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Abstract—There is a fast growing interest in exploiting Wireless Sensor Networks (WSNs) for tracking the boundaries and predicting
the evolution properties of diffusive hazardous phenomena (e.g. wildfires, oil slicks etc.) often modeled as “continuous objects”. We
present a novel distributed algorithm for estimating and tracking the local evolution characteristics of continuous objects. The hazard’s
front line is approximated as a set of line segments, and the spatiotemporal evolution of each segment is modeled by a small number
of parameters (orientation, direction and speed of motion). As the hazard approaches, these parameters are re-estimated using ad-
hoc clusters (triplets) of collaborating sensor nodes. Parameters updating is based on algebraic closed-form expressions resulting
from the analytical solution of a Bayesian estimation problem. Therefore, it can be implemented by microprocessors of the WSN
nodes, while respecting their limited processing capabilities and strict energy constraints. Extensive computer simulations demonstrate
the ability of the proposed distributed algorithm to estimate accurately the evolution characteristics of complex hazard fronts under
different conditions by using reasonably dense WSNs. The proposed in-network processing scheme does not require sensor node
clocks synchronization and is shown to be robust to sensor node failures and communication link failures, which are expected in harsh
environments.
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1 INTRODUCTION

T RACKING objects (i.e. determining their location over
time) has been a fundamental problem with numer-

ous applications (surveillance, aviation, military etc.).
Apart from determining the trajectory of the objects, it
is also important to estimate their motion characteristics
(e.g. direction and speed) in real-time, since this infor-
mation can be used to predict their future locations and
understand their overall spatiotemporal behavior.

During the last decade there has been a fast grow-
ing interest in exploiting the capabilities of Wireless
Sensor Networks (WSNs) in a variety of application
domains (health, military, IoT, etc.). WSNs have also
been used for single and multiple target tracking [1]–
[3], and due to their rapidly dropping cost they are also
gaining popularity in environmental monitoring applica-
tions [4]. Recently, sensor network-based methods have
been proposed for detecting the boundaries of diffusive
hazardous phenomena [5]–[12], modeled as “continuous
objects”. However, traditional target tracking algorithms
cannot be applied for continuous object tracking, since
the two problems are fundamentally different. Contin-
uous objects (such as wildfires, oil spills, diffusing bio-
chemical materials etc.) tend to occupy a large area and
their size and shape is continuously changing (albeit
smoothly) with time. To be able to track their boundaries,
a large number of cooperating sensor nodes is needed,
increasing faster than linearly with the area occupied by
the continuous object. In contrast, discrete targets (such

as vehicles, animals, humans etc.) have a very small size
compared to the WSN’s deployment area and a much
smaller number of sensor nodes usually suffices to track
their trail.

The key idea behind WSN-based continuous object
tracking methods has been to identify over time the
sensor nodes located closest to the evolving object’s
front line (boundary nodes). Although these methods
can estimate implicitly the boundaries of an evolving
hazard, they require unrealistic network densities (thou-
sands of deployed sensor nodes per km2) which renders
them impractical even for small scale environmental
monitoring applications. Furthermore, the reported algo-
rithms (with few exceptions as those in [11], [12]) do not
provide information about the spatiotemporal evolution
characteristics (e.g. direction and speed) of the diffusing
phenomenon and therefore cannot be exploited directly
to make valuable predictions.

The front of an evolving hazard can be approximated
as a piecewise linear curve. Each segment of this curve
(to be called the local front) can be adequately character-
ized by a small set of parameters, namely an orientation
angle and the direction and speed of the segment’s prop-
agation. In [13], [14] we have shown that the spatiotem-
poral evolution of each local front can be modeled by a
modified 2D Gaussian function and that it is possible to
track the front by updating the model parameters using a
distributed processing scheme which solves a Kullback-
Leibler divergence minimization problem.

In contrast with existing works [5]–[12] which try to



2

delineate the area affected by the diffusive hazard, we
present in this paper a novel decentralized algorithm
which can estimate with accuracy, using dynamically
formed clusters (triplets) of cooperating sensor nodes,
the local evolution characteristics (orientation, direction
and speed) of a continuous object. The updating of the
evolution parameters is based on a Bayesian probabilistic
modeling approach which relatively to our prior work (
[13], [14]) : (i) Casts the problem in a framework allowing
us to account for the sensing mechanism uncertainties
expected in harsh environments and also characterize the
uncertainty of the estimated parameters, (ii) Improves
the accuracy of the obtained local model parameter esti-
mates, (iii) Leads to simpler algebraic expressions for up-
dating these parameters that can be easily implemented
by the commonly used processing- and power-constraint
embedded microprocessors of WSN nodes, (iv) Takes
into account the possibility of imperfect sensor nodes
which may fail to communicate since the approaching
hazard may impair their functionality.

