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Abstract

Tracking and predicting, with reasonable accuracy, the spatiotemporal evolution of dif-
fusive hazardous phenomena (e.g. wildfires, oil slicks, chemical leaks, etc) is of paramount
importance for civil authorities since it helps them to optimize their response and con-
tain the potential damage. Hazard specific, mechanistic or semi-empirical methods are
commonly used for this purpose. However these methods usually fail to make good pre-
dictions, due to the large number of time-varying parameters governing these complex
phenomena. Recently significant efforts have been invested worldwide towards in the
design and development of distributed systems for large scale environmental monitoring.
The goal of such efforts is to predict, monitor and manage the consequences of diffusive
hazards, often modeled as "“continuous objects" (i.e. objects that tend to occupy large
areas and their shape and size continuously changing with time). Wireless Sensor Net-
work (WSN) is a mature technology which can play a major role in the development of
continuous object tracking systems.

In this PhD dissertation we study the problem of continuous object tracking using large
scale WSNs. We propose a novel practical WSN-based scheme that is able to track and
predict the evolution behavior of a continuous object's boundary under realistic assump-
tions. The proposed scheme consists of two main components: a) A collaborative in-
network WSN algorithm that estimates the local evolution parameters (orientation, direc-
tion and speed) of an evolving continuous object, and b) a novel algorithm which combines
the produced local estimates, as they become available to a fusion center, to reconstruct
the overall continuous object's boundary.

The proposed asynchronous WSN collaborative algorithm is based on the assumption
that the boundary of a continuous object can be approximated as a piecewise linear curve.
Each line segment (local front model) of this curve can be adequately characterized by
a small set of parameters namely the orientation, angle, direction and speed of the seg-

ment's propagation. As the continuous objects boundary evolves these parameters are



re-estimated using ad-hoc formed clusters of collaborative sensor nodes. A flexible prob-
abilistic sensing model that can capture the sensor nodes' detection distance uncertainty
as well as their disruption probability is introduced which allow us to formulate the model
parameters estimation problem in a Bayesian manner. We solve this estimation prob-
lem analytically and derive simple algebraic closed-form expressions that can be easily
implemented by the energy constrained microprocessors of the sensor nodes. To further
support our claim that the proposed collaborative algorithm is suitable for large-scale WSN
deployment, we introduce a simulation-driven WSN emulation scheme which allows us to
estimate, using small number of ““real" sensor nodes, the energy, memory and processing
requirement as a function of the the WSN's density.

When a small number of local fronts estimates becomes available to a fusion center, the
proposed boundary reconstruction algorithm appropriately combines their information and
determines a “"new" set of the local fronts estimates which describe the continuous object's
boundary evolution characteristics at a specific time instance. Using this information, the
boundary reconstruction algorithm forms a simple polygon that approximates the shape of
the boundary. Next, using the formed polygon and uniform B-splines curves, it determines
a “'smooth" approximation of the boundary. Finally, based on the local fronts' parameter
estimation uncertainties the algorithm can produce a probability field that indicating for
each point of the considered area the probability to be reached by the object's front line.

Extensive computer simulations demonstrate the ability of the proposed collaborative
algorithm to estimate accurately the evolution characteristics of complex continuous ob-
jects (e.g. with time-varying evolution rates and/or irregular boundary shapes) using rea-
sonably dense WSNs. Moreover, it shown that the algorithm is robust to sensor node
failures and communication link failures which are expected in harsh environments. Fi-
nally, we show that the proposed boundary reconstruction algorithm is able to track with
accuracy the evolution of different types of continuous objects, using a small number of
local front estimates that may be distorted with error.

Subject Area: Distributed Signal Processing, Data Fusion, Sensor Networks.
Keywords: Machine Learning, distributed estimation, Bayesian estimation, continuous

object tracking, environmental hazards, wireless sensor networks.



NEPINAHWH

H kavotntd TtrapakoAouBnong kar TTPORAEWNS TNG XWPO-XPOVIKAG €EEAIENG €vOg
OIAXUTOU KATACTPOWIKOU (PAIVOUEVOU (TT.X. OACIKN TTUPKAYIA, TTETPEAQIOKNAIDA, XNMIKN
dlappor] KTA.) TTapExel KABoPIOTIKAG anuaciag TTAnpo@opia oTIS apuddIEC apXEG KaBWG
TIGC BonBd& va BeATILWOOUV TIG ETTIXEIPNOEIS KATAOTOANG TOU QAIVOUEVOU KABWG Kal va
TTEPIOPIOOUV TIG KATAOTPOPIKEG TOU OUVETTEIEG. Ta TeAeuTaia Xpovia €XOouv TTPOTAOEi
TTOAAG paBNUATIKA KOBWG Kal EUTTEIPIKA HOVTEAQ TA OTTOIO TTIPOOTTAB0UV va TTPOoRAEWoUV
TNV XWPO-XPOVIKN €EEAIEN DIAPOPWY KATAOTPOPIKWY @aivopévwy. MapdoAa autd, ol
TTPORAEWYEIC QUTWV TwV POVTEAWV ouviBwG attokAivouv atmd TNV TTpayuaTikoTnTa, AOYyWw
TOU OTI €6apTWVTAl ATTO TTOAAEG OUVAUIKA UETARBAAAOUEVES TTAOPAPETPOUG Ol OTTOIEG Eival
TTOAU OUOKOAO va ekTiunBouv. MNpooeaTta, £Xouv Yivel ONUAVTIKEG TTPOOTTABEIEG YVIa TOV
OXeBIAOMO Kal TNV AVATITUEN KATAVEUNUEVWY CUCTANATWY YA TTapakoAouBnon pueyaAwv
YEWYPAPIKWY TTEPIOXWV. 2ZTOXOG QUTWV TWV TEXVIKWV Eival va TTPOoPAEyouy, va
TTAOPOKOAOUBACOUV Kal va OIaXEIPIOTOUV TIGC OUVETTEIEG TWV OIAXUTWY KATAOTPOPIKWYV
QaIVOPEVWY Ta OTToia ava@épovTal oTn BIBAIoypagia wg «ouvexn avTiKeigevay (TT.X.
AVTIKEIMEVA TA OTTOIa KATAAQPBAVOUV PEYAAES YEWYPAPIKES TTEPIOXEG KAl TO OXHUA TOUG
aAAGCel kata TNV €¢ENIEN Toug). Ta Aoupuata Aiktua AiloBntripwy (AAA) gival pia wpihn
TEXVOAoyia n oTtroia utropei va diadpapaTtioel onuaviikd pOAo otV avATITUEN

OUOTNUATWY TTaPAKoAOUONoNG BIAXUTWY KATOOTPOPIKWY QAIVOREVWV.

2Tnv TTapouca OIOOKTOPIKH dIaTpIBry YEAETAUE TO TTPORANUA TNG TTapakoAouBnong
OUVEXWV QVTIKEIUEVWY  XPNOIUOTIOIWVTAG  €upeiag  KAiyakag OikTua  aiobntripwy.
MpoTteivoupe pia kaivotépo péBodo Baoiopévn otnv Texvoloyia Twv AAA n otroia ivail
IKav va TTapakoAouBei  kal  va  TTPOPRAETTEI TNV CUMTTEPIPOPA  €CEAIENG  Twv
XOPAKTNPIOTIKWY €EENIENG PETWTTOU EVOG CUVEXOUG QVTIKEIMEVOU KATW ATTO PEAAIOTIKEG
utroBéoelg. H trpoTteivopevn pEBodog atroTeAsital ammd duo Kupla cuoTatika: a) ‘Evav
OUuVEPYOTIKO aAyOplIBuo AAA O OTT0I0G UTTOPEI KAl EKTINA ME OKPIBEIX TIG TOTTIKEG
TTaPAPETPOUG €CEAIENG (TaXUTNTA KAl KATEUBUVON) TOU UETWTTOU €VOG KATAOTPOQPIKOU

@aivopévou Kal ) Evav alydpiBuo o oT1Toiog, cuvOUACE! TIG TOTTIKEG EKTIUAOEIS OTAV AUTEG



yivovtal diaBéoiueg oe KAtolo Kevipikd otabuod (fusion center) Kal avakataokeuddel To

OUVOAIKO PETWTTO TOU QAIVOUEVOU OTTOIOBATTOTE OTIYMA TNG £EEAIENG TOU ETTIOUPOULE.

O trpoTteivépevog acuyxpovog aAyopiBuog AAA cival Baoiopévog otnv uttdéBeon Ot
TO METWTTO €VOG OUVEXOUG QVTIKEIMEVOU MTTOPEI VA TTPOOCEYYIOOEI aTTO Pia TUNMOTIKA
ouvex YPAMMIKN ouvaptnon. Ta XopakTnpIoTIKA €CEAIENG KABE YPAUMIKOU TUAUOTOG
(MOVTEAO TOTTIKOU MJETWTTOU) AUTAG TNG CUVAPTNONG UTTOPOUV ETTAPKWG VA TTEPIYPAPOUV
amd éva JIKpG oUvoAlo TTapapéTpwy. KaBwg To ouvexEéG avTIKEiuevo egeAicoeTal ol
TTOPAUETPOI  TWV  TOTTIKWY  POVTEAWV  evnuepwvovTal  aTTO  MIKPEG  QUVAMIKG
oXNUATICOPEVOS OPADEG ACUPPATWY KOUPBWY. H evnuépwaon Twv TTapauéTpwy BaaoifeTal
o€ VA TTPWTOTUTTO OTOXAOTIKO MOVTENO AViXVEUONG TOU PETWTTOU OTTO TOV AlIcONTAPA, TO
oTroio povTteAoTtrolei TNV aBefaidtTnTa TNG ATTOOTACNG QVIXVEUONG KOBWG Kal Tnv
mOavoTNTA KATAOTPOPNG TOou aioBntipa amd 1O @aivopevo. Me Tn Xprion Tou
OTOXOAOTIKOU HOVTEAOU QVIXVEUONG, MTTOPECAPE Kal dIATUTTWOOPE TO TTPORANUC
EKTIUNONG TwV TTaPAPETPWY €EEAIENG ME éva MTTauoiavo TPOTTO O OTToI0G uag odAynoe
0€ aVOAUTIKEG OAYERPIKEG AUCEIG, Ol OTTOIEG PUTTOPOUV €UKOAQ va uAoTroinBouv atrd Toug
TTEPIOPIOUEVNG ETTECEPYAOTIKAG IKAVOTNTAG aOUPUOTOUG KOUPoug Tou dIKTUou. lMNa va
eNéyEoupe av O aAyOpIBUOG pag MPTTOpEl va ulotroinBei o€ TrpayuaTikd  OikKTuo
aicOnNTApwyv eupeiag KAiyakag, oxedidoape €va oUOTNUO €EOMOIWONG ACUPUATWY
OIKTUWV a1oONTApWY O OTI0I0G MOG ETTITPETTEI VA EKTIWACOUMPE XPNOIUOTTOIWVTAS EVa
MIKPSO apiBud atmrd TTpayuaTikoug acUPPOTOUS KOUPBOUG TIG OTTAITHOEIS TOU aAyopiBuou
o€ evépyEla, TTeEEEpyacia aAAG Kal o€ PVAPN Kal va doUuEe TTwG autég PeTaBAAAovTal

OUVOPTAOEI TNG TTUKVOTNTOG TOU BIKTUOU.

Otav évag PIKPOG aplBudg atrd TOTTIKEG EKTIUAOEIG (TOTTIKA YETWTTA) Yivel OlaB£aIpog
oc €vav KeVvTPIKO KOUBO, O TTPOTEIVOUEVOSG OAYOPIOUOC aVOKOATOOKEURG TOU METWTTOU,
ouvdudadel TNV TTANPOQOpPIa TOUG Kal KaBopiel Eéva VEO OUVOAO ATTO TOTTIKEG EKTIMNOEIG Ol
OTTOIEG TTEPIYPAPOUV TA XAPOKTNPIOTIKA E€CENIENG TOU TOTTIKOU HETWTIOU TN XPOVIKN
OTIyU} TTOU €TMIBUPOUME VA YiVEI N AVOKOTAOKEUR. XPNOIYMOTIOIWVTOG TNV TTANpogopia
TOUG, O OAYOPIOUOG AVOKATOOKEUNG TOU PETWTTOU, KABopIlel éva TTOAUYywvO TO OTT0io
TTPOOEYYICEl TO OXNKA TOU OUVEXOUG QAVTIKEIMEVOU. TN OUVEXEID, XPNOIUOTTOIWVTAG TO

TTOAUYWVO Kal TIG KAPTTUAEG uniform B-splines, kaBopilel pio KOUtTUAn n  oTtroia



TTPOOEYYiCel «OUAAG» TO PETWTTO TOU Qaivouévou. TEAOG, BaoifOuevog oTnV aBeRaIOTNTO
TTOU €XOUME WG TIPOG TNV EKTIUNON TWV TTOPAUETPWY TWV TOTTIKWY METWTTWY, O
aAyopIOuoG TTapdyel €va XwpPIKO TTedio TBavOTNTAG TO OTT0I0 TTEPIYPAPE! VIO KABE
Oonueio TNG TTEPIOXNG €EEAIENG TNV TTIBAvOTNTA VA €XEl KOAUPBEI atTd TO KATAOTPOYPIKO
PAIVOUEVO.

Méow €vog peyGAou aplBuou TTPOCOUOICEWY TTAPOUCIACOUUE TNV IKAVOTNTA TOU
TTPOTEIVOUEVOU OUVEPYATIKOU aAyopiBuou va ekTIUG PE OKPIBEId TA XOPOKTNPIOTIKA
€CEMIENG  TTOAUTTAOKWY OUVEXWV QVTIKEINEVWV  (TT.X. ME XPOVIKA peTABaAAOuEva
XAPOKTNPIOTIKA €EEAIENG KOBWG KAl OXAMATA PETWTTOU) XPNOIMOTTOIWVTAS PEAAIOTIKAG
TTUKVOTNTOG OiKTUa aiIoBnTrpwyv. ETTimTAéov, Ocixvoupe OTI 0 aAyoOpIBUOG pag eival
eUPWOTOG OE QOTOXIEG TTOU UTTOPEI va CUMPBOUV OTOUG KOUPBOUG KATA TNV ETTIKOIVWVIA
TOUG f/Kal Adyw KATaoTPOPrS TOUG aTrd TO TTEPACHA TOU KATOAOTPOPIKOU (PAIVOUEVOU.
TéNOG, HEOW TTEIPAMATIKWYV ATTOTEAECUATWY OTTOOEIKVUOUME OTI O TTPOTEIVOUEVOG
aAYyOpPIOUOG aVAKATOOKEUNG TOU MPETWTTOU WTTOPEI va TTAPOKOAOUBEi ue akpiBeia Tnv
eCENIEN Dlo@OpWY TUTTWV CUVEXWV QVTIKEIMEVWY, XPNOIMOTTOILWVTOG €va UIKPO apiBud

aTTO TOTTIKEG EKTIMACEIG OTIC OTTOIEG MTTOPEI VO UTTEICEPXOVTAl OQAANATA.

