real'' local front (ε3) and the

estimated local front (ε1) by calculating the angle θ (in degrees) which is formed between

the lines ε1 and ε2, taking into consideration that ε2//ε3 (a fact easy to prove).

Let us now also consider the case where the Helper nodes of a triplet have been af-

fected by different circular fronts (SH
j affected by circular front 1 and SH

k by circular front

2, see Figure B.1b). The orientation error θ is calculated as the angle (in degrees) formed

by line (ε1) of the updated local front and line (ε2) that is determined by points A and B

Dimitrios V. Manatakis 176



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

(see Figure B.1b) which are the points of the corresponding circular fronts where K1 and

K2 would lie if we had estimated correctly their coordinates. The coordinates of points A

and B are calculated by solving the following systems of equations: a) of the circular front

1 and line ε3 and b) circular front 2 and line ε4 respectively.

B.2 Experiment 2

FLogA (Fire Logic Animator) is a web-based software tool which allows us to draw a forest

area on Google Earth anywhere in Europe, insert interactively fire ignition points, simulate

and animate the behavior of the evolving fire line under different conditions (see reference

[87]).

FLogA considers the forest area as a grid of square cells, with every cell exhibiting

different topography and weather conditions. The dimensions of the cells are determined

by the user. To simulate the evolution behavior of a wildfire, FLogA accepts as input a set

of raster ASCII files that contain information about the forest's topographic layers (slope,

aspect, fuel model, fuel moisture), the prevailing weather conditions (wind speed and wind

direction) in the forest's area, as well as the number and locations of the fire ignition points

(``hotspots''). FLogA uses cellular automata like algorithms to predict for each one of the

grid's cells information such as the time of fire's arrival, the fire line's speed and the fire

line's evolution direction etc. (see Figure B.2).

For all the wildfire scenarios of Experiment 2 (see Section 4.4.2) the 1km2 forest area

was seen by FLogA as a grid of 500 x 500 square cells. The size of each cell was 2m

x 2m. To evaluate the parameter estimation accuracy of the proposed in-network pro-

cessing algorithm we used the following procedure: At the end of a COOJA simulation

the generated file Updated Models is passed to the the Matlab component (see Section

4.3.1). This file contains the parameters of the updated local front models and the location

coordinates of their middle points (see pointM in Figure B.2). For each middle pointM its

coordinates (xm, ym) are calculated using the corresponding equations provided in (B.2)

below where (x1, y1) and (x2, y2) are the coordinates of pointsK1 andK2 respectively (see

Section 3.4.2).

Dimitrios V. Manatakis 177



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

Figure B.2: The 1km2 forest area is seen by FLogA as a grid of square cells. At the end
of a wildfire simulation FLogA predicts, for each one of the square cells, information such
as the time of fire's arrival, frontline's evolution direction and speed. At the bottom right
corner we visualize the direction error evaluation procedure described in the text (see
Section S2.2).

xm =
x1 + x2

2
, ym =

y1 + y2
2

(B.2)

Using the location coordinates of the updated local fronts' mid-points, a Matlab procedure

determines the grid's cells that contain them. Subsequently, another Matlab procedure

compares the evolution parameters (orientation and speed) of the updated local front mod-

els with the ground truth values, as provided by FLogA's output files for the corresponding

cells.

Orientation Error: is defined as the angle of the estimated local front's segment evo-

lution direction (black arrow in Figure B.2) and the real front line's evolution direction (red

arrow in Figure B.2) provided by FLogA for cell c where the corresponding local front's

middle point belongs to.
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Percent Speed Error: Similar to Experiment 1 the speed error is determined as:

SEi(c)% = 100 · |u
∗
i (c)− uR(c)|

uR(c)
(B.3)

where u∗
i (c) is the estimated i th local front's mean speed value and uR(c) is the cor-

responding ``real'' (reference, ground truth) front's evolution speed at cell c where the

corresponding local front's middle point M lies.
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Appendix C

Experiment 1: Setup and Animation

In Experiment 1 a complex diffusive phenomenon is assumed, modeled as two circles of

fixed centers located outside the 1km2 square deployment area of the WSN. Considering

the area's bottom left corner as the origin, the circles (colored black and red in Figure C.1)

are centered at points (100,-50) and (950,-300) (not visible in the Figure C.1) and have radii

initially equal to 50m and 300m respectively, i.e. the circles represent two distinct diffusive

hazards which have just started entering the deployment area at the beginning of the

simulation (see Figure C.1a). The two circles start to overlap as they grow, before covering

half of the WSN deployment region (an 1km2 square area with 100 randomly deployed

sensor nodes), to form a complex front line (e.g. see Figures C.1b, C.1c, C.1d). The

speed at which their radii are increasing is a triangular function with initial value 0.5m/min

and a rate of increase of (0.006m/min2) until it assumes its maximum value (2.5m/min),

which happens when the two circles reach the middle of the deployment area. Beyond that

point it starts decreasing at the same rate until it returns back to its initial value. Therefore,

when the front arrives at the other end of the deployment area its speed is again back to

0.5m/min.

For Experiment 1 (presented in Section 4.4.1) we have created (using Matlab) an ani-

mation of the model updates (see file Experiment1TwoFronts.mp4 in [88]) in order to help

the reader get a visual impression of the distributed algorithm's results (estimated local

fronts) as the hazard's front line is progressing in the area of a deployed WSN. Figure C.1

shows six snapshots of the created animation. When a sensor detects the front its colour is

changed from blue to red. When a sensor assumes a Master status it is marked by a black
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triangle. The line segments that appear in the animation during the front's evolution rep-

resent the computed local front estimates (model updates) approximating the progressing

frontline. The four more recent local front updates are coloured black. The snapshot in

Figure C.1e clearly demonstrates that the local front estimates (black line segments) may

approximate even complex hazard fronts (formed by the two overlapping circles).