With respect to related work on predictive modeling
( [11], [12]) our approach exhibits the following advan-
tages: It can track accurately the time varying charac-
teristics of a local front line even if, (i) the WSN is not
dense, (ii) the sensor node clocks are not synchronized,
(iii) the sensing mechanism is imperfect, (iv) nodes and
communication links may fail as the hazard approaches.
The ability to track the spatiotemporal evolution char-
acteristics of the local front enables making predictions
about its future location, a feature that is found only in
hazard specific WSN schemes [15], [16].

The rest of the paper is organized as follows: In Section
2 we introduce preliminaries needed to understand the
proposed modeling approach and the associated collab-
orative in-network processing algorithm. The Bayesian
approach used to update the model parameters is pre-
sented in Section 3. In Section 4 we describe in detail
the steps of the collaborative in-network algorithm. Ex-
tensive validation results are presented and discussed
in Section 5. Finally, our findings are summarized and
work in progress is outlined in Section 6.

2 PRELIMINARIES

The key idea of the proposed in-network collaborative
algorithm is the following: As soon as the deployed
sensor nodes detect the evolving front line of a propagat-
ing hazard they are dynamically organized into ad-hoc
local clusters of 3 nodes (triplets). Each triplet consists
of a Master node (SMi ) that initiates cluster formation
and two Helper nodes {SHj , SHk } that the Master selects
among the nodes in its neighborhood and uses (without
them knowing it!) to update its current (prior) local
front evolution belief model in a Bayesian manner. The
parameters of the updated (posterior) model are then
propagated forward to other sensor nodes residing in the
region that the evolving phenomenon is moving into.

Fig. 1: The neighborhood (grey area) and local front
model characteristics of sensor SMi .

2.1 Sensor Network Assumptions
We assume that sensor nodes are stationary and their
locations are known. A sensor Si can communicate
directly only with nodes located within its neighborhood
Ni that may change dynamically (grey shaded area
in Figure 1) and is a subset of node Si’s ideal
communication range (a disk of radius r). We have
to emphasize that the proposed scheme has been
designed to tolerate communication link failures, since
in real WSN deployments we expect that factors such
as physical obstacles, adverse local conditions created
by propagating hazards etc., may affect the operation
and/or communication capabilities of deployed sensor
nodes. We assume that each sensor node is aware of:
(i) its own location, (ii) the location of its neighbors,
and (iii) a parametric model capturing its prior belief
about the local front line’s evolution characteristics (see
Section 2.3 for details). In a valid WSN deployment,
each sensor node is assumed to have at least two
neighbors. The local clocks of sensor nodes do not
need to be synchronized to a global clock reference. A
sensor node may fail at any time due to the hazard’s
propagation. Once a node fails we assume that it cannot
communicate with its neighbors. Sensor node failures
may be either permanent or intermittent.

2.2 Sensor Node Status
A sensor node Si (subscripts will be used to uniquely
identify a sensor node when necessary) may assume one
of the following statuses:
Quiescent (SQi ): Default and initial status.
Master (SMi ): A node that has become responsible for
updating the local front’s model.
Master Candidate (SCi ): This transitional state is entered
while a node checks if it can satisfy the necessary condi-
tions to become a Master (details are provided in Section
4).
A status transition will be denoted using the right arrow
symbol (→). e.g. SQi → SCi denotes that the Quiescent
node SQi becomes a Master Candidate SCi .
Slave (SLi ): A Slave node is responsible for monitoring the
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phenomenon upon receiving a request from a Master. A
Slave may serve more than one Masters at the same time.

As we see in Figure 1 the neighborhood Ni of Master
node SMi is partitioned into two half planes (positive and
negative) by the local front line (a line segment of length
equal to the diameter of SMi ’s ideal communication
range). To refer to the neighbors of SMi located in the
positive (negative) half plane we will use the notation
N+
i (N−i ) respectively. It holds that Ni = N+

i ∪ N
−
i .

Furthermore, N0
i is the subset of neighbors of Si that

have not detected the phenomenon yet. It holds that
N0
i = N+0

i ∪ N−0i , where N+0
i ⊆ N+

i (N−0i ⊆ N−i )
are the subsets of neighbors that have not detected
the phenomenon yet and are residing in the positive
(negative) half plane respectively. Similarly we will use
NH
i = {SHj , SHk } to refer to two special Slaves of SMi ,

called Helpers, that the Master SMi selects as assistants
in the process of updating its local front model; SHj
is assumed to be the first and SHk the second selected
Helper of SMi . (Details on how the Helpers are selected
among the Master’s neighbors are provided in Section
4).