OEMATIKH MEPIOXH: Katavepnuévn Emegepyaoia Ziparog, Zuvingn Acdopévwy,
AikTua a100nTHpWVY

AEZEIZ KAEIAIA: Mnxavikfy gabnorn, katavepnuévn ekTipnon mapauéTpwy, Meuoiavi
EKTIUNON, TTOPAKOAOUBNON OUVEXWV QAVTIKEIMEVWY, KATAVEUNUEVOI
aAyopiOuol,  TTEPIBAANOVTIKEG  KOTAOTPOYEG, aoUppaTta  dikTud

aiodnTipwv.
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Zuvontikn Napouciaon tng Atdaktoplkig Atatpifng

Ta aoupuata diktua aioBntipwv (Wireless Sensor Networks - WSN), €ival pia
paydaia  avatrrTuooOuevn  TEXVOAoyia pE  pEYAAO  €UPOG  €@apMoywv  (TT.X.
TTapakoAouBnon oToXwv, TEPIBAAANOVTIKWY @aivouévwy, acBevwv KTA.). Ta WSN
arroteAouvtal ouvhBwg atmd €va PeyAGAo aplBPUO auTOVOUWY NAEKTPOVIKWY CUOKEUWV
(c1oOnmpIWY  KOPPWY) xapnAoUu KOOTOUG OI OTToiEG TOTTOBETOUVTAlI O€ HEYANEG
YEWYPAPIKEG TTEPIOXEC VIO VA KATAYPAWOUV TIG TIMEG QUOIKWY 1 TTEPIBAAAOVTIKWV
TTapapETpwy. EKTOG ammd 10 va «aioBdavovtam 1o TrEPIBAANOV, o1 aiobnTripiol KouBol
E€Xouv Tnv duvatoéTtnTa va etregepyalovral 6edouéva Kal va avTaAAdooouv (aoUpuaTa)
TTAnpogopia. O1 TTPOoYATEG €CEAICEIC OTOUG TOMEIC TNG MIKPONAEKTPOVIKAG KAl TwV
aoUupuaTWV  ETTIKOIVWVIWY  KOBIOTOUV TNV  TEXVOAOYIO TwV OQOUPUATWY  JIKTUWV
aicONTApwv 19AVIKA UTTOWAPIO VIO TNV AVATITUELN KATOVEUNUEVWY EQAPUOYWY EUPEIG
KAiHaKag pe duvatoTnTEG ETTECEPYATIOG TTANPOPOPIAG Kal ANYNS atToQACEwWV.

H TTapakoAouBnon oTtoxwv (TT.X. 0 KABOoPIoOPOS NG B€0ng TOUG OUVAPTACEl TOU
XpoOvou) atroteAei éva evdia@épov TTPORANUA TO OTTOIO €XEl MEAETNOEI EKTEVWG MIOG KAl
Bpiokel TTOANEG eQapuOYEG (TT.X. OTPOTIWTIKEG, TTEPIBAANOVTIKEG KTA.). EKTOG ammd Tov
KABopIoPO TNG TPOXIAG TWV KIVOUUEVWY OTOXWV, €ival TTOAU onuavTiKd va PTTOPOUUE va
EKTIMOUME KAl TA XOAPOKTNPIOTIKA €EEAIENG Toug (T1.X. OleUBuvon kKal TaxuTnTa) O€
TTPAYUATIKO XPOvo, KaBw¢ auti n TTAnpo@opia PTTopEi va XpnoiyotroinBei yia va
TTPORBAEWoUUE TIGC MEANOVTIKEG OE0€IC TOUC Kal va KATOAGBOUME TNV CUNTTEPIYOPA
eCENIENG TOUG.

Ta aouppara  OikKTua aIoBnNTPWVY £€XOUV  €UPEWG  XpPnoldoTroinBei  yia TNV
TTapakoAouBnon oToXwv (evog fj TTOAATTAWY). AOYW TOU CUVEXWG PEIWUEVOU KOOTOUG
TOUG YivovTal OAO Kal TTIo0 dNUOYIAN Ot £QAPUOYES TTEPIBAAAOVTIKAG TTapakoAouBnong.
Mpdéo@arta, TTOAEG TEXVIKEG POCIOPEVEG OTNV TEXVOAOYIO TwWV ACUPUATWY BIKTUWV
aicOnNTApwyv €xouv TIPOTABEI yia TNV aviXveuon Kal TTapakoAouBnon didaxutwyv
KATOOTPOQIKWY QAIVOPEVWY (OTTWG OOOCIKEG TTUPKAYIEG, TTETPEAAIOKNAIDEG, didyxuon

BloxnNUIKWY UAwWV KTA.), Ta otroia povteAoTrolouvTal wg "ouvexn avtikeipeva" (dnAadn



avTIKEiMEVA TTOU aAAGCouV TO PEYEBOG Kal TO OXAMA TOUG PE TNV TTdpodo Tou Xpovou). H
IKavOTNTA VA TTApOKOAouBoUpE Kal va TTPOPAETTOUNE, PE IKAVOTTOINTIKA aKpiBela, Tnv
Béon Twv OIAXUTWV KATOOTPOQPIKWY @AIVOPEVWY, Eival PEICOVOG Oonuaciag piag Kal
Bonbd TIC appOdIEG APXES VA OPYAVWVOUV OTTOOOTIKA TIG ETTIXEIPACEIS TOUG (TT.X. VIO TN
KATAOTOAR TOU QAIVOPEVOU, TNV OTTOTEAEOUATIKN €KKEVWON TTEPIOXWV KTA). QOT60O0, OI
KAQOIKOi aAyopiBpol TTapakoAouBnong oToxwy dev PTTOPOUV va XPENOoIJoTToInBouv yia
TNV TTAPOKOAOUONON OUVEXWYV QVTIKEIMEVWY MIAG Kal Ta OUo TTpoBARuata  €xouv
BepeAindelg Olopopég. o OUyKeKpIYEVA, TA OUVEXN QVTIKEIMEVA KaTaAauBdavouv
OuVNBWG MEYAAEG YEWYPOPIKEG TTEPIOXEC KOl TO MEYEBOG Kal TO OXNUA TOUuG OAAACE!
QuUVaMIKA pE TO Xpovo. AvTiBeTa o1 “atrhoi” dlakpIToi 0TOXO! (OTTWG OXNnuaTa, avepwrTrol,
Cwa KTA.) €xouv HIKPO PEyeBOC 0 oxéon PE TNV €KTAON TTOU KOAUTITEI TO OIKTUO Kal
ouvNBwG €vag MIKPOS apIiBuds atrd KOUPOUG ETTAPKED yia va aviXVEUOOUUE TNV TPOXIA

TOUG.

H Baoikh 10€a Twv TEXVIKWVY TTAPAKOAOUONONG TOU PETWTTOU CUVEXWV QVTIKEIUEVWV,
TToU Baacifovtal oTnv TEXVOAOYIQ TwV ACUPPATWY BIKTUWV a1oOnTripwyv, €ival n €TTIAOYN
TWV KOPPWV Tou BIKTUOU TTOU PBpioKovTal TTANCIECTEPA OTO PETWITTO TOU KATAOTPOPIKOU
@aivouévou 000 autd eCehiooeTal. Mapdho TTOU AUTEG OI TEXVIKEG ETTITUYXAVOUV va
aviXVeEUOOUV Ta Opld TOU OUVEXOUG QVTIKEIUEVOU EUMECWG aTTO TIGC BECEIC TwV
ETMAEYUEVWY  KOMPWY, €XOUV  ONUAVTIKA MPEIOVEKTAMATA TA  OTToid  KaBioTouv
TPOBANUATIKy T XPAON TOUug OTNV  AVATITUEN  TTPAYMATIKWY  CUOTANATWY

TTAPOKOAOUBNONG CUVEXWV QVTIKEIMEVWV.

Ta POCIKOTEPA UEIOVEKTAMOTA TTOU EP@AVICOVTAl O OXEDOV OAEC TIC TTPOTEIVOUEVEG

TEXVIKEG TTOPAKOAOUBNONG OUVEXWVY QVTIKEIUEVWY OTN ouyXpovn BiBAIoypagia gival:

1. H amaitnon yia xpAon OIKTUWV €CWTTPAYMATIKNG TTUKVOTNTAG (XIAIGDEG KOUBOI
ava TETPAYWVIKO XIANIOUETPO). MapdAo TTOU TO KOOTOG TWV AIoBNTAPIWY KOUPBWV EXEI
MEIWOEI onUavTIKA, N KAAUWN HEYGAWV TTEPIOXWV MPE OIKTUO UWNANG TTUKVOTNTOG
TTAOPAPEVEI OKOPA ATTAYOPEUTIKH.

2. H atroucia Bswpnong Tng mOavoTNTag a0TOXiag TWV KOUBWY, KOBWS Kal TNG

METAEU TOUG EeTTIKOIVWVIOG. QOTO0O, 0t éva TTpayuatikd Oiktuo aioBnTrhpwy, ol



aoTtoxieg Oewpouvtal BEBaieg O Ba cupPouv, 1IBlaiTEpa OTav auTd BpioKeTal
TOTTOOETNUEVO  OTa  a@IAGEeva  TTEpIBGAAOVTA  TTOU  dnuioupyouvtal  atmmd  Ta
eCeENIOOOPEVA KATAOTPOPIKA QAIVOUEVA.

3. H atraitnon UTTapéng ouyxpoviopou JETAEU Twv KOPPBWY Tou BIKTUOU, N OTToia
gival BUOKOAO va eTITEUXOEI akOPa Kal 0€ XAPNANG TTUKVOTNTOG aouppaTta dikTua
aiodnTipwv.

4. H Bewpnon 1©avikou unxaviouou aviXveuong Tou @aivopévou (TT.X. avixveuon Tou
PAIVOUEVOU OE OUYKEKPIMEVN aTTOOTAON ), KABWG KAl N atroucia Bewpnong dIAaKOTNG
TNG AEITOUPYIag aviXVEUOTG TwV KOPPBWVY AOYyw KATAOTPOPNG TWV a1I08NTHPWYV TOUG.

5. H aduvayia TTapoxng TTANpoeopiag OXETIKA JUE TA XWPO-XPOVIKA XAPOKTNPIOTIKA
€CEANIENG TOU PETWTTOU TOU OUVEXOUG avTIKEIMEVOU. AuTr n aduvayia KaBIioTd TIG v

AOYW TEXVIKEG OKATAAANAEG yIa TNV avATITUEN oCUOTNUATWY TTPORAEWNG.

6. H aduvapia Toug va atmmoTiuAo0oUV PE aKPIBEI TIG EVEPYEIOKEG, ETTECEPYATTIKEG KOl
ETTIKOIVWVIOKEG ATTAITAOEIS TOU BIKTUOU TTPIV TNV TEAIKA TOTTOBETNON TOU OTNV TTEPIOXN

eVOIAPEPOVTOG.

7. H aduvapia Toug va avakataoKEUAoOUV PE QUTOUATOTTOINUEVO TPOTTO TA OPIA TOU
METWTTOU KOTA TNV €EEAIEN TOU KATAOTPOQPIKOU @QAIVOPEVOU KAl va TTAPEXOUV
OUVTEAEOTEG EUTTIOTOOUVNG YIA TIG OIOQOPETIKEG TIEPIOXEG TOU METWTTOU TTOU

QVOKATOOKEUAOTNKE.

2Tn Trapouca OIOAKTOPIKN dIaTpIBr, OXEdIACANE Kal avaTTUSaue €va ouaTnua
Baoliopévo oTnv TEXVOAOYia TOV aocUpuaTWV BIKTUWV aloBnTripwyv To OTToio eTTEPVA

OAoUC TOUG TTPOAVAPEPOEVTES TTEPIOPICHOUG.

2toX0aoTIKO Movrého Avixveuong tou Metwtrou — MpéBAnpa EkTipnong twv
MapapéTpwyv EEEAIENG EVOg ZuveXoug AVTIKEIPEVOU.

AvatrTugope éva KAalvoTOPo TBavoTiKO POVTEAO QviXVEUONG TOU @QOAIVOUEVOU TO

OTT0i0 PovTeAOTTOIEN a) TNV aBefaidTnTa TTOU £XEI O AIOBNTAPIOG KOUPOG WG TTPOG TNV



ammréoTaon QviXveuong Tou @aIVouévou, KabBwg kal B) Tnv mlavotnta aduvapiag
avixveuong Tou Aoyw acTtoyxiag Tou aiodntApa. OTTwg TTapartnpoupe atrd 10 ZXNua 1 n
apepaidTNTa WG TTPOG TNV ATTOOTACN AVIXVEUONG MOVTEAOTTOITAI OTTO MIO KAVOVIKN

katavouy D, ~ N'(u,,o’)

ME TTAPAUETPOUG: By = Od;d , O, :%(1—%) where 0<a <1
H otroia dixvel 611 n mMOavoTNTA Avixveuong augdvel povotova Kabwg n amdéoTacn Tou

aR
2
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2xApa 1: To TpoTEIVOPEVO OTOXAOTIKO JOVTEAO QVIXVEUONG TOU PETWTTOU.

Baoifouevol oTo TTPOTEIVOUEVO TTIBAVOTIKO HOVTEAO avixveuong, SIATUTTWOAME Eva
Mtreuoiavd TTPOBANUA EKTIMNONG TWV TTAPAUETPWY EEENIENG TOU QPAIVOUEVOU TO OTTOIO
Kal AUoape avaAuTIKd. Or KAEIOTOU TUTTOU OAYEBPIKEG EKYPATEIG TTOU TTPOEKUWAV ATTO TN
A0on  Tou TTPOPAAMATOG, MITOPOUV  PE  €UKOAID va uAotroinBouv  ammd  Toug
EVOWMOTWHEVOUG UIKPOETTECEPYOOTEG TWV aloONTApIwY KOPPwY, KABwe oéfovTal TIg

TTEPIOPIOUEVEG ETTECEPYAOTIKEG DUVATOTNTEG TWV ACUPUATWY KOUBWV.



2uvepyaTikdg AAyopifuog Acuppdtwv AikTuwv AloOntTApwv yia tTnv EKTtipnon
TWV XapakTNPICTIKWV TNG Xwpo-XpoVvIKAG ESEAIENG ZuveXWV AVTIKEINEVWV.