Figure C.1f shows, for the presented simulation scenario of Experiment 1, the Mas-

ter status ``inheritance'' trajectories during the hazard's evolution. The arrowed red lines

point to the Helper nodes that inherited the Master status. A sequence may get discon-

tinued when none of the Helpers meet the conditions to become the new Master (see

Section 4.2.1). In that case the last arrow in a sequence points to the Helper node that

detected most recently the evolving front line. Notice that each Master node (black trian-

gle) propagates the updated local front parameter estimates in the direction of the hazard's

propagation. Each updated local front segment (represented by a cyan or black line seg-

ment) is centred at the location of the Helper node who detected last the evolving front

(regardless of whether it mets the conditions to become the new Master node or not). In

this Figure we also observe that two Master status ``inheritance'' trajectories may merged

at the same sensor node (the same Helper). This interesting case may happen when a

Helper node is enslaved to two Masters (belongs to the intersection of their clusters).

At this point we want to mention the following interesting scenario that can be handled

without any problem: A Helper node may be enslaved to more than one Masters (if it

belongs to the intersection of their clusters). If this Helper node receives a MOM from one

of its Masters it may accept the offer (if it satisfies the necessary conditions) while it also

continues to serve as Helper to another Master. If now this new Master receives (before

it updates its model parameters) a MOM from a second Master, it will checks (for the cor-

responding model) the ``Master check Necessary Conditions'' (see Section 4.2.1) and if

they are satisfied it will accepts that offer as well. By the end of this procedure the new

Master has formed for each accepted offer a TH table that contains the legitimate Helper

pairs that could be used for updating each model. The new Master waits to receive the

DMs from two of its neighbors that constitute a legitimate Helpers pair in at least one of

its TH tables. If the pair that responds is contained in only one of its TH tables then the

node updates only the corresponding model and discards the rest. Otherwise, if the same
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Helpers pair is present in more than one TH tables, the node updates the corresponding

models and selects among them to propagate the one with the smallest speed variance

(smallest speed uncertainty).

Dimitrios V. Manatakis 183



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

Figure C.1: Figures C.1a -C.1f, show 6 snapshots of the presented simulation scenario of
Experiment 1. In Figure C.1f the red arrows show theMaster status inheritance trajectories
that occur during the hazard's front line propagation.
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Appendix D

Calculating the Coordinates of Local

Front End Points

Using the middle point's coordinates PM
i = (xM

i , yMi ), the length li = 2Ri, and the orienta-

tion realization ϕ̂i of a local front estimate mi we can calculate the coordinates of its end

points PEz
i = (xEz

i , yEz
i ) where z = {1, 2} by solving the following system of equations:

εi : y − yMi = tan(ϕ̂i)(x− xM
i )

Ci : (x− xM
i )2 + (y − yMi )2 = R2

i

(D.1)

The first equation in (D.1) defines a line (εi in Figure D.1) on which the local front's

line segment lies. The second equation defines a circle (Ci) of radius equal to Ri =
li
2
,

centered at the local front's segment middle point PM
i (see Figure D.1). The solution of

(D.1) provides us the following closed formed algebraic expression (see equation (D.2))

which are used for the computation of the local front's end points coordinates (xEz
i , yEz

i )

where z = {1, 2}.

xEz
i = ±Ri

√
tan2(ϕ̂i)+1

tan2(ϕ̂i)+1
+ xM

i

yEz
i = ±Ritan(ϕ̂i)

√
tan2(ϕ̂i)+1

tan2(ϕ̂i)+1
+ yMi

(D.2)

Dimitrios V. Manatakis 185



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

Figure D.1: The local front estimate mi; the coordinates of its end points (red dots) are
determined by the points of intersection between line εi and circle Ci.
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Appendix E

Space-Time Evolution of a Local Front

Estimate

Let's assume that we want to determine the location of a local front estimatemi (estimation

time ti) at time instance tj (where ti < tj).

Using the speed realization ûi, we calculate (see equation (E.1)) the distance d̂ij that

it will be covered by mi if it moves for time interval equal to ∆tij = |ti − tj|.

d̂ij = ûi∆tij (E.1)

In sequence, solving the system of equations in (E.2), we determine the middle point's

coordinates (PM
i (tj) = (xM

i (tj), y
M
i (tj))) of the space time projected local front estimate

(mi(tj)).

εi : y − yMi = −1

tan(ϕ̂i)
(x− xM

i )

Ci : (x− xM
i )2 + (y − yMi )2 = d̂2ij

(E.2)

The first equation in (E.2) defines a line (εi in Figure E.1) which is perpendicular to the local

front and emanates form its middle point PM
i = (xM

i , yMi ). The second equation defines a

circle of radius d̂ij centered at the local front's segment middle point PM
i (see Figure E.1).

Solving this system of equations provides us with two closed form algebraic expres-

sions for computing the intersection points of the line εi and the circle Ci (see Figure E.1).
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Figure E.1: Space-time evolution of the local front mi at time tj.