2.3 Local Front Models and Parameters
Each sensor node Si uses a parametric model to rep-
resent its belief about the local front’s evolution char-
acteristics, namely its orientation, direction and speed.
This model approximates the local front as an evolving
line segment of length equal to the diameter (2r) of the
sensor’s circular communication range (see Figure 1).

For Master node SMi the Prior Model (before a model
update) and the Posterior model (after a model update)
will be denoted as mi = {φi, δi, ui, si} and m∗i =
{φ∗i , δ∗i , u∗i , s∗i } respectively, where:
• φi (Orientation): Is the tangent of the angle formed

between the local front’s line and the x-axis (see Figure
1).
• δi (Direction): It is assumed to be always perpendicular

to the local front’s line segment. The direction coeffi-
cient may take one of the following values: 0, if the evo-
lution direction is unknown; +1(−1), if the local front
evolves into the positive (negative) neighborhood’s half
plane respectively (see Figure 1).
• ui, si (Speed model parameters): The speed Ui of the

local front’s line segment is considered to be a random
variable that follows a Normal distribution N (ui, s

2
i ).

The source of stochasticity and the use of the Normal
distribution are discussed in Section 3.

2.4 Sensor Node Information and Tables
Each sensor node Si maintains locally the following
information about itself:

Identity (IDi): An integer that uniquely identifies Si in
the network.
Local Timer (ti): It is started when Si detects the
phenomenon.

Location (Li = (xi, yi)): The coordinates of the location
of sensor node Si.
Detection Status Flag (DSFi): A Boolean flag; it is set,
DSFi ← 1, when the hazard is detected by node Si.
Sensor Status (SSi): A small integer encoding the current
status of Si. Possible values are {0: Quiescent, 1: Master
Candidate, 2: Slave, 3: Master)}.
Prior Model (PMi): The model mi = {φi, δi, ui, si} which
captures node’s Si current belief about the local front’s
evolution characteristics.
Updated Model (UMi): The posterior model, after the
Master SMi has updated the PMi parameters, i.e.
m∗i = {φ∗i , δ∗i , u∗i , s∗i }.

A sensor node Si organizes and stores locally the
above information into the following tables:
Sensor Information Table (TSi ): Si keeps in this
table the following information about itself:
{IDi, Li, DSFi, SSi, PMi}.
Neighborhood Table (TNi ): Si maintains in a separate row
of this table information about each neighbor Sm, i.e.
{IDim, Lim, tim, DSFim} ∀{Sm ∈ Ni}, where tim is the
value of the local timer of Si when it is notified that its
neighbor Sm has also detected the phenomenon. If this
notification arrives before the timer of Si is initiated
(i.e. if Sm detects the phenomenon before Si) then the
value of tim is set to null. At deployment time, a sensor
node Si retrieves the IDs and location coordinates of
its neighbors using the following simple procedure:
Si broadcasts a special message asking its neighbors
to provide their IDs and location coordinates. When
the neighbors receive this request they return their
information which is stored in TNi .

The above tables are formed when a sensor node is
initialized. In addition, each node creates dynamically
and maintains the following tables:
Helpers Table (THi ): Created when a sensor node SMi
becomes a Master, stores the IDs of legitimate pairs of
neighbors which may potentially become Helpers. (How
these legitimate pairs are selected and how this table is
used is explained in Section 4).
Masters Status Table (TMm ): Slave node SLm creates this
table and stores in a separate row the following infor-
mation about each Master (SMi ) it serves: {IDi, UMi}.
(How this table is used is explained in Section 4).

Hereafter, we will use the prefix “S” (e.g. Section S1,
Figure S3, etc.) to refer to Sections, Figures and Tables
that have been included in the Supplementary Material
due to lack of space.

2.5 Sensor Messages
The proposed in-network algorithm assumes that each
sensor node can handle the following messages (the
attributes carried by each message are provided in
parenthesis). (Details of the algorithm will be presented
in Section 4).
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TABLE OF SYMBOLS
Symbols Definitions
Si Sensor node i
SQi , S

M
i , SLi , S

C
i , S

H
i Si has a Quiescent, Master, Slave,

Master Candidate, and Helper status
TSi , T

N
i , T

H
i , T

M
i Information, Neighborhood, Helper and

Master Table of Si
Li = (xi, yi) Location coordinates of Si
ti Local timer of Si
tim Local timer value of Si when it is notified that

its neighbor Sm has detected the phenomenon
Ni The set of nodes that belongs to Si’s

neighborhood
N+
i , (N

−
i ) The set of neighbors of Si that belong to the

positive (negative) half plane
N+0
i , (N−0

i ) The set of neighbors of Si that belong to the
positive (negative) half plane
and have not detected the phenomenon yet