2T OUVEXEID TTapOUCIAlOUNE aoUYyXPOVvO OuvepyaTikd aAyépiBuo o OTT0oIog,
BaoiCoueEvOog  OTn  MOVTEAOTTOINON TOU  OTOXAOTIKOU MOVTEAOU  avixveuong Kal
XPNOIMOTTOIWVTAG OikTua a1I0BNTAPWY PEAAICTIKAG TTUKVOTNTAG, UTTOPEI KAl EKTIUA ME
OKPIBEIO TA XWPO-XPOVIKA XAPAKTNPIOTIKA €EEAIENG TOU METWTTOU €VOG OUVEXOUG
QVTIKEIYEVOU. H eKTiUNON TWV XOPAKTNPIOTIKWY €EEAIENG, UAOTTOIEITAI ATTO MIKPEG
ouvepyaldpeveg opadeg aiodnTApiwy KOPPwv (clusters) o1 oTtroieg oxnuartifovtal
Ouvapika (BAETTe ZxApa 2). Katd Tnv €€EAIEN TOU OUVEXOUG QVTIKEINEVOU, O OAYOPIBUOG
EVNMEPWVEI TIG EKTINWMPEVES TTAPAUETPOUG KAl PE Evav TTAPWG KATAVEUNUEVO TPOTTO TIG

TTPOowWBEI 0TOUG KOPBOUG 01 OTTOI0I BPiCKOVTAI OTNV KATEUBUVON £CEAIENG TOU PETWTTOU.

Cluster 1

O

ZxApa 2: To PETWTTO TOU QPAIVOUEVOU (KOKKIVEG OIOKEKOUMEVEG KAWTTUAEG) EI0EPYETAI
oTnV TIEPIOXN TOTTOBETNONG Twv KOUBwWV (Maupol KukAol). O1 acupuatol KOuRol Tou
OIKTUOU QUTO-OpyavwvovTal dUVAPIKA OE PIKPEG OPADEG (TPIADEG) OI OTTOIEG EKTIMOUV TIG
XWPO-XPOVIKEG TTAPAUETPOUG €EGENIENG TWV TOTTIKWV MPETWTTWY (Maupa eubuypauua
TUAMATA).



lMa TNV aTToTiunon TOU TTPOTEIVOUEVOU OUuveEPYATIKOU aAyopiOuou ulotroioaue €va
oluoTnUa  TTPOCOMOIWONG TO OTIoI0  aTToTEAEITal ammd dUO ouoTaTtika: o) ‘Evav
TTPOCOUOIWTI TTOU AvaTITUXOnKE Ot YAWooa Trpoypauuatiopou Matlab kar B) Tov
ONMOYIAR TTPOCONOIWTA ACUPHUATWY BIKTUWV aloBntipwyv COOJA (BAétre Zxnua 3). O
TTPOCOUOIWTAG TIOU  avaTrTuxlnke o€ Matlab  pag  diver 10 duvardmnta  va
TTPOCOUOILCOUNE DIAPOPETIKA TeVAPIA ECEAIENG KATACTPOPIKWY PAIVOUEVWY KABWG Kal
OIAQOPETIKA OEVAPIa TTUKVOTNTAG OAAG KOl OTPATNYIKEG TOTTOBETNONG TWV ACUPPATWY
KOMBwY Tou OIKTUOU. H xprijon Ttou TpooopoiwTy COOJA, pag emmpémel va
TTPOCOUOIWOOUNE PEAAIOTIKA TNV CUUTTEPIPOPAE TOUu aocupudtou OIKTUOU aiocbnTripwy
MIag Kai €xel Tn duvaTtdTNTA VA UAOTTOIET TTPWTOKOAAG ETTIKOIVWVIOG ACUPUATWY BIKTUWV
aicOnTipwv (6TTwg 10 802.15.4) KOBWG KAl BIAYOPETIKA aevApIa TTIBAVOTNTAG ACTOXIOG

TWV KOPPBWYV KATA TNV ETTIKOIVWVia TOUG.

Evolution Parameters Updated Models
Estimation Errors - - - - - -7 1
A4
Hazard’s ? klj Detection (i>
Evolution Events
Parameters 2] Sequence 2]

MATLAB |—o)—| COOJA

Sensor Nodes’ (I\ J) COOJA

Parameters Output

2xApa 3: UML didypaupa TOU CUCTAPATOG TTPOCOMOIWONG yia TNV aTtroTiunon TNng
OUUTTEPIPOPAC TOU TTPOTEIVOUEVOU CUVEPYATIKOU OAyopiduou.

Méow €vog peydAou aplBuou TTPOCOUOIWCEWY TTAPOUCIAloUUE TNV IKAVOTNTA TOU
aAyopiBuoU va eKTING PE OKPIBEIO TO XOPAKTNPIOTIKA £CENIENG TTOAUTTAOKWY OUVEXWV
QVTIKEIUEVWVY KATW aATTO OIOQOPETIKEG OUVONKEG OPOAPATWY TWV KOUBWYV KAl TNG PMETOGU
TOUG ETTIKOIVWVIOG T oTroia  avauévovtal ota  a@iAdgeva  TTepIBAAAovTa  TTou

dnuIoupyouvTal atrd £EEAICCOUEVA KATAOTPOPIKA QAIVOUEVA.



20otnua Efopoiwong yia tnv ATTOTigNoONn TNG ZUMTTEPIPOPAS ZUVEPYATIKWV
AAyopiBuwyv Acuppdtwy AiIKTOwV AloOnTRpwWV

Mia akOua OnUAVTIK CUVEICPOPA TnNG TTapoucag OIOOKTOPIKAG dIaTpIBAG €ival n
avamTu¢n €vog TTPWTOTUTTOU CUCTHAMATOG €EOPOIWONG TO OTIOI0 POG ETTITPETTEI VO
ATTOTIUACOUME TIC QTTAITAOEIG O PVAUN, EVEPYEIQ KAl ETTECEPYAOTIKN I0XU TTOU €£XOUV
KATaveunuévol aAyopiBuol 6tav uAoTrolouvTal atrd eupeiag KAiyakag acupparta diktua
aicOnNTipwv oT0 TTEDIO, XPNOIYOTTOIWVTAG £€va MIKPO apiBud atrd  TTPAYMATIKOUG
aicdnmipec. H Baoiki 10éa TN TTpoTelvopevnG peBOdoU egopoiwong, €ival N €IKOVIKN
ETTAVATOTTIO0ETNON TOU MIKPOU aplBpou atrd SIaBE0INoUG TTPAYUATIKOUG aioBnThApIoUg
kOuBoug (1m.X. AVR Raven nodes), £101 wWOTE va €EOUOILVOUV TNV CUMPTTEPIPOPA TWV
ouvepyalopevwy KOUPwV piog cuoTddag (cluster) o€ TepIoxEG ECEAIENG TOU QAIVOUEVOU.

Personal Computer
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IHazard’s Evolution
Parameters T

- a
]
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ZxAMa 4: To TPOTEIVOUEVO OUOTNUA €EOMOIWONG YIO PEOAIOTIKA QTTOTiUNon TNG

OUUTTEPIPOPAC CUVEPYATIKWY OAYOPIBUWY acupudTwy SIKTUWY aioONTApwY.

To TTpoTEIVOUEVO cUOTNHA £¢opoiwong atroTeAeiTal atrd dUO CUuOTATIKA: a) €vav
TTPOCONOIWTI TTOU UAOTTOINOaNE O YAwooa TTpoypaupatioyou Matlab kai B) éva Java
TTPOYypapua (TTou ovopdoaue Raven Observer) To 01T0i0 dIaXEIPIETAI TOV UNXAVIOUO TNG
EIKOVIKNG ETTAVATOTTOBETNONG TWV TTPAYUATIKWY KOPPwV (BAETTE ZXAPa 4). Me Tn xprion
Tou Matlab TrpocopoiwTr, pag divetal n duvaTdTNTA TTPOCOUOIWVOUUE TNV CUUTTEPIPOPA

€CEMIENG  OIAQOPETIKWY  KATOOTPOPIKWY  QAIVOUEVWY  KOBWGS Kal va  OOKINACOUME



OIAPOPETIKEG TTUKVOTNTEG KAl OTPATNYIKEG TOTTOBETNONG TwWv KOPPwV Tou dikTuou. O
Matlab TTpocopoIwTAG TTapAyel oav €000 £va APXEIO TO OTTOIO TTEPIEXEI TIG BECEIC TWV
aoUppaTWV KOUPBWY Tou DIKTUOU KOBWG Kal TOUG XPOVOUG TTOU QVIXVEUOQV TO UETWITTO
TOU KATAOTPOQIKOU QAIVOPEVOU. XPNOILMOTTOIWVTAG auTd TO apxeio we €icodo, o Raven
Observer kaBopiCel Tnv okoAouBia pe TNV OToIO TIPETTEl VA YiVEL N EIKOVIKN

ETTAVATOTTOBETNON TWV TTPAYUATIKWY KOPBWY Tou OIKTUOU.

Mapouoidfoupe TNV duvaTOTNTA TNG TTPAYMATIKAG UAOTTOINONG TOU TTPOTEIVOUEVOU
ouvepyaTikoUu aAyopiBuou xpnoigotroiwvTag TNV TAateépua AVR RAVEN 1ng ATMEL.
Méow evog peyGAou apiBuoU atToTEAECPATWY £E0MOIWONG TOU AAYOPIBUOU TTaPEXOUNE
ONUOVTIKEG €VOEICEIC OTI O TIPOTEIVOUEVOG OUVEPYATIKOG OAyOPIBUOG WTTOPEI va
XPNOoIoTToINOEi 0TN TTPAEN yIa TNV aVATITUEN KATAVEUNUEVOU CUCTAMATOG EKTINONG TWV
TTOPOUETPWY  €EEAIENG OUVEXOUG QVTIKEIUEVOU MIOG  Kal  OEBETAl TTANPWS  TOUG
TTEPIOPICUOUG UVAUNG, ETTECEPYATIOG KAl EVEPYEIOG TWV ACUPUATWY KOUBWVY XaunAou
KOOTOUG TOU EUTTOPIOU TTOU XPNOIUOTTOIOUVTAl OTIC £QAPHOYEC ACUPHATWY OIKTUWV

aiodnThpwv.

AAy6p18pog AvakaTaoKeUg Tou MeTWTTOU ZUVEXWV AVTIKEINEVWV

XpNOIYOTTOIWVTAG  TIG TOTTIKEG EKTIMACEIS TWV  XOPOAKTNPIOTIKWY  €GENIENG  €VOG
OUVEXOUG QVTIKEINEVOU O€ DIOPOPETIKA onuEia TOu PETWTTOU (BAETTE ZXNMa S5a), EI0AYANE
évav aAyopiBuo o otroiog ouvouddlel duvauIKA TNV TTANpo@opia atrd €va KPS apiBud
TOTTIKWV  EKTIMACEWYV KAl QVOKATAOKEUACZEI TN OUVOAIKN) KOMTTUAN TOU METWTTOU
OTTOIAdNTTOTE OTIYMN TNG €CEAMIENG TOU £TTIBUMOUME. TTI0 OUYKEKPIUEVA, O TTPOTEIVOUEVOG
aAyOPIOUOG XPNOIUOTIOIEI TIG TOTTOBECIEC KAl TIC EKTIMWMEVEG TTAPAMETPOUS €ECENIENG
TOTTIKWY HETWTTWY KAl XPNOIMOTTOIWVTAG KATAAANAEG TEXVIKEG OUVTNENG TTANPOQOPIag,
KaBopilel éva UTTOOUVOAO TWwV JIABECINWY TOTTIKWVY UETWTTWV (BAETTE Z)pa 5B) Ta
OTTOI0  XPNOIMOTIOIEI  yIO VO TIPOCEYYIOEl TUAMATA TOU METWTIOU TOU OUVEXOUG
QVTIKEIUEVOU IO CUYKEKPIYEVN XPOVIKN OTiyun (BAéme ZxApa Sy). ZTn ouvéxela
XPNOIUOTTOIWVTAG TEXVIKEG BOACIOPEVEG OTNV UTTOAOYIOTIKA YEWMETPIA, OVOKATOOKEUACEI

éva TTOAUYWVO TO OTTOIO OTN CUVEXEID TTPOCEYYICETAI ATTO MIO “OPOAR” KAEIOTr) KAPTTUAN



(B-spline) n otroia atToTEAEI TO AVAKATOOKEUAOUEVO PETWTTO TOU OUVEXOUG AVTIKEINEVOU
(BAETTE Zxnua 50). TéAog, Baoi{ouevol oTnV aBERAIOTATA TWV TTAPAPETPWYV £EEAIENG TWV
TOTTIKWV  EKTIMACEWY, O TIPOTEIVOUEVOG OAYOPIBUOG TTapdyel €va  XwpPIKO  TTedio
mOavoTNTag T0 OoTToio pag divel yia KABe onueio Tou TTEdiou TNV TTBAVOTATA va EXEl
ETTNPEQOCTEI ATTO TO €ELEAICOOUEVO OUVEXEG AVTIKEIMEVO.
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2xApa 5: a) O1 dIaBEoIueg TOTTIKEG EKTIUAOEIS (MaUupa €uBuypauua TURUATa) TTOU
TTEPIYPAPOUV TA TOTTIKA XAPOKTNPIOTIKA £EEAIENG TOU YETWTTOU (TTPACIVEG KAPTTUAEG). B)
O1 eTTIAEYPEVEG TOTTIKEG EKTIUNOEIG TTOU Ba XpnoIyoTroinBouv OTnV avaKATAOKEUR TOU
METWTTOU TNV XPOVIKA OTIYUr TToU €TMIOUPOUME (f12). Y) H XWpo-Xpovikr €EEAIEN Twv
ETTIAEYUEVWV TOTTIKWV EKTIMACEWV TN XPOVIKH OTIYPR tr2. ) To TTOAUYywWvVO (UaUpEG
OIOKEKOPUEVEG YPAUMEG) KOAI N AVAKOATAOKEUAOUEVN “OMOAR” KAUTTUAN (KOKKIV KAUTTUAR)

TTOU TTPOOEYYICOUV TO PHETWTTO TOU OUVEXOUG QVTIKEINEVOU.