From these solutions we accept only the point that lies in the half plane which indicated

by the direction parameter δi (green point in Figure E.1).xM
i (tj) = ±

d̂ijtan(ϕ̂i)
√

tan2(ϕ̂i)+1

tan2(ϕ̂i)+1
+ xM

i

yMi (tj) = ∓
d̂ij

√
tan2(ϕ̂i)+1

tan2(ϕ̂i)+1
+ yMi

(E.3)

The point PM
i (tj) = (xM

i (tj), y
M
i (tj)) consists the new location of mi(tj) middle point. For

the calculation of mi(tj) end points coordinates (PEz
i (tj) = (xEz

i (tj), y
Ez
i (tj)) where z =

{1, 2}) we apply the equations provided in (D.2).
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Appendix F

Information Fusion of Local Fronts

We present the proposed information fusion technique applied in event's 4 handling proce-

dure (see Section 6.2.1). This technique uses the information of the local fronts estimates

(mi(tf ) and mj(tf ) in Figure F.1) that satisfy the event's 4 condition, and calculates the

parameters of a ``new'' local front (mf ) that describes locally the evolution characteristics

of the continuous objects boundary at time tf .

The information fusion technique calculates for each local front estimatemh(tf ) (where

h ∈ {i, j}), the time differences ∆th = |tf − th|. Next, using the parameters of the speed

distributions Uh, it determines for each local front estimate mh(tf ) the distance Dh that it

will cover if it moves for time interval equal to∆th. Since the speed Uh described by a Nor-

mal distribution N (uh, s
2
h), the distance Dh will also be described by Normal distributions

N (dh, ω
2
h) with parameters:

dh = uh∆th

ωh = sh∆th
(F.1)

In equation (F.1) it is worth to mention that as the time difference ∆th increases, the

uncertainty (ωh) about the local front's (mh) traveled distance will also increases.

In sequence, the procedure calculates for each local front mh the distance d̂h, that it

will cover if it moves with the sampled speed ûh for time interval ∆th.

d̂h = ûh∆th (F.2)
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Using the orientation Φh and distance Dh distributions, and the values ϕ̂h and d̂h, we

calculate the weights (see equation (F.3)) that will be used for the calculation of the mf

parameters:

wh =
Φh(ϕ̂h)Dh(d̂h)∑

k=i,j

Φk(ϕ̂k)Dk(d̂k) (F.3)

For the calculation of the weights we consider that the local front estimate with the

larger likelihood values (Φh(ϕ̂h), Dh(d̂h)) should be trusted more.

Using the weights wh, the procedure calculates the parameters of the ``new'' local front

estimate mf as follows:

Zf =
∑

h={i,j}

whZh where Z = {ûf , ϕ̂f , lf , x
M
f , yMf } (F.4)

Figure F.1: Models Information Fusion.

To estimate the evolution direction parameter δf the procedure uses the local fronts

orientations (ϕ̂h), the evolution directions (δh) and the weights (wh) and determines two

vectors which: a) are perpendicular to the corresponding local fronts segments, b) point

to the corresponding local fronts' evolution directions and c) the ratio of their lengths is

equal to the corresponding ratio of their weights wi

wj
. In sequence, using these vectors the

algorithm calculate their resultant which determines the evolution direction of the ``new''
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local front estimatemf . Using the equation of the line where the ``new'' local front estimate

mf lies, we determine in which half plane (positive or negative) the vector of the resultant

points and we assign the corresponding value (+1 or -1) to the direction parameter δf .

To calculate the speed (orientation) distribution ofmf we apply the following procedure:

Figure F.2: Estimating the speed/orientation (Uf/Φf ) distributions of model mk. (a) The
speed/orientation distributions of models mi and mj. (b) The mixture models PU/PΦ re-
sulting by combining speed/orientation normal distributions of {mi,mj} and the normal
distribution Uf/Φf that best approximates PU/PΦ by minimizing the Kulback-Leibler diver-
gence.

Using the wh and the corresponding speed (orientation) distributions of the local fronts

mh, we find their Gaussian mixture (see Figure F.2):

pU(u) =
∑

h={i,j}

wh ∗ N (u|uh, s
2
h)

pΦ(ϕ) =
∑

h={i,j}

wh ∗ N (ϕ|ϕh, σ
2
h) (F.5)

In sequence, by applying variational calculus we approximate the Gaussian mixture in

F.5 by a Normal distribution which minimizes the Kullback-Leibler (KL) divergence (max-

imizes the similarity) from the Gaussian mixture [80]. The general form of the equations

which can be used to compute the parameters of these normal distributions are:

µ̂ =
∑
n

wnµn (F.6)
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Σ̂ =
∑
n

wn(Σn + (µn − µ̂)(µn − µ̂)T ) (F.7)

In our specific case these equations are reduced to:

Speed parameters

uf =
∑

h={i,j}

whuh (F.8)

s2f = wis
2
i + wjs

2
j + wiwj(ui − uj)

2 (F.9)

Orientation parameters

ϕf =
∑

h={i,j}

whϕh (F.10)

σ2
f = wiσ

2
i + wjσ

2
j + wiwj(ϕi − ϕj)

2 (F.11)

The normal distribution parameters that calculated from the above equations describe

mf 's speed (Uf = N (uf , s
2
f )) and orientation angle (Φf = N (ϕf , σ

2
f )) normal distributions.
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Appendix G

Initialization of Local Front Evolution

Parameters

In this Appendix we present how we initialize the local fronts' evolution parameters for the

experiments presented in Chapter 6.

Figure G.1: Initalization of the local fronts parameters.

G.1 Experiment 1: Circular Front

Let's assume that the circular boundary reaches the middle point of a local front segment

(mi) at time instance tR (see Figure G.1a). We set its speed (ui) parameter equal to the
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speed that has the circle's increasing radius at time tR and its orientation (ϕi) parameter

equal to the angle formed between the x-axis and the circle's tangent line (εi in Figure

G.1a) that osculates from the middle point of mi.