NHi The set of neighbors of Si that Help their Master
to update its local front model

mi, (m
∗
i ) Prior (Posterior) local front model of node Si

φi, (φ
∗
i ) Prior (Posterior) local front’s line gradient

δi, (δ
∗
i ) Prior (Posterior) local front’s line direction

{ui, si}, ({u∗
i , s

∗
i }) Prior (Posterior) local front’s line speed

parameters
Rd Sensing model radius
µd, σd, α Sensing model parameters
pij The projection point of Sj location on the local

front line of Si
uij , sij pij speed parameters
wij Mixture weight of Uij

TABLE 1: Table of Symbols

Broadcast type Messages:

Detection Message (DM(IDi)): Broadcasted by sensor node
Si to notify its neighbors that it has detected the phe-
nomenon (detection event).
Master Declaration Message (MDM): Broadcasted by a node
to notify its neighbors that it satisfies the necessary
conditions to become a Master. This message has two
slightly different versions: MDM1(IDi, PMi) and MDM2(IDi).
Update Prior Message (UPM(IDi, UMi)): Broadcasted by
Master node SMi after it has updated its prior model.
Free Slaves Message (FSM(IDi)): Broadcasted by Master
node SMi in order to release its Slaves.
Pass My Posterior Message (PMPM(IDi)): Broadcasted by a
Master node SMi when none of its Helpers satisfies the
necessary conditions to become the new Master.
Pass Posterior Message (PPM(UMi)): Broadcasted by the
Slave nodes {SLm ∈ Ni} of Master node SMi after they
have received a PMPM(IDi) message.

Unicast type Messages:

Master Declaration Message Acknowledgement (MDMA(IDj)):
Slave node (SLj ) sends this message to notify its Master
(SMi ) that it has received its MDM message and has become
its Slave.
Master Offer Message (MOM(IDi)): Master node SMi sends
this message to offer to one of its Helpers to become the
new Master.
Accept Master Offer Message (AMOM(IDj)): It is sent by a
Helper (SHj ) to a Master to acknowledge that it accepts
the offer to become the new Master.
Decline Master Offer Message (DMOM(IDj)): It is sent by a
Helper (SHj ) to a Master to notify it that it rejects the
offer to become the new Master.

We summarize the symbols used in the text and their
definitions in Table 1 to facilitate the reading of the
paper.

3 MODELING APPROACH

3.1 Modeling Detection Distance Uncertainty
A commonly made assumption is that a sensor node
can detect an event inside a disk area of radius Rd.
Although this may not always hold in real applications,
it is frequently adopted since it simplifies the analysis
[17]–[22]. Many disk based sensing models have been
proposed in the literature such as the binary, staircase,
probabilistic, etc. [19]. Among the most popular is the
probabilistic sensing model given below,

p(x) =


1 x ≤ Rs
eλ(x−Rs)

γ

Rs < x < Rd

0 x ≥ Rd
(1)

where the probability of detection is exponentially de-
creasing with the distance x in the range [Rs, Rd] and
a sensor detects an event with certainty if it occurs
within the inner circle of radius Rs (see Figure 2a). The
parameters γ and λ in equation (1) control the rate of
probability decrease and can be determined considering
the physical properties of the sensor, the noise in sensor
measurements, the characteristics of the sensed physical
quantity etc. [18].

We introduce a variation of the probabilistic sensing
model which, in addition to capturing the detection
distance uncertainty, it also accounts for the real pos-
sibility that a sensor node may malfunction in a harsh
environment as the hazard front is approaching. As for
the probabilistic model, the sensing range of a node
Si is assumed to be a circular region of radius Rd
(see dotted circle in Figure 2b) centered at the sensor’s
location (Li). Rd is hazard specific and depends on: (i)
The sensor’s technical specifications (e.g. its sensitiv-
ity), (ii) how the hazard affects the physical quantity
measured by the sensor. Using this information we can
estimate the expected detection distance [23]. We set this
expected value to αRd

2 , where 0 ≤ α ≤ 1 (see Figure
2b). However, due to the stochastic nature of a hazard’s
detection process the real distance may deviate from this
expected value. To account for this stochasticity we treat
the detection distance as a normally distributed random
variable, Di ∼ N (µd, σ

2
d), with parameters:

µd =
αRd

2
, 3σd = Rd(1−

α

2
)⇒ σd =

Rd
3

(1− α

2
). (2)

In setting the standard deviation as in (2) above we
have assumed that the probability for a sensor to detect
the approaching diffusive phenomenon at a distance
larger than Rd is negligible.