Méow evog peydAou aplBuol TTPOCONOIWCEWY, TTOPOUCIAOUME TNV IKAVOTNTA TOU
TTPOTEIVOPEVOU OAyOpiBuoU va KaBopidel ue akpiBela Ta OPIO CUVEXWV QAVTIKEINEVWVY PE
OIAQOPETIKA XAPAKTNPIOTIKA €EEAIENG (TT.X. oXAMATA, TITAXUVONG, £MIBPAduvong KTA.),
XPNOIMOTTOIWVTAG TIG TTAPAMETPOUG €EEAIENG €VOG MIKPOU aPIBUOU TOTTIKWVY METWTTWV
OTIG OTTOIEG UTTOPEI VA UTTEICEPXOVTAI ONUAVTIKA OQAAuaTa.

ZupTtrepdopara

2Tnv TTapouoa dIdaKTopIKA dIaTPIRN avaTITUEaue Eva oUOTNUA TTAPAKOAOUBNONG Kal
TTPOBAEWYNG TNG XWPO-XPOVIKAG ECENIENG OUVEXWV QVTIKEIMEVWY TO OTTOI0 BaCioTnKe
TTAVW OTNV TEXVOAOYIQ TwV acUpPaTWV SIKTUWV aloBnTAPwV. To TTPOTEIVOUEVO GUCTNUO
cetTepva@ OAOUG TOUG TTEPIOPIOUOUG TTOU EICAYOVTAl OTTO TIG MEXP!I TWPA TTPOTEIVOUEVEG
TEXVIKEG. ZUYKEKPIUEVQ,

Avamrtuéape €va peOAIOTIKO OTOXOOTIKO HOVTEAO QVIXVEUONG METWTTOU TO OTTOIO
MovTeAOTTOIER: ) TV aBeBaidTNTa TOU AICONTAPO WG TTPOG TNV ATTOOTACHN QVIXVEUONG
TOU METWTTOU KOBWGS Kal B) Tnv TBavoeTnTa aoToXiag avixvVeEUoNng TOU METWITOU AOYwW
KATaoTPOYNAGS Tou aiodBNTAPa atrd TO QAIVOUEVO. TO TTPOTEIVOUEVO OTOXOOTIKO HOVTEAO
avixveuong, pag odAynoe oTtnv diatuttwon evog Mrrauoiavou TTpoBAAUATOC EKTIUNONG
TWV XWPO-XPOVIKWV TTAPANETPWY €EEAIENG TOU PETWTTOU, ATTO TO OTIOIO TTPOEKUWAV

avaAUTIKEG AUOEIG.

Avamrtoéape  éva  aoUYXPOVO  OUVEPYOTIKO  aAyoplBuo  acupudTwyv  SIKTUWV
aicONTApwv O OTToI0 XPNOIUOTTOIVTAG OIKTUQ PEAAIOTIKAG TTUKVOTNTOG EKTIMA ME
AKPIBEIa Ta XWPO-XPOVIKA XOPAKTNPIOTIKA EEAIENG TOU PETWTTOU, KATW aTTO JIAPOPETIKA
oevapla: a) €CEAIENG KATOOTPOPIKWY  QAIVOPEVWY, [) TrukvoTnTag OIKTUOU, V)
OTPATNYIKNAG TOTTOBETNONG KOPPBWY, Y) TTOAvVOTNTAG OOTOXIAG Twv KOPPwv KAtd TNV

ETTIKOIVWVIa TOUG OAAG Kal AGyw KATAOTPOPHG TOUG.

AvatTugaope €va oUoTNPO TTPOCONOIWONG TO OTTOI0 PAG ETTITPETTEI XPNOIMOTTOIWVTAG
éva JIKPO apiBud atrd TTpayuaTikoUug alobnTRPES VA ATTOTIUACOUUE TN CUPTTEPIPOPA TOU

TTPOTEIVOUEVOU OUVEPYOTIKOU OAyOpiBuou Kal TIG QTTAITACEIS TOU WG TIPOG TnV



KatavaAwon evépyelag, Tnv ETTeCepyacia kal TNV PvAun. Ta atroteAéouarta
TTPOCOMOIWONG €0€1EaV OTI O TIPOTEIVOUEVOG OAYOPIBPOG €ival KATAAANAOG yia Tnv
AVATTTUEN PECQANIOTIKWY EQOPUOYWY QCUPUATWY OIKTUWY €UPEiag KAIMOKOG MIAg Kal
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Chapter 1

Introduction

This dissertation addresses the problem of tracking and predicting the boundaries of dif-
fusive hazardous phenomena, often modeled as "“continuous objects" (i.e. objects that
tend to occupy large areas and their shape and size continuously changing with time),
using Wireless Sensor Networks (WSNs). In this chapter, we present the motivation, the

objectives and the contributions of this research.

1.1 Motivation

Wireless Sensor Networks (WSNSs) is a rapidly maturing technology with a wide range of
applications (e.g. target tracking, surveillance, environmental monitoring, patient monitor-
ing to name a few). A WSN typically consists of a large number inexpensive autonomous
electronic devices (sensor nodes) which are deployed over a geographical region and
monitor physical or environmental parameters. Apart from ““sensing" the environment,
WSN nodes are also able to process data and exchange information. Recent advances
in microelectronics and wireless communication have made WSN technology an ideal
candidate for large-scale decision and information-processing tasks.

Tracking objects (i.e. determining their location over time) has been a well studied
problem with numerous civilian and military applications. Apart from finding the trajectory
of the objects, it is also important to estimate their motion characteristics (i.e. direction

and speed) in real time, since this information can be used to predict their future locations
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and understand their evolution behavior.

Wireless sensor network technology has been extensively used for single and multiple
target tracking applications [1--12]. Due to the rapidly dropping cost of the sensor nodes,
WSNs are also gaining popularity in environmental monitoring applications [13--21]. Re-
cently, sensor network-based methods have been proposed for detecting the boundaries
of diffusive hazardous phenomena [22--44], modeled as "“continuous objects" (such as
expanding wildfires, oil spills, diffusing bio-chemical materials etc.). The ability to track
and predict, with reasonable accuracy, the location of a diffusive hazard's boundary is of
paramount importance since it helps the authorities to organize efficiently their responses
(hazard suppression, possible evacuation etc). However, traditional target tracking al-
gorithms cannot be applied for continuous object tracking, since the two problems are
fundamentally different. Continuous objects are usually spread in large regions and their
size and shape is dynamically changing with time. In contrast, individual targets (such
vehicles, animals, humans etc) have very small size compared to the WSN's deployment
area and therefore a much smaller number of sensors usually suffices to track their trails.

The key idea behind the reported WSN-based continuous object tracking methods has
been an attempt to identify over time the sensor nodes located closest to the evolving ob-
ject's front line (boundary nodes). Although these methods can estimate implicitly the
boundaries of a continuous object (evolving hazard) using the locations of the boundary
nodes, they have important limitations that renders them impractical for the development

of real world application systems for hazard tracking.

The main limitations that appear in almost all reported WSN-based continuous object

tracking schemes are (see also Chapter 2):

L1: They require unrealistic sensor nodes densities (thousands sensors per km?) to de-
termine with reasonable accuracy the boundary of an evolving continuous object.
Although, the cost of the sensor nodes has been significantly reduced, it still re-
mains prohibitive to cover large geographical regions (many £m?) with high density
WSNSs.

L2: They do not consider node or communication failures. However, these failures are
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certainly expected in large scale WSNs applications, and especially in the harsh

environments created by the evolving hazardous phenomena (e.g. wildfires).

L3: They require synchronization between the sensor nodes, a capability that is difficult

to achieve even in small scale WSNs.

L4: They assume an idealized sensing mechanism (i.e. fixed sensor nodes detection
distance, do not consider sensing functionality disruptions etc) that renders them

impractical for hazard tracking.

L5: They are incapable to provide information about the spatiotemporal evolution char-
acteristics (e.g. direction and speed) of the continuous object's boundary. This limi-
tation makes them incapable to be used for predictive modeling as part of decision

support systems.

L6: They are incapable to assess the processing, memory and energy requirements be-

fore a real field deployment.

L7: They propose naive techniques to reconstruct the continuous object's boundary or are
incapable to reconstruct it without using the human ability to identify the boundary's

shape from the boundary nodes locations.

1.2 Contributions

The main contribution of this dissertation is the conception, design and development of
a WSN-based continuous object tracking scheme that addresses all the aforementioned
limitations. In particular,

Chapter 2 presents the related work in continuous object tracking; points to severe
limitations that render them impractical for real applications and motivates the original
work that has been performed in the context of this doctoral dissertation.

Chapter 3 presents a novel probabilistic sensing modeling approach that is able to cap-
ture sensor nodes' detection distance uncertainty and possible functionality disruptions as

the front of the diffusive hazard approaches closer than a certain distance (addresses L4).
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Based on the probabilistic sensing modeling we formulate a Bayesian parameter estima-
tion problem which could be solved analytically. The derived closed formed algebraic
expressions of the solution can be easily implemented by the embedded microprocessors
of the WSN nodes in order to estimate the local front evolution characteristics (speed,
orientation and evolution direction) of a continuous object, since they respect the nodes'

processing capabilities and strict energy constraints.

Chapter 4 presents the proposed asynchronous collaborative algorithm that based on
the modeling of Chapter 3 and using WSNs of realistic density can estimate with accuracy
the spatiotemporal evolution parameters (orientation, direction and speed) of a continuous
object's local boundary (addresses L1, L3, L5). The parameters estimation procedure is
implemented in a collaborative fashion by dynamically formed clusters (triplets) of sensor
nodes. The algorithm updates the local front model parameters and propagates them to
sensor nodes situated in the direction of the hazard's propagation in a fully decentralized
fashion. Extensive computer simulations are also presented in this chapter and demon-
strate the ability of the algorithm to estimate accurately the evolution characteristics of
complex continuous objects under different conditions and sensor node and communica-

tion link failures which are expected in harsh environments (addresses L2).

Chapter 5 presents a novel simulation-driven emulation scheme which allows to realis-
tically asses the memory, processing and energy requirements of a cluster based collabo-
rative algorithm before attempting to deploy a large scale WSN in the field (addresses L6).
The key idea of the proposed method is to re-allocate (virtual repositioning) a small num-
ber of available real sensor nodes so that they implement the cluster nodes located closer
to the hazard's boundary. We demonstrate the capabilities of the proposed emulation
scheme to implement the proposed collaborative algorithm presented in Chapter 4 using
a small number of ATMEL's Raven nodes. Finally we present extensive WSN emulation
results that provides convincing evidence that the collaborative algorithm of Chapter 4 is
suitable for large-scale WSN deployment, since it respect the memory, processing and

energy constraints of commodity sensor nodes used in WSN implementations.

Chapter 6 presents a novel algorithm which combines dynamically the information of a
small number of local estimations about the boundary's evolution characteristics, as they

become available to hypothesized fusion center, to reconstruct the continuous object's
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boundary (addresses L7). More specifically the proposed algorithm uses the locations
and evolution parameters of the computed local front estimates and using information
fusion techniques it determines a set of local fronts segments that approximate different
parts of the continuous object's boundary at a specific time instance. Next, using concepts
grounded on computational geometry, it reconstructs a smooth closed curve that approx-
imates the object's boundary. Finally, based on the uncertainty characterization of the
local front models evolution parameters (Chapter 3), the proposed algorithm generates a
probability field that indicates for each point of the considered area the probability to be
reached by the continuous object. Extensive simulations demonstrate that the proposed
boundary reconstruction algorithm can be used to determine with accuracy the boundaries
of different types of continuous objects (e.g. time-varying evolution rates and/or irregular
boundary shapes), using only a small number of local front estimates even in cases where
the evolution parameters have been distorted with error.

Finally, Chapter 7 summarises our findings and point to interesting future research
directions worth pursuing in the field of continuous object tracking under uncertainties that
is fast moving towards an integration with simulation based hazard predictive models.

Most parts of the doctoral dissertation have been published in peer reviewed scientific

journals and high quality referred Conferences Proceedings at the time of its writing.
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Chapter 2

Background and Related Work

During the last few years significant efforts have been invested worldwide in the design
and development of distributed systems for large scale environmental monitoring. The
goal of such efforts is to track, predict and manage the consequences of diffusive haz-
ardous phenomena, such as wildfires, oil slicks, chemical leaks etc. Wireless Sensor
Networks, is a maturing technology which is increasingly expected to play a major role in
the development of such systems. In this chapter we present the state of the art of the
developed continuous object tracking schemes based on the WSNs, and we appoint their

current limitations that make them impractical for hazard tracking applications.

2.1 Continuous object tracking techniques based on WSNs

- Literature Review

Predicting with reasonable accuracy the spatiotemporal evolution of a diffusive hazardous
phenomenon (such as a wild fires, oil slick, etc.) is of paramount importance since it helps
the authorities to organize efficiently their response (hazard suppression, possible evacu-
ations etc.). Research efforts around the globe are focusing in developing hazard specific
predictive models [46--49, 51--62, 89]. However, most of these mechanistic models de-
pend on a large number of space and time varying parameters which are difficult or even
impossible to estimate in real time, making predictions deviate significantly from reality.

To address this limitation many researchers have proposed system architectures which
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attempt to integrate recent sensor measurements and simulation based predictive mod-
eling into closed loop systems. The maijority of these works reported so far in literature
rely on remote sensing, where measured data (e.g. satellite spectral images) are used
to re-calibrate simulation models in real-time in order to minimize model prediction er-
rors. These methods, also known as Dynamic Data Driven Assimilation methods, have
recently drawn the attention of the scientific community due to their expected high societal
impact [63--67]. Unfortunately, in many cases, satellite images, or image data in general,
are not available, or are inappropriate for detecting a certain diffusing hazard. Moreover,
in most cases it's almost impossible to exploit directly (in realtime) the sensing data to

calibrate the simulation models.

Wireless Sensor Networks (WSNSs), is a mature state of the art technology and and
has been extensively used for tracking the trajectories of single or multiple target [1--
12]. The rapidly dropping cost of WSN technology, makes them a viable alternative for
environmental monitoring applications [13--21]. Recently, a number of collaborative WSN-
based methods have been proposed for detecting the boundaries of a diffusive hazards
[22--40] often modeled as " "continuous objects". Below we present in chronological order

the most important works reported so far in continuous object tracking literature.