G.2 Experiment 2: FLogA Simulation

FLogA (Fire Logic Animator) is a web-based software tool which allows us to draw a forest

area on Google Earth anywhere in Europe, insert interactively fire ignition points, simulate

and animate the behavior of the evolving fire line under different conditions [87]. FLogA

considers the forest area as a grid of square cells, with every cell exhibiting different topog-

raphy and weather conditions. The dimensions of the cells are determined by the user.

To simulate the evolution behavior of a wildfire, FLogA accepts as input a set of raster

ASCII files that contain information about the forest's topographic layers (slope, aspect,

fuel model, fuel moisture), the prevailing weather conditions (wind speed and wind direc-

tion) in the forest's area, as well as the number and locations of the fire ignition points

(``hotspots''). FLogA uses cellular automata like algorithms to predict for each one of the

grid's cells information such as the time of fire's arrival, the fire line's speed and the fire

line's evolution direction etc (see Figure G.1b). We set the local front's speed (ui) and

orientation (ϕi) parameters, equal to the speed and evolution direction values of the cell

that contains the middle point of mi.

Dimitrios V. Manatakis 194



Bibliography

[1] P. Parmar, M. Zaveri, ``Multiple Target Tracking and Data Association in Wireless

Sensor Network,'' IEEE Int. Conf. on Computational Intelligence and Communication

Networks (CICN) , pp.158,163, 3-5 Nov. 2012.

[2] M.A.Tinati, T.Y.Rezaii, ``Multi-target Tracking in Wireless Sensor Networks Using

Distributed Joint Probabilistic Data Association and Average Consensus Filter,'' Int.

Conf. on Advanced Computer Control, (ICACC '09). pp.51,56, 22-24 Jan. 2009.

[3] J. Lui, J.E. Reich and F. Zhao, ``Collaborative in-network processing for target track-

ing'', EURASIP, Journal of Applied Signal Processing, vol.2003, pp.378-391, Mar.

2003.

[4] J. Lui, M. Chu, J.E. Reich and F. Zhao, ``Distributed state representation for tracking

problems in sensor networks'', in Proc. 3rd int. symp. Information Processing Sensor

Networks (IPSN), Berkeley, CA, April. 2004, pp. 234-242.

[5] J. Liu, M. Chu, J.E.Reich, ``Multitarget Tracking in Distributed Sensor Network,'' Sig-

nal Processing Magazine, 24 (3), pp. 36-46, May 2007.

[6] M.E. Liggins, C. Y. Chong, I. Kadar, M.G. Alford, V. Vannicola, and S. Thomopoulos,

``Distributed fusion architectures and algorithms for target tracking'', Proceedings of

the IEEE , vol.85, no.1, pp.95,107, Jan. 1997.

[7] J. Shin, L. Guibas, and F. Zhao, ``A distributed algorithm for managing multi targets

identities in wireless ad-hoc sensor networks'', In proc. 2nd Workshop Information

Processing Sensor Networks (IPSN), April 2003.

Dimitrios V. Manatakis 195



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[8] I. Hwang, K. Roy, H. Balakrishnan, and C. Tomlin, ``A distributed multiple target iden-

tity management algorithm in sensor networks,'' in Proc. 43rd IEEE Conf. Decision

Control, Paradise Island, Bahamas, Dec. 2004.

[9] J. Liu, M.Chu, E. Reich, ``Mulittarget Tracking in Distributed Sensor Network '', IEEE

Signal Processing Magazine, vol. 24, no. 3 pp.36-46, May 2007.

[10] T. Fortnamm, Y. Bar-Shalom, and M. Scheffe, ``Multi-target tracking using joint prob-

abilistic data association'', in Proc. 19th IEEE Conf. Decision Control, Albuquerque,

NM, Dec. 1980.

[11] S. Oh, S. Russell, and S. Sastry, ``Markov Chain Monte Carlo data association for

general multiple target tracking problems,'' in Proc. 43rd IEEEConf. Decision Control,

Paradise Island, Bahamas, Dec. 2004.

[12] S. Oh, I. Hwang, K. Roy, and S. Sastry, ``A fully automated distributed mutiple target

tracking and identity management algorithm'' in Proc., AIAA Guideance Navigation,

and Control Conf., Aug.2005.

[13] K. Martinez, J.K. Hart, R. Ong, "Environmental sensor networks," Computer , vol.37,

no.8, pp.50,56, Aug. 2004

[14] O. Sekkas, D.V. Manatakis, E. S. Manolakos and S. Hadjieuthimiades, ``Sensor and

Computing Infrastructure for Environmental Risks - The SCIER System'' chapter 16,

in Advanced ICTs for Disaster Management and Threat Detection: Collaborative and

Distributed Frameworks, pp. 262-278 ISBN: 9781615209873 l, 2010.

[15] O. Sekkas, D. V. Manatakis, S. Hadjiefthymiades, E. S. Manolakos, ``Detection and

evolution prediction of fires in the Wildland Urban Interface using Sensor Networks

and Grid Computing,'' In Proc. VI International Conference on Forest Fire Research,

Coimbra-Portugal, November 2010.

[16] N. Voutsinas, D. V. Manatakis, and E. S. Manolakos, ``Using the GRID for Forest Fire

Front Evolution Prediction'', In Proc. 4th International Workshop on Grid Computing

for Complex Problems (GCCP), Bratislava, Slovakia, Oct. 2008. pp. 20-27.