As observed in Figure 2b the probability of detection
increases monotonically as the distance of the local front
to the sensor decreases in the range

[
αRd
2 , Rd

]
. However,
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(a) (b)
Fig. 2: Sensing Modeling: (a) Probabilistic exponential sensing
model. (b) The proposed shifted Gaussian sensing model.

in close range
[
0, αRd2

]
the probability of detection de-

creases. This modeling decision is justified if we consider
that the inability of a sensor to detect the approaching
front at the expected detection range

[
αRd
2 , Rd

]
is an

indication of a potential hazard-induced malfunction
reducing the node’s ability to detect the hazard as it
gets closer. This simple and realistic sensing behavior
model in the presence of propagating hazards allows
us to capture both the stochasticity associated with the
detection distance as well as the real possibility that a
sensor node malfunctions as the hazard gets in close
range. Importantly, it also does not harm the generality
since by setting parameter α = 0 in equation (2) (i.e.
µd = 0) we can always revert back to a monotonic
traditional probabilistic sensing model centered at the
sensor node’s location. Therefore the proposed ”shifted”
Gaussian model offers flexibility since it can cover both
scenarios: diffusive hazards whose presence may, or may
not, disrupt the functionality of deployed sensor nodes.

We also remark that the Gaussian distribution has
been used by many researchers to describe the depen-
dence of sensor node detection probability to distance
( [20]–[22]) since it has all the necessary ingredients to
characterize the uncertainty while offering also a simple
parameterization.

3.2 Modeling Speed Uncertainty
Let’s now consider the cluster of three sensor nodes
(triplet) shown in Figure 3. As soon as the Master node
SMi receives two Detection Messages (DM), one message
from each one of its two Helpers, {SHh , where h ∈ {j, k}},
it has all the information it needs to start updating its
prior model.

Using the coordinates of its Helpers (Lh = (xh, yh)
stored in its table TNi ) and the coordinates of their
projection points {pih = (xih, yih), h ∈ {j, k}} on its
local front line, Master SMi can calculate the Euclidean
distances {dih, h ∈ {j, k}} using equation (3) below (see
also Figure 3),

dih ≡ dist(Lh, pih) =
√

(xh − xih)2 + (yh − yih)2. (3)

Let’s now call Dih the distance that the local front at
node Si has to travel before it gets detected by a Helper
node.

Dih = dih −Dh, h ∈ {j, k} (4)

Since Dh, the detection distance of the progressing
front from Helper Sh, h ∈ {j, k}, follows a Normal

Fig. 3: Updating the local front model.

distribution N (µd, σ
2
d), Dih will also follow a Normal

distribution N (µih, σ
2
ih) with parameters:

µih = dih−µd = dih−
αRd

2
, σih = σd =

Rd
3

(1−α
2

), (5)

where dih has been computed using equation (3), h ∈
{j, k}.

Upon estimating the parameters µih and σih, h ∈ {j, k}
using equation (5), Master node SMi can calculate the
speed at which the two Helper projection points, pij
and pik, have to move forward in order to cover the
distances Dij and Dik in the measured time intervals tij
and tik respectively (see Figure 3). Since Dij and Dik

are random variables that follow a Normal distribution,
it can be shown that the corresponding speeds of the
two projection points, Uij and Uik, will also follow
Normal distributions of the form Uih ∼ N (uih, s

2
ih). Their

parameters can be computed easily using equations (6)
below, h ∈ {j, k}:

uih =
µih
tih

=
2dih − αRd

2tih
, sih =

σih
tih

=
Rd(1− α

2 )

3tih
. (6)

3.3 Model Parameters Updating
3.3.1 Speed
The speed model is updated based on a sequential
Bayes procedure which however has been designed to
respect the limited processing capabilities and energy
constraints of the WSN nodes. As in every Bayesian
method, to compute the posterior model we need: (i) an
assumption about the random variable’s current “behav-
ior” (prior model) and (ii) the likelihood of the observed
data.

As discussed in Section 2.3 (see last bullet) the local
front’s speed is a Normal random variable. To update its
parameters (mean and variance), Master node SMi uses
its prior speed information Ui ∼ N (ui, s

2
i ) (parameters

are stored in its prior model mi) as well as the likelihood
computed using information related to the “observed”
speeds (Uih) of the two Helper node projection points on
the current local front, namely {pih, where h ∈ {j, k}}.

Since the number of the available ”observations” is
very small (only two), we introduce below a technique
which exploits the availability of information about the
uncertainty (sih) associated with the speed “observa-
tions” (Uih, see Figure 4a) to improve the likelihood
estimation accuracy.
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Fig. 4: Speed model updating procedure. (a) The prior model
(Ui), and the two “observation” models (Uij , Uik). (b) The
mixture model p resulting by combining speed “observation”
models; the normal distribution q̂ that best approximates p
by minimizing the Kullback Lebier divergence (KL(p||q̂)); the
resulting posterior speed model U∗

i .