In their seminal paper [22], Chintalapudi and Govindan propose three methods (sta-
tistical, image processing and classifier) for detecting edges in sensor fields. The key
idea of these methods is to determine the sensor nodes that are located in the interior of
the event and within a pre-specified distance from the object's boundary. To achieve this,
each sensor node collects information from its neighborhood (sensor nodes located within
its communication area) and based on a parameter named ""tolerance radius" decides
whether it should be considered as an edge node. Using the locations of these sensors
(edge sensors) they implicitly determine the boundary of the continuous object. In the sta-
tistical approach, a sensor node collects information from its neighbors and decides (using
a boolean decision function) if it is an edge sensor node or not. The image processing
approach is based on modified image processing edge detection technique where each
sensor node decides if it is an edge sensor based on the detection values of the sensor
nodes located within its probing area. Finally, the classifier based approach uses a linear

classifier to determine a line (edge) that partitions the probing area of a sensor node in two
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areas (interior and exterior). If the line passes through the sensor's tolerance circular area,
itis deemed as edge sensor. Simulation results show that the classifier method is the most
promising since it performs much better than the other schemes. Moreover in contrast to
the statistical method its accuracy is independent from the selection of threshold values

which are very difficult to set them correctly.

In [23] the authors Mitra and Nowak propose a novel technique based on hierarchical
WSN structure that determines a staircase-like approximation of the continuous object's
boundary. Initially the WSN deployment area is virtually partitioned in square cells. In
each cell the algorithm determines a Cluster Head node which is responsible to collect
the measurements from its neighbors (sensors inside the corresponding cell). Process-
ing the collected data, Cluster head determines whether its cell lies on the continuous
object's boundary or not. If the cell lies on the boundary, the algorithm produces a more
fine-grained partition of the corresponding cell and for each one of them it repeats the
aforementioned procedure. The cell partition procedure stops when the cells becomes
small enough such that do not contain sensor nodes. The authors present simulation re-
sults that demonstrate the accuracy, the communication cost and the final cell partition

size as a function of the sensor nodes density.

Based on the observation that the statistical method (proposed in [22]) is robust to
sensor node failures, Liao et al. in [24,25] propose a novel statistical edge detection tech-
nique based on hypothesis testing. Their method uses a set of local and global rules that
help the nodes to decide wether they lie on the continuous object's boundary [24,25]. Al-
though the proposed method had low complexity and it was robust to node failures, it did
not solve the main problem of the statistical method which was the appropriate threshold
value selection. Thus, two years later, the authors proposed a new version of the statistical
method [26] which solved the threshold selection problem based on the Neyman-Pearson
optimality criterion. Simulation results indicate that the proposed statistical method out-
performs the classifier based method (presented in [22]) in terms of boundary estimation

accuracy while being robust to noisy environments and possible node failures.

In [27], Liu et al. present a novel approach based on a dual-space transformation, to
determine the frontier of continuous object using binary sensor measurements. The dual-

space transformation maps the location of the sensor nodes to a set of lines that help us to
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determine the continuous object's frontier. Based on the estimated front line the authors
claim that its information can be used to reduce WSNs energy consumption by switching,
the nodes located away from it, to power saving modes. Using the results of a laboratory
experiment the authors prove that the proposed method is able to determine the front line

of a slowly moving continuous object.

In [28], Ji et al. propose a WSN-base methods which is able to detect and track the
boundary of an evolving continuous object. The proposed method, named ""Dynamic
Clustering Scheme (DCS)", similar to the aforementioned techniques, it implicitly deter-
mines the boundary of the evolving object using the boundary nodes' locations. A sensor
node is assumed as boundary node when it has detected the continuous object and has
at least one node in its neighborhood (nodes inside its communication range) which has
not detected the object yet. In sequence, these boundary nodes are dynamically orga-
nized into local clusters. Each cluster, determines a special node (Cluster Head node -
CH) which is responsible to collect and fuse the local boundary information and transmit it
to the sink. This dynamic clustering technique significantly reduces the communications
cost compared to the naive technique where each sensor node sends its information to
the sink. When the sink receives the local boundary information from the CHes, it is able
to estimate the global boundary of the continuous object. Extensive simulation results
demonstrate how the number of messages used for collecting the boundary's informa-
tion scales with the number of clusters and how the precision of the boundary's detection

scales with network's density.

In [29] the authors propose a WSN-based method named " Continuous Object Detec-
tion and tracking Algorithm (CODA), which allows us using a hybrid static/dynamic clus-
tering scheme to detect and track the boundary of an evolving continuous object. The
algorithm uses a number of static clusters that is formed during the network's deployment.
Each cluster has a special node named Cluster Head (CH). When a sensor detects the
presence of a continuous object it transmits a detection message to its CH. Next, the CH
uses a 'local boundary estimation function" and determines which nodes within its cluster
can be assumed as boundary nodes (nodes that lie on the continuous object's boundary).
In sequence, the CH organizes its boundary nodes into a dynamic cluster, and sends the

boundary information of this cluster to the sink. When the sink receives the boundary
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information from a sufficient number of CHs, it forms the "“global boundary" of the contin-
uous object. Extensive simulation results show that CODA outperforms the DCS scheme
since it reduces network's communication cost and achieves better boundary estimation

precision.

In [30] the authors present a WSN-based algorithm named "“COntinuous BOundary
Monitoring (COBOM) for detecting the boundary of a continuous object". In this algorithm
each node maintains a binary array (BN-array) which describes the detection status of
each neighbors. When a sensor node changes its detection status it broadcast a message
that informs its neighbors about this change. The neighbors when receive this message
update the corresponding entry of their BN-arrays. If their BN-arrays contains "'0" and
1" they become Boundary Nodes (BN). Based on the locations of the BNs the proposed
scheme can implicitly determine the boundary of the continuous object. To further reduce
the communication cost the authors introduce mechanism that selects only a subset of the
BNs to report to the sink (Reporting Nodes - RN). Each RN collects the information of its
neighbors compress it and send it to the sink. Simulation results show that this technique
substantially reduces the number of message exchanged in the network. However, the
authors do not provide numerical result to show how their algorithm performs in terms of

boundary estimation accuracy.

Based on [30] the authors in [31] present a scheme named " Energy-Efficient DEtec-
tion and MOnitoring for Continuous Objects in Wireless Sensor Networks (DEMOCO)".
In this scheme a sensor node becomes a Boundary Node (BN) when it receives a mes-
sage, from at least one of its neighbors, that has different detection status. Based on the
number of messages received with different detection status in a time period, a BN sets a
random back-off time which is inversely proportional to the number of the received mes-
sages. The BN with the smaller back-off time becomes a Reporting Node (RN) and sends
its information to the sink. Simulation results demonstrate that the DEMOCO outperforms
in terms of energy efficiency the algorithm COBOM under different WSN density scenar-
ios (which are extremely high) and object shapes (smooth and unsmooth). Although the
authors claim that their scheme is able to track with accuracy the boundary of evolving

continuous objects they do not provide sufficient results to support it.
In [32] the authors propose a novel algorithm named " Two-tier Grid based Continuous
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Object Detection and tracking (TG-COD) for tracking the boundary of an evolving contin-
uous object". The proposed algorithm is based on the formation of a grid structure which
determined using the location information of a reference point, a grid cell size value and
the sensor nodes' locations. When the sensor nodes deployed in the field, TG-COD cre-
ates a square grid of low density (large cell size) that covers the whole deployment area.
When the boundary of a continuous object inserts in a grid cell, TG-COD produces within
this cell a fine-grained grid which helps us to increase the tracking accuracy of the evolv-
ing boundary. TG-COD reduces the network's communication traffic, using the following
data report method: "'In a fine-grained grid cell, a header node collects the data from
the boundary nodes. In sequence, the header node reports this data to the header node
of coarse-grained grid cell that it belongs. When the header node of the coarse-grained
grid cell collects the reports of its fine-grained grid cell headers, it transmits them to the
sinks". The authors compare the proposed algorithm to CODA and DEMOCO and pro-
vide results that show that it outperforms with respect to energy communication cost and

boundary detection precision.

In [33] the authors propose a scheme named “"Dynamic Rectangle Zoned-based Col-
laborative mechanism (DRZC) to detect and track the boundary of evolving continuous
objects". The key idea of this scheme is as follows: The sensor nodes that detect the
continuous object collaborate and determine the sensor node that is located closer to the
center of a rectangular area that contains them. Next, the selected node sends its loca-
tion information to the sensor nodes located within the rectangle and they report him their
data. It is worth to mention that the selection of the node located closer to the center of
the rectanglular area, minimizes the network's communication cost during the data report-
ing phase. The size and the position of the rectangular area may dynamically change
since they depend on continuous object's location and geometrical characteristics (size
and shape). When the continuous object geometrical characteristics change, the rectan-
gular area also changes and the selected node is altered by another node near the center
of the ""'new" rectanglular area. Using the QualNet simulator the authors compare their
algorithm with DCS with respect to the boundary reconstruction accuracy under different
WSN densities and continuous object evolution scenarios. Simulation results shows that

the boundary accuracy of the DRZC is similar with this of the DCS. However it is worth to
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mention that the authors do not provide any information about the algorithm's communi-

cation cost which is expected by design to be high.

In [35] the authors propose a "*Scalable topology control based protocol for COntinu-
ous Object detection and Tracking (SCOOT)" which is able to reconstruct the boundary
of an evolving continuous object using the information of a small subset of the deployed
sensor nodes. This SCOOT protocol is separated in two phases: a) The collaborative
data processing phase, and b) the object's location reporting phase. The collaborative
data processing phase has two steps. At first step, the algorithm finds the nodes that
have detected the phenomenon and have at least one neighbor which has not detected it
yet. At second step the algorithm uses the information of these nodes and determines a
subset of them (reporters) where their location information suffices to determine the con-
tinuous objects boundary without compromise the accuracy. Next, in the object's location
reporting phase, the reporter nodes periodically transmit their location information to the
sink node. The proposed protocol can track single source and multiple source continuous
objects. Simulation results show that the proposed protocol significantly reduces the com-
munication cost (requires a small number of reporters), the control message overhead and
the data message overhead. Finally, the authors investigate how the effect of destroyed

nodes would affect the protocol's performance.

In [36] the authors propose an interesting scheme that determines the area covered by
the diffusive phenomenon. This scheme named, "'Ring-based Continuous Object Trac-
ing (RCOT)" uses the protocol described in [45] and organizes the nodes in connected
rings. Using this ring structure the RCOT algorithm applies the following steps to de-
termine the boundary of a continuous object. a) It determines the rings that lies on the
continuous object's boundary. b) For each boundary ring, the algorithm determines the
nodes that belong inside the object and those that belong outside the object and estimates
the coordinates of a point which theoretically lies on the object's boundary. Finally, using
the coordinates of these points the algorithm is able to determine the continuous objects
boundary. Simulation results show that the RCOT performs significantly better to CODA
with respect to communication energy consumption. However, the design of the RCOT
algorithm indicate that its accuracy depends on the sensor nodes density and deployment

strategy. Finally, although the authors claim that RCOT is able to trace the continuous
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object boundary they do not provide numerical results to support it.

In [37,38] the authors propose a novel WSN based predictive continuous object track-
ing scheme named ""'PRECO (PREdictive Continuous Object tracking scheme)". PRECO
proposes a novel sensor nodes' ““wake-up" mechanism to reduce the WSN's energy con-
sumption. The proposed scheme predicts the future location of the continuous object's
boundary line which provides knowledge for implementing a *“wake-up" mechanism and
decide which sleeping nodes need to be activated for future tracking. To predict the future
location of the continuous object's boundary line the authors propose a simple method for
the estimation of its spatiotemporal evolution parameters (speed and orientation). PRECO
assumes as a boundary line, a line segment that connects two adjacent special Boundary
Nodes (BN), named Master Boundary Nodes (MBN) (see Figure 5 in [37]). The sequen-
tial connection of all the adjacent boundary lines determines a polygon that approximates
the continuous object. Considering the above we can easily conclude that the accuracy
of PRECOQO's polygonal representation, depends on the number of the MBNs. However
as the WSN's density decreases, the number of the MBNs is reduced and therefore the
boundary's polygonal representation becomes coarser (imagine Figure 4 in [37] without
the middle MBN). Simulation results show that using very high density WSNs, PRECO
is able to determine with accuracy the boundary of an evolving continuous object (see
Chapter 4 for details). Moreover, the proposed wake up mechanism significantly reduces

the total WSN energy consumption.

All the works described consider the boundary detection problem in 2 dimensions (2D).
In [40] the authors propose a novel flexible and energy efficient scheme that is able to
track the boundary of a continuous object either it evolves in plain (2D) or space (3D).
The proposed scheme implicitly determines the continuous object's boundary based on
the location information of special selected nodes named Event Boundary Nodes (EBN).
For the selection of EBNs the algorithm uses the sensor's measurements and fits a Gaus-
sian mixture model where the number of its mixture components is determined using the
Bayesian Information Critirion (BIC). Next, the mixture model is compared with a thresh-
old value which help us to decide if the node is an EBN or not. Although this algorithm
has larger computational cost than COBOM and DEMOCO, simulation results show that

it outperforms in terms of energy efficiency and number of selected BNs.
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Comparison Table of Continuous Object Tracking Schemes
Name High Fault Prediction | Boundary Bourndary Reference
Density | Tolerance Ability Accuracy | Reconstruction
Chintalapudi v v - - - [22]
Nowak v - - - - [23]
Liao v v - - - [24--26]
Liu v - - - - [27]
DCS v - - v - [28]
CODA v - - v v [29]
COBOM v - - - - [30]
DEMOCO v - - - - [31]
TG-COD v - - - - [32]
DRZC v - - - - [33]
SCOOT v v - - - [35]
RCOT v - - - - [36]
PRECO v - v - - [37,38]
Chen v - - - - [40]

Table 2.1: Comparison of Continuous Object Tracking Schemes based on WSN technology.

2.2 Comparison and Conclusions

From the above analysis of the stat of the art we conclude that the key idea behind WSN-
based continuous object tracking methods has been to identify over time the sensor nodes
located closest to the evolving object's front line (boundary nodes). Although these meth-
ods can estimate implicitly the boundaries of an evolving hazard, they use assumptions
which renders them impractical for real applications.

Table 2.1 summarizes the main characteristics of the aforementioned reported schemes.
The first column contains the name of the algorithms or the names of the corresponding
authors. In second column we mark the schemes that require unrealistic density networks
(thousand of sensors per km?). In third column we mark the schemes that consider possi-
ble sensor node failures during the continuous object's propagation. In fourth column we
mark the schemes that are capable to estimate the boundary's evolution characteristics
(speed and direction). In the fifth column we mark the schemes that provide results about
the boundary reconstruction accuracy. Finally, in the sixth column we mark the schemes
that propose a technique that is able to automatically reconstruct the continuous object's
boundary without requiring the human ability to delineate it form the boundary nodes' lo-

cations.
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2.3 Current Limitations - Objectives of our method

After a thorough review of the related literature we conclude this chapter by presenting the

main pitfalls of the reported schemes, which consist the motivation of this dissertation.

* L1: The reported continuous object tracking schemes require unrealistic sensor
node densities (thousands sensors per km?) a fact the render them impractical for

real applications.