Dimitrios V. Manatakis 196



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[17] M. Hefeeda, M. Bagheri, ``Wireless Sensor Networks for Early Detection of Forest

Fires'', Pisa, Italy, in the Proceedings of the 1st International Workshop on Mobile

Ad hoc and Sensor Systems for Global and Homeland Security (MASS-GHS), Pisa,

Italy, pp. 1-6, Oct. 2007.

[18] L. Zhanqing, A. Khananian, R. Fraser, J. Cihlar, ``Automatic Detection of Fire Smoke

using Artificial Neural Networks and Threshold Approaches applied to AVHRR Im-

agery '', IEEE Transactions. On Geoscience and Remote Sensing, vol. 39, n9, pp.

1859-1870, 2001.

[19] I. Yoon, D. K. Noh, D. Lee; R. Teguh, T. Honma, H. Shin, ``Reliable Wildfire Mon-

itoring with Sparsely Deployed Wireless Sensor Networks,'' Advanced Information

Networking and Applications (AINA), 2012 IEEE 26th International Conference on,

pp.460,466, 26-29 March 2012.

[20] A. Santoni, T., Santucci, J.F. de Gentili, E. C. Bernadette, ``Using Wireless Sensor

Network for Wildfire detection. A discrete event approach of environmental monitor-

ing tool,'' Environment Identities and Mediterranean Area, (ISEIMA '06), First inter-

national Symposium on, pp.115,120, 9-12 July 2006.

[21] Y. Li, Z. Wang, Y. Song, ``Wireless Sensor Network Design for Wildfire Monitor-

ing,'' The Sixth World Congress on Intelligent Control and Automation, 2006 (WCICA

2006), vol.1, pp.109,113.

[22] Chintalapudi, and R. Govindan, ``Localized edge detection in sensor fields,'' in IEEE

International Workshop on Sensor Network Protocols and Applications, pp. 59 - 70,

May 2003.

[23] R. Nowak and U. Mitra, ``Boundary estimation in sensor networks: theory and meth-

ods,'' in 2nd Inter. Workshop on Information Processing in Sensor Networks, pp.

22-36. Apr. 2003.

[24] P. K. Liao, M. K. Chang, and C. J. Kuo, ``Distributed edge detection with composite

hypothesis test in wireless sensor network',' in Proc. IEEE Inter. Global Communica-

tion Conference (GLOBECOM), pp. 129-133, 2004.

Dimitrios V. Manatakis 197



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[25] P. K. Liao, M. K. Chang, and C. J. Kuo, ``Distributed Edge Sensor Detection with one

and two level decisions'', in Proc. IEEE Inter. Conf. on Acoustics, Speech and Signal

Processing (ICASSP), pp. 297-300, 2004.

[26] P. K. Liao, M. K. Chang, and C. J. Kuo, ``Statistical Edge Detection with Distributed

Sensors under the Neyman-Pearson (NP) Optimality,'' in Proc. IEEE Inter. Conf. Ve-

hicular Technology, pp. 1038 � 1042, 2006.

[27] J. Liu, P. Cheung, L. Guibas, and F. Zhao. ``Apply geometric duality to energy efficient

non-local phenomenon awareness using sensor networks'', IEEE Wireless Commu-

nication Magazine, 11:62--68, 2004.

[28] X. Ji, H. Zha, J.J. Metzner, and G. Kesidis, ``Dynamic cluster structure for object

detection and tracking in wireless ad-hoc sensor networks,'' Proc. IEEE International

Conference on Communications (ICC), pp. 3807 - 3811, 2004.

[29] W. R. Chang, H.-T. Lin, and Z.-Z. Cheng, ``CODA: A Continuous Object Detection

and Tracking Algorithm for Wireless Ad Hoc Sensor Networks,'' in Consumer Com-

munications and Networking Conference 2008, Las Vegas, USA, pp. 168-174, 2008.

[30] C. Zhong and M. Worboys, ``Energy-efficient continuous boundary

monitoring in sensor networks,'' Technical Report, 2007. Available:

http://ilab1.korea.ac.kr/papers/ref2.pdf

[31] J.Kim, K. Kim, S.Chauhdary, W. Yang, M. Park, ``textitDEMOCO: Energy-Efficient

Detection and Monitoring for Continuous Objects in WSN'', IEICE Trans.on Commu-

nications, vol.E91-B, no. 11, pp.3648-3656, Nov. 2008.

[32] B. Park, S. Park, E. Lee, and S.-H. Kim, ``Detection and Tracking of Continuous

Objects for Flexibility and Reliability in Sensor Networks,'' in Proc. IEEE Inter. Conf.

International Conference on Communications, Cape Town pp.1-6, 2010.

[33] E. Lee, S. Park; F.Yu; M.-S. Jin; H. Park, S.-H. Kim, ``Dynamic Rectangle Zone-

Based Collaboration Mechanism for Tracking Continuous Objects in Wireless Sensor

Networks'', in Proc. of the 4th IEEE Conf. Wireless Communications, Networking and

Mobile Computing, pp. 1-5, 2008.

Dimitrios V. Manatakis 198



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[34] M.-S. Jin, F. Yu, S. Park, E. Lee, S.-H. Kim, ``Localized Mechanism for Continuous

Object Tracking and Monitoring in Wireless Sensor Networks,'' in Proc. of the IEEE

Conf. Autonomous Decentralized Systems, pp. 1-8 2009.