Having available its local prior model and the
parameters of the speed models Uih ∼ N (uih, s

2
ih)

(computed using the equations in (6)), the Master
node SMi computes the weights {wih, h ∈ {j, k}} of
a Gaussian mixture model with two components (see
Figure 4b)

p(u) =
∑

h∈{j,k}

wihN (u|uih, s2ih), (7)

as follows:

wij =
1

1 + C
, wik =

C

1 + C
, C =

sij |ui − uij |
sik|ui − uik|

. (8)

Fixing the mixture weights as in (8) is justified based on
the following arguments:
• The speed model Uih, h ∈ {j, k} with the smaller stan-

dard deviation (smaller uncertainty) should be trusted
more by the Master.
• Since in short time periods (e.g. the time interval

between two successive local model updates) environ-
mental diffusive phenomena tend to exhibit smooth
changes in terms of their evolution characteristics
(speed and direction), more trust should be assigned to
the speed “observation” with mean value (uih) closer
to that of the prior model (ui).

Estimating the posterior parameters by using directly
the Gaussian mixture likelihood (7) and Bayes rule
would be computationally expensive since analytical
closed form expressions cannot be derived. Due to
the limited processing capabilities and low power con-
straints of microprocessors used in WSN nodes, in this
work we consider prohibitive the use of an iterative,
slowly converging, parameters estimation procedure.
Therefore, in order to be able to derive closed form alge-
braic expressions for the posterior distribution parame-
ters we employ variational calculus and approximate the
Gaussian mixture by a Normal distribution. To this end,
we estimate the parameters of the Normal distribution
that minimizes the Kullback-Leibler (KL) divergence
(maximizes the similarity) from the Gaussian mixture.
The general form of the equations which can be used to

compute the parameters of this Normal distribution are
[24], [25]:

µ̂ =
∑
n

wnµn (9)

Σ̂ =
∑
n

wn(Σn + (µn − µ̂)(µn − µ̂)T ) (10)

In our specific case these equations reduce to:

ûi = wijuij + wikuik (11)

ŝ2i = wijs
2
ij + wiks

2
ik + wijwik(uij − uik)2 (12)

Having computed the mixture weights using (8), Master
SMi calculates the Normal distribution parameters ûi and
ŝ2i using equations (11) and (12). By applying simple
manipulations on the Bayes theorem it can be proved
[26] that since the prior N (ui, s

2
i ) and the likelihood

N (ûi, ŝ
2
i ) are both Gaussian, the posterior will also be a

Gaussian N (u∗i , s
∗2
i ) (conjugate distributions, see Figure

4b) with parameters provided by the following easy to
compute closed form expressions:

u∗i =
uiŝ

2
i + ûis

2
i

ŝ2i + s2i
, s∗2i =

ŝ2i s
2
i

ŝ2i + s2i
(13)

3.3.2 Orientation

Let K1 (K2) be the point to be reached by pij (pik) as
it moves in the direction of the local front’s evolution
with speed uij , (uik) respectively for a time interval
tik (see Figure 3). The coordinates of K1 and K2, to
be called (x1, y1) and (x2, y2), can be found by solving
a system of a linear and a quadratic equation. This
problem is formulated and solved analytically in Section
S4. Using the calculated coordinates, Master SMi can
update the orientation parameter of its local front model
using equation (14) below,

φ∗i =
y2 − y1
x2 − x1

. (14)

3.3.3 Evolution Direction

To update the direction parameter δ∗i , node SMi derives
the equation of line f∗i (x) that is defined by points
K1(x1, y1) and K2(x2, y2) (see Figure 3).

f∗i (x) = φ∗i x+ b∗i (15)

where b∗i = y1 − φ∗i x1
Subsequently, node SMi substitutes its abscissa (xi)

in (15) and checks the sgn(f∗i (xi)). If sgn(f∗i (xi)) > 0
(sgn(f∗i (xi) < 0) then Master node SMi infers that the
new local front line evolves into the negative (positive) half
plane and it updates the direction parameter δ∗i = −1(1)
accordingly.
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4 IN NETWORK COLLABORATIVE ALGORITHM

4.1 Sensor Network Assumptions
To better explain the proposed in-network algorithm we
will use a running example that facilitates the under-
standing of its operations. Let’s assume, without loss of
generality (w.l.o.g.) that a part of the evolving front has
just entered the WSN’s deployment region and none of
the sensor nodes, (which are currently in the default
Quiescent status), has detected the phenomenon yet
(DSF = 0). Each node is equipped with sensors that can
measure physical parameters affected by the hazard’s
presence when it enters its sensing range (a circle of
radius Rd). All nodes are initialized with the same prior
model mi = {φi, δi, ui, si} and δi = 0.