* L2: The majority of the proposed schemes do not consider nodes or communication
failures which are totally expected in harsh environments created by the hazardous

phenomena (e.g. wildfires, chemical leaks etc).

* L3:They require synchronization between the nodes. However, synchronizing the

clocks of the sensor nodes is very difficult to achieve even in small scale WSNs.

» L4: All the reported schemes consider a perfect sensing mechanism which cannot

be achieved in real application.

* L5: The majority of the reported schemes (with few exceptions [37,38]) are incapable
to estimate the spatiotemporal evolution characteristics (e.g. direction and speed)
of the diffusing phenomenon and therefore they cannot by exploited directly to make

valuable predictions.

* L6: They are incapable to assess their processing, memory and energy require-

ments before their real field deployment.

» L7: The use naive techniques to reconstruct the boundary of a continuous object or
are incapable to reconstruct it without using the human ability identify its shape from

the locations of the boundary nodes.

Based on the above limitations in this dissertation we propose a scheme which:

* Is able to determine the boundary of an evolving continuous object using WSNs of

realistic density.
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* Is robust to node and communication failures which may be permanent or intermit-

tent.
* Does not require synchronisation between the nodes.

« Assume a realistic sensing model that can capture the sensor nodes' detection dis-
tance uncertainty and the possibility of their functionality disruptions due to the haz-

ards passing.

* |s able to estimate with accuracy the continuous object's boundary evolution param-

eters and to predict its spatiotemporal evolution.

» Allow us to asses with accuracy the WSN functionality as well as its energy, pro-

cessing and memory requirements.

* It can reconstruct with accuracy continuous objects boundary at any time instance

of its evolution.
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Chapter 3

Local Front Probabilistic Modeling

Approach and Parameters Estimation

One of the main contributions of this research is the relaxation of the sensor nodes' deter-
ministic sensing mechanism assumption. This idealized sensing mechanism implies that
the sensor nodes detect the boundary of a continuous object at a fixed distance. However,
this assumption is unrealistic for hazard tracking, since the highly stochastic behavior of
hazardous phenomena may affect the sensors and their detection distance. In this chap-
ter we introduce a flexible probabilistic sensing modeling approach which allows us not
only to capture the sensor nodes(] detection distance uncertainty but also to account for
the possibility of sensor node malfunctions in the harsh environmental conditions poten-
tially created by an approaching hazard. The proposed modeling, allows us to formulate
the local front(]s speed estimation problem in a Bayesian manner. We analytically solve
this Bayesian problem and derive closed-form algebraic expressions for updating all local
front parameters (orientation, direction and speed) which can be easily implemented by

the microprocessors of today's commodity WSN nodes.

3.1 Preliminaries

The key idea of the proposed in-network collaborative algorithm is the following: As soon

as the deployed sensor nodes detect the evolving front line of a propagating hazard they
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are dynamically organized into ad-hoc local clusters of 3 nodes (triplets). Each triplet
consists of a Master sensor (S) who initiates cluster formation and two Helper sensors
{517, S['} that the Master selects among the nodes in its neighborhood and uses (without
them knowing it!) to update its current (prior) local front evolution belief model. The pa-
rameters of the updated (posterior) model are then propagated forward to other sensor
nodes residing in the area where the evolving phenomenon is moving into.

In this section we state the basic assumptions made, the notation used, and everything
else needed to facilitate the presentation of the modeling approach and collaborative in-

network processing algorithm presented in later sections.

3.1.1 Sensor Network Assumptions

We assume that the deployed sensor nodes are stationary with their positions known.
A sensor S; can communicate directly only with the nodes located within its neighbor-
hood N, that may change dynamically (grey shaded area in Figure 3.1) and is a subset
of S;'s ideal communication range (a disk of radius ). We have to note that the proposed
scheme has been designed to be tolerant to communication link failures, since in real
WSN deployments we expect that the parameters such as physical obstacles, adverse
local conditions created by propagating hazardous phenomena, may affect the operation
and/or communication capabilities of sensor nodes.

We assume that each sensor node is aware of:

* Its own location.
» The locations of its neighbors.

+ A parametric model consisting of its prior belief about the local front line's evolution

characteristics (see Section 3.1.3).
We assume that in a valid WSN deployment:

» Each sensor node has at least two neighbors (two nodes inside its communication
range).
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Figure 3.1: The neighborhood (grey) and local front model characteristics of sensor S.

» The local clocks of sensor nodes do not need to be synchronized to a global clock

reference.

» Sensor nodes may fail at any time due to the hazard's propagation. Once a node fails
it is assumed that it cannot communicate with its neighbors. Sensor node failures

may be either permanent or intermittent.

3.1.2 Sensor Node Status

A sensor node S; (subscripts will be used to uniquely identify a sensor node when neces-
sary) may assume one of the following statuses:

Quiescent (S¥): Default initial status.

Master (SM): A node that has become responsible for updating the local front's model.
Master Candidate (S¢): This transitional state is entered when a sensor node checks if
it satisfies the necessary conditions to become a Master (details are provided in Chapter
4).

To denote a status transition we will use the right arrow symbol (—). e.g. S© — SC de-
notes that the Quiescent sensor node S¢ becomes a Master Candidate SC.

Slave (SL): A Slave node is responsible for monitoring the phenomenon upon receiving a
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request from a Master. A Slave may serve more than one Masters at any given time.

As we can see in Figure 3.1 the neighborhood N; of Master node S is partitioned
into two half planes (positive and negative) by the local front line (a line segment of length
equal to the diameter of SM's ideal communication range). To refer to the neighbors of SM
located in the positive (negative) half plane we will use the notation N;* (IV,”) respectively.
It holds that V; = N;" U N;". Furthermore, we denote by N? the subset of neighbors of S;
which have not detected the phenomenon yet. It holds that N? = N;"°UN;°, where N;"° C
N (N7 C N;) are the subsets of neighbors which have not detected the phenomenon
yet and are residing in the positive (negative) half plane respectively. Similarly we will use
notation N/' = {SH S/'} to refer to two special Slave nodes of S}/, called Helpers, that
the Master S selects and uses to help him update its local front model; S]H is assumed
to be the first selected and S/ the second selected Helper of SM. (Details on how the

Helpers are selected by the Master are provided in Chapter 4).

3.1.3 Local Front Models Parameters

Each sensor node S; uses a parametric model to represent its belief about the local front's
evolution characteristics, namely its orientation, direction and speed. This model approx-
imates the local front as an evolving line segment of length equal to the diameter (2r) of
the sensor's circular communication range (see Figure 3.1).

For Master node S the Prior Model (before a model update) and the Posterior model
(after a model update) will be denoted as m; = {¢;,0;,u;, s;} and m? = {¢F, 0, uf, st

respectively, where:

» ¢; (Orientation): Is the tangent of the angle formed between the local front's line and

the x-axis (see Figure 3.1).

* ); (Direction): Itis assumed to be always perpendicular to the local front's line segment.
The direction coefficient may take one of the following values: 0, if the evolution direction
is unknown; +1(—1), if the local front evolves into the positive (negative) neighborhood's

half plane respectively (see Figure 3.1).

> u;, s; (Speed model parameters): The speed U; of the local front's line segment is con-
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sidered to be a random variable that follows a Normal distribution N (u;, s?). The source

%

of stochasticity and the use of the Normal distribution are discussed in Section 3.2.

3.1.4 Sensor Node Information and Tables

Each sensor node maintains locally the following information about itself:

Identity (ID;): An integer that uniquely identifies a sensor node S; in the network.
Local Timer (t;): Each sensor S; starts a local timer ¢; when it detects the phenomenon.
Location (L; = (z;,y;)): The coordinates of the physical location of sensor node S;.

Detection Status Flag (DSF;): A Boolean flag, with value 1(0), indicating that S; has (has
not) detected the phenomenon. It is set, DSF; < 1, when the hazard is detected by node
S;.
Sensor Status (5S;): A small integer encoding the current status of node S;. Possible
values are {0: Quiescent, 1: Master Candidate, 2: Slave, 3: Master)}.
Prior Model (PM;): The model m; = {¢;, d;, u;, s;} which captures node's S; current belief
about the evolution characteristics of the local front.
Updated Model (U M;): The posterior model, after the Master SM has updated the P,
parameters, i.e. m! = {¢},0F, u}, si}.

A sensor node organizes and stores locally the above information into the following
tables:
Sensor Information Table (T%): Sensor node S; keeps in this table the following information
aboutitself: {ID;, L;, DSF;,SS;, PM,;}.
Sensor Neighborhood Table (TV): Sensor node S; maintains in a separate row of this table
information about each one of its neighbors S,,, i.e. {ID;,., Lim, tim, DSEFim} Y{S.m € N;},
where t;,, is the value of the timer of S; when it is notified that its neighbor S,,, has detected
the phenomenon. If this notification arrives before the timer of S; is initiated (i.e. if S,
detects the phenomenon before S;) then the value of ¢;,, is set to null. The subscript
“im" is used to uniquely identify the information of a sensor node S,, that is stored in T
of sensor node S;. At deployment time, a sensor node S; retrieves the IDs and location
coordinates of its neighbors using the following simple procedure: S; broadcasts a special

message asking its neighbors to provide their IDs and location coordinates. When the
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neighbors receive this request they return their information which is stored in 7}V.
The above tables, are formed when a sensor node is initialized. In addition, each node

also creates dynamically and maintains the following tables:

Helpers Table (T ): It is created when a sensor node S} becomes a Master. It stores
the IDs of legitimate pairs of neighbors which may potentially become its Helpers. (How

these pairs are selected and how this table is used is explained in Chapter 4).

Masters Status Table (T}'): Each Slave node S’ creates this table and stores in a separate
row the following information about each one of the Masters (SM) it is serving: {ID;, U M;}.

How this table is used is explained also in Chapter 4.

3.2 Modeling Detection Distance Uncertainty

It is usually assumed that a sensor node can detect an event inside a disk area of radius
R,. Although this may not always hold in real applications, it is frequently adopted since
it simplifies the analysis [68--77]. Many disk based sensing models have been proposed
in the literature e.g. the binary, staircase, probabilistic, etc. [74]. Among the most popular

ones is the probabilistic sensing model given below,

1 r < Ry
p(x) = re=R) Ro< < Ry (3.1)
0 x> Ry

where the probability for a sensor node to detect an event is exponentially decreasing with
distance z in the range [R;, R,] and it is assumed that the sensor will detect an event with
probability 1 (perfect sensor) if it occurs within the inner circle of radius R, (see Figure
3.2a). The value of R, (in the range [0, Ry]) is application dependent. The parameters
~ and ) in equation (4.2) control the rate of probability decrease and can be determined
considering the physical properties of the sensor, the noise in sensor measurements, the
characteristics of the sensed physical quantity etc. [72].

We introduce a novel variation of the probabilistic sensing model which, in addition

to describing the detection distance uncertainty, it also accounts for the real possibility of
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Figure 3.2: Sensing Modeling: (a) Probabilistic exponential sensing model. (b) The proposed
shifted Gaussian sensing model.

a sensor node malfunctioning in a harsh environment as the hazard's front gets closer.
This sensing model variation was inspired by the analysis of real WSN data collected
from two outdoor experimental burns that took place at Gestosa's experimental field site
in Portugal [78]. The data analysis has shown that in many cases the sensors were unable
to detect the approaching fire front since abrupt increases in temperature (usually due to
sudden flame fluctuations) destroyed the sensors before they detected the phenomenon

(their measurements overcome a predetermined threshold).

The sensing range of a node S; is assumed to be a circular region of radius R, (see
dotted circle in Figure 3.2b) centered at the sensor's location (L;), as for the probabilistic
model. The value of R, is hazard specific and depends on: (i) The sensor's technical
specifications (e.g. its sensitivity), (ii) how the monitored phenomenon affects the physical
quantity measured by the sensor. Using this information we can estimate the expected
distance at which the evolving front is detected by the sensor [49]. We set this distance
equal to O‘TRd, where 0 < o < 1 (see Figure 3.2b). However, due to the stochastic nature
of a hazard's detection this distance may actually deviate from its expected value. To
account for this stochasticity we treat the detection distance as a normally distributed
random variable, D, ~ N(ud,ag), with parameters:

pa= 20, 3ad=Rd<1—%>:wd=%<1—§>- (3-2)

In setting the standard deviation as in (4.1) above we assumed that the probability for

a sensor to detect the approaching diffusive phenomenon at a distance larger than R, is
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negligible.

As observed in Figure 3.2b the probability of detection increases monotonically as the
distance of the local front from the sensor decreases in the range [O‘TRd, Rd}. However,
in close range [07 QTRd} the probability of detection decreases. This modeling decision is
justified considering that the inability of a sensor to detect the approaching front at the ex-
pected detection range [”‘TRd, Rd] is an indication of a potential hazard-induced malfunction
reducing the probability of detecting the hazard as it gets closer to the sensor node. This
simple and realistic, sensing model in the presence of propagating hazards allows us to
capture both the inherent stochasticity associated with the detection distance as well as
the sensor node's increasing probability to malfunction as the hazard gets in close range.
Importantly, it does not harm at all the generality since by setting the parameter o« = 0
in equation (4.1) (i.e. uq = 0) we can relax the assumption that a node may malfunction
and revert back to a monotonic probabilistic sensing model centered at the sensor node's
location. The proposed "shifted" Gaussian model is therefore very flexible since it can
cover both scenarios: diffusive hazards which may, or may not, affect the functionality of
deployed sensor nodes. This is in contrast to the classical monotonic probabilistic model
which ignores the real possibility of sensing mechanism failures as the hazard propagates
in close range. We have tested how the proposed algorithm (to be presented in Chapter
4) performs when the “‘real" sensing distance model deviates from the assumed "shifted"

Gaussian model (mismatch conditions).

We also remark that the Gaussian distribution has been used by many researchers to
describe the dependence of sensor node detection probability to distance ( [71, 75--77])
since it has all the necessary ingredients to characterize the uncertainty while offering a
simple parameterization. We will show later in this section that an added advantage is that
it also leads to simple algebraic expressions for updating the local front model parameters.
This is important because such calculations can be easily performed by the embedded
microprocessors of WSN nodes which have limited computing power and operate under

a strict energy budget.
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Figure 3.3: Updating the local front model.
3.3 Modeling Speed Uncertainty

Let us now consider the cluster of three sensor nodes (triplet) shown in Figure 3.3. As
soon as the Master node SM receives two Detection Messages (DM), one message from
each one of its two Helpers, {S#, where h € {j, k}}, it has all the information it needs to

start updating its prior model.