[35] S.-C. Tu, G.-Y. Chang, J.-P. Sheu, W. Li, and K.-Y. Hsieh, ``Scalable Continuous Ob-

ject Detection and Tracking in Sensor Networks,'' Journal of Parallel and Distributed

Computing (Elsevier), vol. 70, Issue 3, pp.212-224, March 2010.

[36] H. Luan, Y. Zhang, D. Gao, Y. Zhen, and X. Ma, ``Continuous Object Tracing in Wire-

less Sensor Networks,'' in Proc. of the IEEE International Conference on Electrical

and Control Engineering, pp.3410-3413, 2011.

[37] S.-W. Hong, S.-K. Noh, E. Lee, S. Park and S.-H. Kim, ``Energy Efficient Predictive

Tracking for Continuous Objects in Wireless Sensor Networks,'' in Proc. 21st Inter.

Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1725-1730,

2010.

[38] S.-W. Hong, S.-K. Noh, E. Lee, S. Park and S.-H. Kim, ``A Novel Continuous Object

Tracking Scheme for Energy Constrained Wireless Sensor Networks,'' in Proc. of the

IEEE. Conf. Vehicular Technology, pp.1-5, 2010.

[39] H. Hong, S. Oh, J. Lee, S. Kim, ``A Chaining Selective Wakeup Strategy for a Ro-

bust Continuous Object Tracking in Practical Wireless Sensor Networks,'' Advanced

Information Networking and Applications (AINA), 2013 IEEE 27th International Con-

ference on , vol., no., pp.333,339, 25-28 March 2013

[40] J. Chen, M. Salim and M. Matsumoto, ``A Gaussian Mixture Model-based Event-

Driven Continuous Boundary Detection in 3D Wireless Sensor Networks,'' Publisher:

InTech, ISBN: 978-953-307-321-7 , 2010.

[41] G. Jin and S. Nittel, ``Tracking deformable 2D objects in wireless sensor networks,''

In Proc. of the 16th ACM SIGSPATIAL International Conference on Advances in Ge-

ographic Information Systems. pp. 491-494, 2008.

Dimitrios V. Manatakis 199



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[42] Y. Xu, W. Bao, and H. Xu, ``An algorithm for continuous object tracking in WSNs,''

in Proc.of the IEEE Conf. Research Challenges in Computer Science, pp.242-246,

2009.

[43] S. Duttagupta, K.Ramamrithma, ``Distributed Boundary Estimation using Sensor

Networks'', in Proc. of the international IEEE conference Mobile Ad-hoc and Sensor

Systems (MASS), Vancouver (BC), pp. 316-325, Oct. 2006.

[44] S. Duttagupta, K.Ramamrithma, ``Tracking Dynamic Boundaries using Sensor Net-

work'', IEEE Transactions on Parallel and Distributed Systems, vol. 22, num.10, pp.

1766-1774, Oct. 2011.

[45] Q. Huang; C. L. Roman,``Reliable mobicast via face-aware routing,'' Twenty-third

AnnualJoint Conference of the IEEE Computer and Communications Societies (IN-

FOCOM 2004), vol.3, no., pp.2108,2118 vol.3, 7-11 March 2004

[46] H. Anderson,``Predicting wind-driven wildland fire size and shape''. USDA Forest

Service Research Paper. INT-305, Feb 1983.

[47] M. Alexander, ``Estimating the length to breadth ratio of elliptical forest fire patterns''.

Proc. 8th Conf. on Fire and Forest Meteorology, pp. 287-304. 1985.

[48] M. Marghany, ``RADARSAT for oil spill trajectory model'', Journal of Environmental

Modeling and Software, Vol. 19, May 2004, pp. 473-483.

[49] E. S. Manolakos, D. V. Manatakis, G. Xanthopoulos, ``Temperature Field Modeling

and Simulation of Wireless Sensor Network Behavior During a Spreading Wildfire'',In

Proc. 16th European Signal Processing Conference (EUSIPCO), August, 2008.

[50] U.S. Tristan, ``The Diffusion Equation A Multi-dimensional Tutorial'', Available:

www.rpgroup.caltech.edu/ natsirt/aph162/diffusion.pdf (10/09/2011).

[51] J. Glasa , L. Halada,``On elliptical model for forest fire spread modeling and sim-

ulation'', International Journal of Mathematics and Computers in Simulation, vol.78

issue.1, pp.76-88, June, 2008.

Dimitrios V. Manatakis 200



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[52] M. A. Finney, ``FARSITE: fire area simulator - model, development and evaluation'',

USDA Forest Service, Res. paper RMRS-RP-4, 1998.

[53] J. Glasa, L. Halada, ``Application of envelope theory for 2D fire front evolution�,

Proceedings of the International Conference on Forest Fire Research, Figueira da

Foz, 2006.

[54] J. Glasa, E. Pajorova, L. Halada, P. Weisenpacher,``Animation of forest fire simu-

lation'', Proceedings of the International Conference on Environmental Applications

and Distributed Computing, Bratislava, 2006, 20-29.

[55] Glasa, P. Weisenpacher, ``Computer reconstruction of a fire in Slovak Paradise Na-

tional Park in October 2000'', Research report No. APVT-2007-03, Institute of Infor-

matics, Slovak Academy of Sciences, June 2007, 1-26.

[56] L. Halada, P. Weisenpacher, ``Principles of forest fire spread models and their sim-

ulation'', Journal of the Applied Mathematics, Statistics and Informatics, Vol.1, Iss.1,

2005, 3-13.

[57] R. R. Linn, J. Reisner, J. C. Colman, J. Winterkamp,``Studying wildfire behaviour

using FIRETEC'', International Journal of Wildland Fires, Vol.11, 2002, 233-246.