4.1.1 Forming a Local Cluster
Let’s now assume that the evolving front enters the
sensing range of node Si (see Figure 5a). As soon as
Si detects the front, it initiates the Detection Procedure
described below and also summarized by the UML
sequence diagram of Figure 6.

Detection Procedure: Sensor node Si starts a local timer,
changes the value of its detection status flag DSFi from
0 to 1 (stored in its information table TSi ) and checks its
status variable SSi, which may have value 0 (Quiescent)
or 2 (Slave).
• If SSi = 0 (Si is Quiescent, as in the example’s case)

the node makes a status transition, SQi → SCi (SSi ←
1), and initiates the Master Check Necessary Conditions
Procedure (presented in the next paragraph).
• If SSi = 2 (Si is a Slave), node SLi broadcasts a

Detection Message DM(IDi). Each neighbor {Sm ∈ Ni,
where m = {j, k, l} in Figure 5a} when it receives this
message it updates in its neighborhood table TNm (in
the row corresponding to Si) the attributes tmi and
DSFmi (see Figure 6). The value assigned to tmi is the
time value tm indicated by the local timer of Sm when
message DM(IDi) was received. If Sm receives message
DM(IDi) before its local timer has been started (this can
happen if Sm has not sensed the phenomenon yet) it
assigns to attribute tmi a null value.

Master Check Necessary Conditions Procedure: Sensor
node SCi finds in its table TNi the subset of neigh-
bors which have not detected the phenomenon yet (i.e.
{Sm ∈ N0

i }). Based on the cardinality |N0
i | of this set,

SCi proceeds as follows: (see UML sequence diagram in
Figure 7).
• If |N0

i | < 2 : Node SCi transitions back to the Quiescent
state, SCi → SQi , and broadcasts a DM(IDi) message.
Each receiving neighbor {Sm ∈ Ni} updates its at-
tributes tmi and DSFmi in its table TNm , in the way
already discussed in the Detection Procedure paragraph
and shown in Figure 6.
• If |N0

i | ≥ 2 (example’s case): Node SCi initiates the
Local Front Line Derivation activity and then checks the
evolution direction parameter δi of its initial model mi.

Fig. 5: Local front model updating procedure: (a) Node Si

becomes Master candidate and checks if it satisfies the condi-
tions to become a Master, (b) node Si becomes a Master and
“enslaves” its neighbors Sj , Sk and Sl, (c) Master SM

i uses the
information received from its two Helpers (SH

j and SH
k ) and

updates the local front’s line parameters, (d) node Sk becomes
the new Master and Si releases its slaves.

Based on the value of δi, SCi initiates the appropriate
Create Helpers Table activity followed by the Master
Declaration activity (see Figure 7).

Local Front Line Derivation: Node SCi uses the orientation
parameter φi of its initial model mi and its location in-
formation Li = (xi, yi), to derive the equation of the line
where the local front segment belongs, fi(x) = φix+ bi,
where bi = yi − φixi (see Figure 5a).

Create Helpers Table: Node SCi checks the value of the
front evolution direction parameter δi in mi.
• If δi = +1 (the local front evolves into the positive

half plane), SCi searches in its neighborhood table TNi to
find the subset of neighbors that belong to the positive
neighborhood half plane and have not detected the
phenomenon yet (N+0

i ). If |N+0
i | ≥ 2, SCi calculates

the coordinates of these neighbors’ projections on the
local front line (see Section S4 for details). These are
the points pij , pik, pil in the example (Figure 5a). Then
SCi calculates the Euclidean distances among all pos-
sible projection pairs and identifies those pairs with
distances larger than a pre-specified threshold (that is
application dependent). These pairs are considered to
be the legitimate Helpers pairs, in the sense that any
one of them could be used by SCi to update its prior
model. Finally SCi stores the IDs of nodes of legitimate
Helper pairs in its respective Helpers table THi . How a
particular Helpers pair is selected among the legitimate
ones will be discussed in Section 4.2.
• If δi = −1 (the local front evolves into the negative half

plane), SCi performs the same aforementioned steps but
for the nodes which belong to the negative neighbor-
hood half plane and have not detected the phenomenon
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Fig. 6: Detection Procedure (UML sequence diagram).