Using the coordinates of its Helpers (L, = (z1,y:) stored in its table 7/V) and the
coordinates of their projection points {p;, = (zin,vin), b € {j,k}} on its local front line,
Master SM can calculate the Euclidean distances {d;;, h € {j,k}} using equation (3.3)

below (see also Figure 3.3),

din = dist(Li, pin) =/ (xn — 2in)? + (yn — yin)2. (3.3)

Let's now call D;;, the distance that the local front at node S; has to travel before it gets

detected by a Helper node.

Dy, = dip, — Dy, h e {j,k} (3.4)

Since Dy, the detection distance of the progressing front from Helper S, h € {j, k},

follows a Normal distribution A (114, 02), D;;, will also follow a Normal distribution A (41, 02,
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with parameters:

aR R «
—4 o =o04= ?d(l—g), (3.5)

pin, = dip, — ptg = dip — 5

where d;;, has been computed using equation (3.3), h € {j, k}.

Upon estimating the parameters ., and o;,, h € {j, k} using equation (3.5), Master
node S} can calculate the speed at which the two Helper projection points, p;; and p,
have to move forward in order to cover the distances D,; and D;; in the measured time
intervals ¢;; and t;;, respectively (see Figure 3.3). Since D;; and D;;, are random variables
that follow a Normal distribution, it can be shown that the corresponding speeds of the
two projection points, U;; and U, will also follow Normal distributions of the form U;;, ~

N (ugn, s%). Their parameters can be computed easily using equations (3.6) below, h €

{J,k}:
pin _ 2din — aRy o Ra(1—73)

_ ol T 5) 3.6
tin 2, il tin 3tin (3.6)

3.4 Model Parameters Updating

3.41 Speed

The model of the speed random variable is updated based on a sequential Bayes pro-
cedure which however has been designed to respect the limited processing capabilities
and energy constraints of the WSN nodes. As in every Bayesian method, to compute
the posterior distribution we need: (i) an assumption about the random variable's current
““behavior" (prior) and (ii) the likelihood of the observed data.

As discussed in Section 3.1.3 the local front's speed is a Normal random variable. To
update its parameters (mean and variance), Master node SM uses its prior speed informa-
tion U; ~ N (u;, s?) (parameters are stored in its prior model m;) as well as the likelihood
computed using information related to the ““observed" speeds (U;;,) of the two Helper node
projection points on the current local front, namely {p;,, where h € {j,k}}.

Since the number of the available "observations" is very small (only two), we intro-

duce below a technique which exploits the availability of information about the uncertainty
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(s;n) associated with the speed "“observations" (U;;,) to improve the likelihood estimation
accuracy.

Having available its local prior model and the parameters of the speed models U;;, ~
N (uin, s3,) (computed using the equations in (3.6)), the Master node S computes the
weights {w;,, h € {j, k}} of a Gaussian mixture model with two components (see Figure
3.4b)

p(u) = Z winN (ultin, 53,), (3.7)
he{j,k}
as follows:
1 C Sijlu; — wgj
= — Wy =——, C=211 3.8
Wij 1+C Wik 1+C Sk wi — | (5:8)

Fixing the mixture weights as in (3.8) is justified based on the following arguments:

* The speed model Uy, h € {j, k} with the smaller standard deviation (smaller uncertainty)

should be trusted more by the Master.

+ Since in short time periods (e.g. the time interval between two successive local model
updates) environmental diffusive phenomena tend to exhibit smooth changes in terms
of their evolution characteristics (speed and direction), more trust should be assigned to

the speed "“observation" with mean value (u;,) closer to that of the prior model (u;).

Estimating the posterior parameters by using directly the Gaussian mixture likelihood
(3.7) and Bayes rule would be computationally expensive since analytical closed form
expressions cannot be derived. Due to the limited processing capabilities and low power
constraints of microprocessors used in WSN nodes, in this work we consider prohibitive
the use of an iterative, slowly converging, parameters estimation procedure. Therefore, in
order to be able to derive closed form algebraic expressions for the posterior distribution
parameters we employ variational calculus and approximate the Gaussian mixture by a
Normal distribution. To this end, we estimate the parameters of the Normal distribution
that minimizes the Kullback-Leibler (KL) divergence (maximizes the similarity) from the
Gaussian mixture. The general form of the equations which can be used to compute the

parameters of this Normal distribution are [79, 80]:
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4 6
Speed (nvs)
(a) (b)

Figure 3.4: Speed model updating procedure. (a) The prior model (U;), and the two ""ob-
servation" models (U;;, U;). (b) The mixture model p resulting by combining speed " "ob-
servation" models; the normal distribution ¢ that best approximates p by minimizing the
Kullback Lebier divergence (K L(p||¢)); the resulting posterior speed model U;'.

=3 (3.9)

¥ = Z wn(zn + (Mn - ﬂ) (Mn - ﬂ)T) (3.10)

In our specific case these equations reduce to:

U; = WijUij + WikUik (311)

S; = wijsy; + wisy, + wigwi(ui; — k) (312)

Having computed the mixture weights using (3.8), Master S calculates the Normal distri-
bution parameters ; and 5? using equations (3.11) and (3.12). By applying simple manip-
ulations on the Bayes theorem it can be proved [81--83] that since the prior A/ (u;, s?) and
the likelihood N (1;, 5?) are both Gaussian, the posterior will also be a Gaussian N (u?, s}?)
(conjugate distributions, see Figure 3.4b) with parameters provided by the following easy

to compute closed form expressions:
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a2 ~ 2 a2 .2
«  UiS; + U;S; «2 55
up = —5—— s = 5 (3.13)
S; + S5 Sy + S5

3.4.2 Orientation

Let K, (/) be the point to be reached by p;; (pix) as it moves in the direction of the local
front's evolution with speed u,;, (u;;) respectively for a time interval ¢, (see Figure 3.3).
The coordinates of K and K, to be called (x1, ;) and (x2,y2), can be found by solving
a system of a linear and a quadratic equation. This problem is formulated and solved
analytically in Appendix A. Using the calculated coordinates, Master S can update the

orientation parameter of its local front model using equation (3.14) below,

gr =240 (3.14)

‘ 5172—561'

3.4.3 Evolution Direction

To update the direction parameter 67, node SM derives the equation of line f;(x) that is

defined by points K (x1,y:) and Ks(xs,y2) (see Figure 3.3).
fi(@) =iz +b; (3.15)

where b} = y; — ¢,

Subsequently, node SM substitutes its abscissa (z;) in (3.15) and checks the sgn(f(z;)).
If sgn(f7(z;)) > 0 (sgn(f7(z;) < 0) then Master node SM infers that the new local front
line evolves into the negative (positive) half plane and it updates the direction parameter
df = —1(1) accordingly.

In this chapter we presented a novel flexible Gaussian sensing model that allow us to
capture sensor nodes' detection distance uncertainties and possible disruptions of their
functionality. Based on the detection distance uncertainty we formulate a Bayesian pa-
rameter estimation problem which solved analytically. As we will present in Chapter 4
the derived algebraic closed formed expressions allow us to estimate with accuracy the

local evolution parameters of a continuous objects boundary, while respecting the strict
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processing and energy constraints of the commodity sensor nodes (see Chapter 5).
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Chapter 4

Collaborative Algorithm for Estimating
the Spatiotemporal Evolution of

Continuous Objects

In this Chapter we present the proposed collaborative WSN algorithm for estimating and
tracking the local evolution characteristics of continuous objects. Using extensive simula-
tion results, we demonstrate its ability to estimate with accuracy the evolution character-
istics of complex continuous objects, using realistic WSN densities while allocating also

sensor node and communication link failures.

4.1 Preliminaries

41.1 Sensor Messages

The proposed in-network algorithm assumes that each sensor node can handle the fol-

lowing messages (the attributes carried by each message are provided in parenthesis):
Broadcast type Messages:

Detection Message (DM(ID;)): Itis broadcasted by a sensor node S; to notify its neighbors
that it has detected the phenomenon (detection event).

Master Declaration Message (MDM): It is broadcasted by a node to notify its neighbors that
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it satisfies the necessary conditions to assume a Master's role (to be presented in Section
4.2.1). This message has two slightly different versions: MDM1(ID;, PM;) and MDM2(ID;).
Update Prior Message (UPM(ID;,UM;)): It is broadcasted by a Master node S after it has
updated its prior model.

Free Slaves Message (FSM(ID;)): It is broadcasted by a Master node S in order to re-
lease its Slaves.

Pass My Posterior Message (PMPM(ID;)): It is broadcasted by a Master node S when
none of its Helpers satisfies the necessary conditions to become the new Master.

Pass Posterior Message (PPM(UM;)): It is broadcasted by the sensor nodes {SL € N;}

enslaved to a Master node (SM) after they have received a PMPM(ID;).
Unicast type Messages:

Master Declaration Message Acknowledgement (MDMA(ID;)): it is sent by a Slave node
(S7) to notify its Master (S;') that it has received its MDM message and has become its
Slave.

Master Offer Message (MOM(ID;)): It is sent by a Master node (S) to one of its Helpers
to make it an offer to become the new Master.

Accept Master Offer Message (AMOM(ID;)): It is sent by a Helper (S;) to a Master to ac-
knowledge that it accepts the offer to become the new Master.

Decline Master Offer Message (DMOM(ID;)): Itis sent by a Helper (Sf ) to a Master to notify

it that it does not accepts the offer to become the new Master.

4.1.2 Sensor Network Assumptions

To better explain the proposed in-network algorithm we will use a running example to
facilitate the understanding of its operations. Let's assume, without loss of generality
(w.l.o.g.) that a part of the evolving front has just entered the WSN's deployment region
and none of the sensor nodes, (which are currently in the default Quiescent status), has
detected the phenomenon yet (DSF = 0). Each node is equipped with sensors that can
measure physical parameters affected by the phenomenon's presence when it enters in

its sensing range (a circle of radius R, - see Chapter 3 for details). All sensor nodes are

Dimitrios V. Manatakis 80



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

initialized with the same prior model with parameters m; = {¢;, §;, u;, s;} and §; = 0.

4.2 Collaborative In Network Algorithm

4.2.1 Forming a Local Cluster

Let's now assume that the evolving front enters the sensing range of node S; (see Figure

4.1a). As soon as S; detects the front, it initiates the Detection Procedure described below

and also summarized by the UML sequence diagram of Figure 4.2.

Detection Procedure: Sensor node S; starts a local timer, changes the value of its detec-

tion status flag DSF; from 0 to 1 (stored in its information table 7/°) and checks its status

variable S'S;, which may have value 0 (Quiescent) or 2 (Slave).

If SS; = 0 (5; is Quiescent, as in the example's case) the node makes a status transition,
SZ.Q — 8¢ (SS; « 1), and initiates the Master Check Necessary Conditions Procedure

(presented in the next paragraph).

If SS; = 2 (S; is a slave), node S broadcasts a Detection Message DM(ID;). Each
neighbor {S,, € N;, where m = {j, k,[}} in Figure 4.1a when it receives this message it
updates in its neighborhood table T (in the row corresponding to S;) the attributes ¢,
and DSF,,; (see Figure 4.2). The value assigned to ¢,,; is the time value ¢,, indicated
by the local timer of S,, when message DM(ID;) was received. If S, receives message
DM(ID;) before its local timer has been started (this can happen if S,, has not sensed

the phenomenon yet) it assigns to attribute ¢,,; a null value.

Master Check Necessary Conditions Procedure: Sensor node S¢ finds in its table 7)Y

the subset of neighbors which have not detected the phenomenon yet (i.e. {S,, € N?}).

Based on the cardinality |N?| of this set, S proceeds as follows: (see UML sequence

diagram in Figure 4.3).

If IN°| < 2: Node SC transitions back to the Quiescent state, S¢ — S¢, and broad-
casts a DM(ID;) message. Each receiving neighbor {S,, € N;} updates its attributes ¢,,;

and DSF,,; in its table TV

m

in the way already discussed in the Detection Procedure

paragraph and shown in Figure 4.2.
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S Q 2 Quiescent node
W—. O Slave node

Q [ ¢~ ) OHelpernode

S \_~ / AMaster node

Figure 4.1: Local front model updating procedure: (a) Node S; becomes Master candidate
and checks if it satisfies the conditions to become a Master, (b) node S; becomes a Master
and “enslaves" its neighbors S;, S;. and S, (c) Master SM uses the information received
from its two Helpers (SJH and S}’) and updates the local front's line parameters, (d) node
S becomes the new Master and S; releases its slaves.
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Figure 4.2: Detection Procedure (UML sequence diagram).

« If|N?| > 2 (example's case): Node S initiates the Local Front Line Derivation activity
and then checks the evolution direction parameter ¢, of its initial model m;. Based on
the value of 6;, S¢ initiates the appropriate Create Helpers Table activity followed by the

Master Declaration activity (see Figure 4.3).

Local Front Line Derivation: Node S¢ uses the orientation parameter ¢; of its initial model
m; and its location information L; = (z;,y;), to derive the equation of the line where the

local front segment belongs, fi;(z) = ¢;z + b;, where b; = y; — ¢;z; (see Figure 4.1a).

Create Helpers Table: Node S¢ checks the value of the front evolution direction parameter

5i in m;.

« If §; = +1 (the local front evolves into the positive half plane), S¢ searches in its neigh-
borhood table TV to find the subset of neighbors that belong to the positive neighbor-
hood half plane and have not detected the phenomenon yet (N;'°). If |[N;"°| > 2, S¢
calculates the coordinates of these neighbors' projections on the local front line (see

Appendix A for details). These are the points p;;, pix, pii in the example (Figure 4.1a).

Then S¢ calculates the Euclidean distances among all possible projection pairs and
identifies those pairs with distances larger than a pre-specified threshold (that is appli-

cation dependent). These pairs are considered to be the legitimate Helpers pairs, in
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Figure 4.3: Master Check Necessary Conditions Procedure (UML sequence diagram).

the sense that any one of them could be used by S¢ to update its prior model. Finally
S¢ stores the IDs of nodes of legitimate Helper pairs in its respective Helpers table T},
How a particular Helpers pair is selected among the legitimate ones will be discussed
in Section 4.2.2.

« If 5; = —1 (the local front evolves into the negative half plane), S¢ performs the same
aforementioned steps but for the nodes which belong to the negative neighborhood half

plane and have not detected the phenomenon yet (subset N, ).

« If §; = 0 (the local front's evolution direction is unknown - example's case), S¢ searches
in table TV and finds the sensor nodes that belong to its neighborhood and have not
detected the phenomenon yet (N?). Then S¢ partitions them into two half planes defined
according to the local front line f;(z) (see Local Front Line Derivation). For each subset
(N;?and N, %) S performs the steps described above for the cases §; = +1and §; = —1

respectively.