[58] A. M. G. Lopes, A. C. M. Sousa, D. X. Viegas, ``Numerical simulation of turbulent

flow and fire propagation in complex terrain'', Numerical Heat Transfer, Vol. 27, Iss.

2, 1995, 229-353.

[59] D. M. Molina-Terren, E. R. Martinez-Lopez, D. Garcia-Marco, ``Farsite simulations

for cost-effective wildland fire planning: case studies in Spain'', Forest Ecology and

Management, Vol. 234S, 2006, 127.

[60] D. Morvan, J. L. Dupuy, ``Modeling the propagation of a wildfire through a Mediter-

ranean shrub using a multiphase formulation'', Combustion and Flame, Vol.138,

2004, 199-210.

[61] E. Pajorova, L. Hluchy, L. Halada, P. Slizik, ``3D visualization tool for virtual models of

natural disasters'', Proceedings of the Virtual Reality International Conference, Laval,

France, 2007, 37-43.

Dimitrios V. Manatakis 201



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[62] J.Glasa, ``Computer simulation and predicting dangerous forest fire behavior '', Inter-

national Journal of Mathematics and Computer in Simulation, Issue 2,Vol.3, 2009.

[63] J. Mandel, J. Beezley, J. Coen, M. Kim, ``Data Assimilation for Wildland Fires: En-

semble Kalman filter in coupled atmosphere-surface models'', IEEE Control Systems

Magazine, vol.29, issue 3. pp. 47-65, 2009.

[64] Y. Wang, R. Tan, G. Xing, J. Wang, X. Tan, ``Accuracy-Aware Aquatic Diffusion Pro-

cess Profiling using Robotic Sensor Networks'', In Proc. of the 11th Int. Conf. on

Information Processing Sensor Networks (IPSN), pp.281-292, 2012.

[65] L. A. Rossi, B. Krishnamachari, C. C. J. Kuo, "Distributed Parameter Estimation for

Monitoring Diffusion Phenomena Using Physical Models", Int. Conf. IEEE Sensing

Communication and Networking (SECON), pp.460,469, Oct. 2004.

[66] X. Yan; F. Gu; X. Hu; S. Guo, ``A dynamic data driven application system for

wildfire spread simulation,'' Simulation Conference (WSC), In Proc of the Winter,

pp.3121,3128, Dec. 2009

[67] T. Artes, A. Cencerrado, A. Cortes, T. Margalef, D. R. Aseretto, T. Petrolagkis, J. S.

M. Ayanz, ``Towards a Dynamic Data Driven Wildfire Behavior Prediction System at

European Level'', In Proc. of the 14th Int. Conf. Computer Science (ICCS 2014), 29

(2014), pp. 1216 -1226.

[68] A. Ghosh, S. K. Das, ``Coverage and Connectivity Issues in Wireless Sensor Net-

works'', Elsevier Journal. Pervasive and Mobile Computing, Vol. 4, Issue. 3, pp. 303-

334, June 2008.

[69] Z. Zhou and J. Hou, ``Sensor Deployment and Target Localization in distributed Sen-

sor Networks'', ACM Transactions on Embedded Computing Systems, 3(1):61-91,

February 2004.

[70] Y. Zou and K. Chakrabarty, ``A Distributed Coverage and Connectivity Centric Tech-

nique for Selecting Active Nodes inWireless Sensor Networks'', IEEE Trans. on Com-

puters, 54(8):978-991, 2005.

Dimitrios V. Manatakis 202



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[71] N. Ahmed, S.S. Kanhere, and S. Jha, ``Probabilistic Coverage in Wireless Sensor

Networks'', In Proc. of IEEE Conf. on Local Computer Networks (LNC'05), pp. 672-

681, Nov. 2005.

[72] A. Hossain, P. K. Biswas and S. Chakrabarti, ``Sensing Models and its Impact on

Network Coverage in Wireless Sensor Network'', Industrial and Information Systems,

(ICIIS 2008). IEEE Region 10 and the Third int. Conf. on , vol., no., pp.1,5, 8-10 Dec.

2008.

[73] P. Soreanu, Z. Volkovich, ``New Sensing Model for Wireless Sensor Networks'', Int.

Jour. on Advances in Networks and Services, vol 2, no. 4, pp. 261-272, 2009.

[74] H. Ahmadi, ``Probabilistic Coverage and Connectivity in Wireless Sensor Networks'',

M.S. thesis, Dept. of Computer Science. Simon Fraser University, Vancouver,

Canada, 2007.

[75] A. Elfes, ``Occupancy grids: a stochastic spatial representation for active robot per-

ception'', In Autonomous Mobile Robots: Perception, Mapping and Navigation, Vol.

1, IEEE Computer Society Press, pp. 60-70, 1991.

[76] Y. Tsai, ``Sensing Coverage for Randomly Distributed Wireless Sensor Networks in

Shadowed Environments'', IEEE Tran. on Vehicular Technology, Vol.57, no. 1, pp.

556-564, January 2008.

[77] J. Zhang, T. Yan, S. H. Son, ``Deployment Strategies for Differentiated Detection

in Wireless Sensor Networks'', Sensor and Ad Hoc Communications and Networks,

(SECON '06). 3rd An.IEEEComm. Soc. on , vol.1, no., pp.316,325, 28-28 Sept. 2006.

[78] D. V. Manatakis, E. S. Manolakos, A. Roussos, G. Xanthopoulos, D. X. Viegas,``In-

silico estimation of the temperature field induced by moving fire. Predictive modelling

and validation using prescribed burn data''. Coimbra, Portugal. In Proc. of VI Interna-

tional Conference on Forest Fire Research, November 2010.