Master Declaration: After the end of the Create Helpers Table activity node S checks
its Helpers Table T

If TH = ©: S does not become a Master, transitions back, S¢ — S, and broadcasts a
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Figure 4.4: Master's Declaration (UML sequence diagram).
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DM(ID;). The receiving neighbors {S,, € N;} update their attributes ¢,,; and DSF,,,; in their
tables T (see Figure 4.4).
If TH # © (i.e. there exist at least one pair of legitimate Helpers for S¢): Node S¢ becomes

a Master, S¢ — SM, and checks its model's evolution direction parameter (J;):

* If §; # 0, SM broadcast a Master Declaration Message of type 1, (MDM1(ID;,PM;)). Each
neighbor {S,, € N;} when it receives this message it updates the attributes ¢,,; and
DSF,, inthe corresponding row of its table 7Y, as shown by the UML sequence diagram
of Figure 4.4. Moreover, each {S,, € N/} uses the Master's S initial model (P is
carried in MDM1), derives the equation of the local front line f;(xz) and substitutes its
abscissa (x,,) in the argument of f;(x). If sgn(fi(zn)) = sgn(d;) (i.e. if S,, belongs
to the half plane, with respect to the Master, that the front evolves into), S,, becomes
a slave, S,, — SL, adds a row in its Masters table T/ for Master S with attributes
{ID « ID;,UM <« null} and sends a Master Declaration Message Acknowledgement

(MDMA(ID,)) back to node SM. Otherwise S,, keeps its status unchanged.

« If §; = 0 (example's case), Master S broadcasts a Master Declaration Message of type
2 (MDM2(ID;)). Each neighbor {S,, € N,} receiving this message updates the attributes
tmi and DSF,,; in the corresponding row of its table 7 (see Figure 4.4). Moreover, if
{S,, € NP} it becomes a slave (S,, — S%) (see Figure 4.1b) adds a row in his T/ for
Master SM with attributes {ID <+ ID;,UM < null} and sends a Master Declaration

Message Acknowledgement (MDMA(ID,)) to node SM.

When node S¢ becomes a Master it waits until it receives two detection messages
(DMs), one message from each one of the two nodes of a legitimate Helpers pair (among
those pairs stored in its local Helpers Table T/ - see Figure 4.5). However, the potentially
adverse conditions created by the propagation of a diffusive hazard may impair the com-
munication between the Master and its Helpers. In the a worst case scenario the Master
may never receive the DM messages sent by its Helpers and thus never update its local
model parameters (formation of a “*zombie" cluster). We should emphasize that the possi-
ble formation of “~zombie" clusters does not affect the global functionality of the algorithm

since the model updates within "healthy" clusters will normally take place. Nevertheless,
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Figure 4.5: Updating Model Parameters (UML sequence diagram).

to reduce the probability of a ““zombie" cluster formation the Master node implements the
following procedure:

Master Neighbourhood redefinition: Master node SM waits (the waiting time is ap-
plication dependent) to receive the MDMAs from its slaves. After this time, it uses the IDs
of its Slaves (contained in the received MDMAs) and checks if these IDs correspond to at

least one of its legitimate Helper pairs stored in its Helpers Table (T7):

- If they do, Master node SM keeps its status unchanged and waits until it receives the
two detection messages (DMs) that will be used to update its model parameters (see
Section 4.2.2).

« Ifthey do not, Master node SM broadcasts a Free Slaves Message FSM(ID; ) and changes
its status (S — S¥). When the slaves {SZ € N,} receive the FSM message, they re-
move from their tables T the information corresponding to Master SM and if they do

not serve any other Master(s), they change their status back to Quiescent (St — S9).

4.2.2 Model Updating

In our example we assume w.l.0.g. that the two messages received by SM come from

N}t = {S]',5/"} (see Figure 4.1c). Furthermore it is assumed that the two Helpers have
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detected the evolving front at time instances ¢,; and ¢;;, respectively, where w.l.0.g. t;; < t;.
When the Master S receives the DMs from the pair of Helpers it updates its neighborhood
table 7}V and initiates the procedure described below.

Model Updating Procedure: The updating starts with the calculation of the "“new"
(posterior) local front speed model parameters (U ~ N (u}, s:?)). Master node SM uses
the expressions in (3.6) and calculates the parameters of the Normal speed models of the
two Helper projection points p;; and p;;, (see Section 3.3). By substituting these parameter
values in (3.8), SM calculates the Gaussian mixture weights w,; and w;; (see Section 3.4).
Then, by applying the resulting mixture weight values into (3.11) and (3.12) the Master
calculates the parameters (u; and ;) of the Normal distribution that best approximates
the Gaussian mixture. Finally, having available these parameters (u; and s;), along with
the prior model parameters (u;, and s;), SM applies them to equation (3.13) to obtain
parameters (u}, s;?) of the posterior speed model.

Next, Master SM estimates the local front's orientation, ¢;. As discussed in Section
3.4.2 to update this parameter the Master finds the coordinates of two points, K| = (z1,y1)
and Ky, = (z2,y2) (see Appendix A), which are expected to lie on the “"new" local front
line (see Figure 4.1c), and applies them directly to equation (3.14). Finally, S} follows
the procedure described in Section 3.4.3 and updates the evolution direction parameter,
oF. All model parameters are updated using closed form expressions that can be realized

easily by embedded microprocessors commonly used in WSN node architectures.

4.2.3 Model Propagation

After updating its model, Master S initiates the Model Propagation Procedure (see the
UML sequence diagram of Figure 4.6).

Master node S first broadcasts an Update Prior Message (UPM(ID;,UM;)). The sen-
sors which serve it {SZ € N;} when they receive it update the prior model information in
their tables 7> using the received model m?. Moreover, they update attribute UM, < m
in the corresponding row of their Masters' table 7'*/. In addition, S sends a Master Offer
Message (MOM(ID;)) to the Helper who detected most recently the phenomenon (it is S/

w.l.0.g. in the running example of Figure 4.1c¢) and asks it to become the new Master. This
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sensor node becomes temporarily a Master candidate (S — S¢) and uses the updated
model parameters (m;) to initiate the Master Check Necessary Conditions procedure (see
Section 4.2.1).

If Helper S meets the conditions to become the new Master (example's case), it
accepts the offer (S — SM) and responds to S with an Accept Master Offer Mes-
sage (AMOM(ID,)). When S receives this message it broadcasts a Free Slaves Message
FSM(ID;) and changes its status back to default (SM — SZ.Q, see Figure 4.1d). Each Slave
SEL when it receives the FSM removes from its table 7'M the information corresponding
to Master SM and if it does not serve any other Master(s), it changes its status back to
Quiescent (St — S9).

On the other hand, if Helper S{' does not satisfy the necessary conditions to become
the new Master, it rejects the offer made by S by responding with a Decline Master Offer
Message (DMOM(IDy)). This forces SM to try exactly the same negotiation with its second
Helper S7. If S/ also rejects the offer to become the new Master, then S}/ gives up with
its Helpers, resets in its updated model m; the value of the evolution direction (6} < 0),
broadcasts a Pass My Posterior Message (PMPM(ID;)) and returns to default Quiescent
status. The neighbors ({S,, € N;}) which are enslaved to S, when receiving the PMPM
they broadcast a Pass Posterior Message (PPM(UM; )) containing the Master's S updated
model m?. The neighbors of nodes S,, when receiving the PPM they update their prior
model in their table 7 with the updated model m;. Finally each neighbor {SL € N}
deletes from its Masters table T/ the information related to S and if it does not serve

another Master it changes its status back to Quiescent (S% — S9).

At this point we want to mention the following interesting scenario that can be handled
without any problem: A Helper node may be enslaved to more than one Masters (if it
belongs to the intersection of their clusters). If this Helper node receives a MOM from one
of its Masters it may accept the offer (if it satisfies the necessary conditions) while it also
continues to serve as Helper to another Master. If now this new Master receives (before
it updates its model parameters) a MOM from a second Master, it will checks (for the cor-
responding model) the “"Master check Necessary Conditions" and if they are satisfied it
will accepts that offer as well. By the end of this procedure the new Master has formed

for each accepted offer a T table that contains the legitimate Helper pairs that could be
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Figure 4.6: Model Propagation Procedure (UML sequence diagram).
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used for updating each model. The new Master waits to receive the DMs from two of its
neighbors that constitute a legitimate Helpers pair in at least one of its 7% tables. If the
pair that responds is contained in only one of its 7 tables then the node updates only
the corresponding model and discards the rest. Otherwise, if the same Helpers pair is
present in more than one T tables, the node updates the corresponding models and se-
lects among them to propagate the one with the smallest speed variance (smallest speed

uncertainty).

4.3 Evaluation Setup

We present next simulation results demonstrating the ability of the proposed collaborative
WSN algorithm to estimate accurately the local evolution characteristics (speed and direc-
tion) of a continuous object. The phenomenon may include multiple diffusion processes
(hazards), possibly expanding at a time varying rate and/or assuming irregular shapes.
For the evaluation we have developed a flexible simulation workflow which allows us
to generate and execute realistic WSN simulation scenarios with different sensor node
densities, deployment strategies, sensor node failure probabilities, communication (Rx
and Tx) failure probabilities, and propagating hazard front properties (shape, speed and

acceleration).

4.3.1 WSN Simulation Workflow

The WSN simulation workflow includes two main components: i) The flexible WSN sim-
ulator COOJA (COntiki Os JAva) [84] for the Contiki sensor node operating system, and
ii) a Matlab-based component which prepares the COOJA input file and evaluates the
estimation accuracy of the proposed in-network algorithm.

As shown in the UML component diagram of Figure 4.7, the Matlab component takes
as input information about: a) the deployed sensor nodes (location, prior model parame-
ters, etc.), and b) the propagating hazard's front properties, and determines the sequence
in which the deployed sensor nodes detect the evolving hazard. After that, it generates a

file (Detection Events Sequence) which contains for each sensor node the following infor-
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Figure 4.7: UML component diagram of Matlab-COOJA based simulation workflow.

mation: {ID, location, time of detection, prior model parameters}. This file is passed as
input to COOJA used to simulate the behavior of the proposed distributed algorithm, as if
it was implemented by a WSN consisting of Atmel's AVR RAVEN nodes [85]. To achieve
this, the code every sensor node needs to run to implement the proposed in-network algo-
rithm was programmed in C on the Real Time Operating System (RTOS) Contiki. Using
COOJA we simulate the IEEE 802.15.4 MAC protocol's byte stream (preamble, start of
frame delimiter, data, and checksum) which is also used by the Atmel's AVR Raven nodes.
Moreover using COOJA's Unit Disk Graph Medium (UDGM) with a distance loss propaga-
tion model [86] (that considers interferences), we can evaluate the proposed algorithm's
behavior under different Rx/Tx failure probabilities.

At the end of a simulation, a COOJA Output file is produced which contains: a) The
updated model parameters, b) the number of Rx and Tx messages/Bytes exchanged in
the WSN, and c) the energy consumed for communication (Rx and Tx). To evaluate the
estimation accuracy of the proposed algorithm, the updated models information is passed
back as input to the Matlab component which compares the corresponding models' orien-

tation and speed with the ground truth values (see Appendix B).

4.3.2 Experimental Setup

A notable advantage of the proposed in-network processing algorithm is that it can es-
timate accurately the evolution characteristics of a local front using low density sensor

networks. To demonstrate this feature in all the conducted experiments we have used
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WSN densities that are considered low for environmental monitoring applications. Specif-
ically the used densities 7.5 x 1075, 1074, 1.25 x 10~* sensors/m?, which correspond to 75,
100 and 125 sensor nodes respectively deployed within an 1km? square area. For each
WSN density value we use a large number of randomly drawn sensor node deployments
and demonstrate how the proposed algorithm performs under different sensor node as
well as communication (Rx and Tx) failure probabilities (equal to 0, 0.1, 0.2 and 0.3).

For all experiments the radius of the communication range of a node was set to r =
150m, such as to guarantee that we have a connected network (every node has at least
one neighbor) for every density scenario. Furthermore, in order to evaluate how the size
of the sensing radius R, affects the accuracy of the proposed algorithm we repeated the
experiments with different R, values equal to 0.1m and 15m. For the sensing models the
parameters were calculated using the equations in (4.1) for « = 1. Each sensor node is
initialized with the same prior model m; = {¢; = 0,6; = 0,u; = bm/min,s; = 2m/min}.
The mean speed value in the prior model was intentionally chosen to differ significantly
from the simulated hazard front speeds in order to demonstrate the ability of the proposed
distributed algorithm to estimate the true model parameter values even when the initial
prior belief model of the sensor nodes deviates significantly from the reality. The commu-
nication energy consumed by the simulated AVR Raven nodes, was measured using: a)
their maximum power (3dBm) for transmission (at this power level communication range
of the AVR RAVEN nodes is approximately 150m) and b) reception sensitivity -101dBm
which is fixed for the AVR Raven nodes. Finally, in all the conducted experiments we
used a policy where a sensor node retransmits once its message if it does not receive an

acknowledgement from the message recipient(s).

4.4 Results and Discussion

In the conducted experiments the diffusive phenomenon (continuous object) was simu-
lated using either a Matlab program or FLogA a wildfires behavior simulator developed in
our group [87]. To evaluate the accuracy of the proposed distributed algorithm, we com-
pared the estimated direction and speed of the local fronts to the corresponding ground

truth values. A detailed description of the evaluation metrics used is provided in Appendix

Dimitrios V. Manatakis 93



Distributed Signal Processing and Data Fusion Methods For Large Scale Wireless Sensor Network Applications

441 Experiment 1: Multi-source diffusive hazards

In the first experiment a complex diffusive phenomenon is modeled as two circles of fixed
centers and radii that are increasing with equal but time varying rates. The circles repre-
sent two distinct diffusive hazards which have just started entering the WSN deployment
area at the beginning of the simulation. The two circles start to overlap as they grow to
form a complex front line before covering half of the deployment area. A detailed pre-
sentation of the experimental setup is presented in Appendix C. Moreover, in order to
help the reader visualize the complex phenomenon and get a sense of the model up-
dates taking place during its propagation, we provide a video animation (see file Exper-
iment1TwoFronts.mp4 [88]) created using Matlab. A discussion of what is shown in the
video can also be found in Appendix C.

Modeling propagating hazards with circular shapes is justified because: a) Fick's sec-
ond law of diffusion (which in two or more dimensions is analogous to the heat equation)
indicates that the diffusion of a substance emanating from a single point source covers a
circular area whose size is increasing at a rate indicated by the diffusion c