[79] A. Runalls, ``A Kullback-Leibler Approach to Gaussian Mixture Reduction'',IEEE

Trans. On Aerospace And Electronic Systems, Vol. 43, Issue. 3, pp. 989-999, 2007.

Dimitrios V. Manatakis 203



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[80] J.R. Hershey, P.A. Olsen, ``Approximating the Kullback Leibler Divergence Between

Gaussian Mixture Models'',In Proc. of the IEEE Int. Conf. Acoustics, Speech and

Signal Processing (ICASSP 2007), pp.IV-317 - IV-320.

[81] P. A. Bromiley ``Products and Convolutions of Gaussian Distributions'', Available:

http://www.tina-vision.net/docs/memos/2003-003.pdf

[82] C. M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, ISBN

978387310732

[83] S. Theodoridis, K. Koutroubas, Pattern Recognition. Academic Press, 4th Edition

2009, ISBN: 9781597492720.

[84] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A lightweight and flexible operating

system for tiny networked sensors. In Proc. of the 29th Annual IEEE Int. Conf. on

Local Computer Networks, (LCN 04), pp. 455-462, Washington, DC, USA, 2004.

[85] Atmel AVR Raven: http://www.atmel.com (10/02/2014).

[86] Martin Stehlik,``Comparison of Simulators for Wireless Sensor Networks,'' M.S. the-

sis, Faculty of Informatics., Masaryk University., Brno, Czech Republic 2011.

[87] N. Bogdos, E. S.Manolakos, ``A tool for simulation and geo-animation of wildfires with

fuel editing and hotspot monitoring capabilities,'' Elsevier Journal of Environmental

Modelling and Software, Vol.46, August 2013, pp. 182-195.

[88] Animation of algorithm's behavior in the presence of multi-source diffusion processes:

https://www.dropbox.com/sh/wwe154r4qn0gal6/xIEVNBNKH4

[89] U.S. Tristan, ``The Diffusion Equation A Multi-dimensional Tutorial'', Available:

www.rpgroup.caltech.edu/ natsirt/aph162/diffusion.pdf (07/12/2013).

[90] Google Earth: http://www.google.com/earth/ (20/01/2014).

[91] Firemodels.org-WindNinja:

http://www.firemodels.org/index.php/research-systems/windninja (07/12/2013)

Dimitrios V. Manatakis 204



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[92] B. Pavkovic , J. Radak, N. Mitton, F. Rousseau, I. Stojmenovic, ``From real neighbors

to imaginary destination: emulation of large scale wireless sensor networks'', In Proc.

of the 11th int. conf. on Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW'12),

pp. 459-471, isbn: 978-3-642-31637-1.

[93] AVR2016: RZRAVEN Hardware User's Guide:

http://www.jm.pl/karty/ATAVRRZRAVEN.pdf Last accessed (20/10/2013).

[94] Contiki 2.6: SICSLoWMAC Implementation:

http://contiki.sourceforge.net/docs/2.6/a01788.html Last accessed (10/10/2014)

[95] AVR Dragon Getting Started: http://www.uchobby.com/index.php/2009/03/02/avr-

dragon-getting-started/ Last accessed (20/10/2013)

[96] AVR Dragon - Atmel Corporation http://www.atmel.com/tools/avrdragon.aspx. Last

accessed (20/10/2013).

[97] E Shih, S Cho, N Ickes, R Min, A Sinha, A Wang and A Chandrakasan ``Physi-

cal layer driven protocol and algorithm design for energy-efficient wireless sensor

networks'', In Proc. of ACM Mobile Computing and Networking (MobiCom 01), pp.

272-287 Rome, Italy.

[98] Raghunathan, V.; Schurgers, C.; Sung Park; Srivastava, M.B., ``Energy-aware

wireless microsensor networks,'' Signal Processing Magazine, IEEE , vol.19, no.2,

pp.40,50, Mar 2002.

[99] D. V. Manatakis, E. S. Manolakos, ``Collaborative Sensor Network algorithm for pre-

dicting the spatiotemporal evolution of hazardous phenomena,'' Int. Conf. on Systems

Man and Cybernetics (SMC 2011), October 2011, Anchorage-Alaska, pp. 3439-3445.

[100] D. V. Manatakis, E. S. Manolakos, ``Predictive modeling of the spatiotemporal evo-

lution of an environmental hazard and its sensor network implementation'' In Proc.

IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP

2011), May 2011, Prague-Czech pp. 2056-2059

Dimitrios V. Manatakis 205



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

[101] D. V. Manatakis, E. S. Manolakos, "Estimating the Spatiotemporal Evolution

Characteristics of Diffusive Hazards using Wireless Sensor Networks," Accepted

for publication, Parallel and Distributed Systems, IEEE Transactions on, doi:

10.1109/TPDS.2014.2357033, 2014.

[102] L. Piegl, W. Tiller, The NURBS Book (Monographs in Visual Communication), sec-

ond ed., Springer-Verlag, New York, 1997.

[103] Animation of algorithm's behavior in the presence of diffusive hazard with regular

shape:

https://www.dropbox.com/s/nc0wfqfkv3al8k6/20ModelsCircularBoundary.wmv?dl=0

[104] Animation of algorithm's behavior in the presence of diffusive hazard with irregular

shape:

https://www.dropbox.com/s/edjb8i5zps9fu4m/20ModelsFLogABoundary.wmv?dl=0

Dimitrios V. Manatakis 206