yet (subset N−0i ).
• If δi = 0 (the local front’s evolution direction is

unknown - example’s case), SCi searches in table TNi
and finds the sensor nodes that belong to its neigh-
borhood and have not detected the phenomenon yet
(N0

i ). Then SCi partitions them into two half planes
defined according to the local front line fi(x) (see Local
Front Line Derivation). For each subset (N+0

i and N−0i )
SCi performs the steps described above for the cases
δi = +1 and δi = −1 respectively.
Master Declaration: After the end of the Create Helpers

Table activity node SCi checks its Helpers Table THi :
If THi = �: SCi does not become a Master, transitions
back, SCi → SQi , and broadcasts a DM(IDi). The receiving
neighbors {Sm ∈ Ni} update their attributes tmi and
DSFmi in their tables TNm (see Figure 8).
If THi 6= � (i.e. there exist at least one pair of legitimate
Helpers for SCi ): Node SCi becomes a Master, SCi → SMi ,
and checks its model’s evolution direction parameter
(δi):
• If δi 6= 0, SMi broadcast a Master Declaration Message of

type 1, (MDM1(IDi, PMi)). Each neighbor {Sm ∈ Ni} when
it receives this message it updates the attributes tmi
and DSFmi in the corresponding row of its table TNm ,
as shown by the UML sequence diagram of Figure 8.
Moreover, each {Sm ∈ N0

i } uses the Master’s SMi initial
model (PMi is carried in MDM1), derives the equation
of the local front line fi(x) and substitutes its abscissa
(xm) in the argument of fi(x). If sgn(fi(xm)) = sgn(δi)
(i.e. if Sm belongs to the half plane, with respect to
the Master, that the front evolves into), Sm becomes a
slave, Sm → SLm, adds a row in its Masters table TMm
for Master SMi with attributes {ID ← IDi, UM ← null}
and sends a Master Declaration Message Acknowledgement
(MDMA(IDm)) back to node SMi . Otherwise Sm keeps its
status unchanged.
• If δi = 0 (example’s case), Master SMi broadcasts a
Master Declaration Message of type 2 (MDM2(IDi)). Each
neighbor {Sm ∈ Ni} receiving this message updates
the attributes tmi and DSFmi in the corresponding row
of its table TNm (see Figure 8). Moreover, if {Sm ∈ N0

i }
it becomes a slave (Sm → SLm) (see Figure 5b) adds a
row in his TMm for Master SMi with attributes {ID ←
IDi, UM ← null} and sends a Master Declaration Mes-
sage Acknowledgement (MDMA(IDm)) to node SMi .

Fig. 7: Master Check Necessary Conditions Procedure (UML se-
quence diagram).

When node SCi becomes a Master it waits until it re-
ceives two detection messages (DMs), one message from
each one of the two nodes of a legitimate Helpers pair
(among those pairs stored in its local Helpers Table THi ).
However, the potentially adverse conditions created by
the propagation of a diffusive hazard may impair the
communication between the Master and its Helpers. In
the a worst case scenario the Master may never receive
the DM messages sent by its Helpers and thus never
get the chance to update its local model parameters
(formation of a “zombie” cluster). We should emphasize
that the possible formation of “zombie” clusters does not
affect the global functionality of the algorithm since the
model updates within ”healthy” clusters will normally
occur (see Section 5.3 for details). Nevertheless, to re-
duce the probability of a “zombie” cluster formation the
Master node may implement the following procedure:

Master Neighbourhood redefinition: Master node SMi
waits (for an application dependent time interval) to
receive the MDMAs from its Slaves. After this time, it
checks if the received Slave IDs (contained in the re-
ceived MDMAs) correspond to at least one of its legitimate
Helper pairs (stored in its Helpers Table (THi )):
• If they do, Master node SMi keeps its status unchanged
and waits until it receives the two detection messages
(DMs) that will be used to update its model parameters
(see Section 4.2).
• If they do not, Master node SMi broadcasts a Free Slaves

Message FSM(IDi) and changes its status (SMi → SQi ).
When the slaves {SLm ∈ Ni} receive the FSM message,
they remove from their tables TMm the information
corresponding to Master SMi and if they do not serve
any other Master(s), they change their status back to
Quiescent (SLm → SQm).

4.2 Model Updating

In our example we assume w.l.o.g. that the two messages
received by SMi come from NH

i = {SHj , SHk } (see Figure
5c). Furthermore it is assumed that the two Helpers have
detected the evolving front at time instances tij and tik
respectively, where w.l.o.g. tij < tik. When the Master
SMi receives the DMs from the pair of Helpers it updates
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Fig. 8: Master’s Declaration (UML sequence diagram).

its neighborhood table TNi and initiates the procedure
described below.

Model Updating Procedure: The updating starts with the
calculation of the “new” (posterior) local front speed
model parameters (U∗i ∼ N (u∗i , s

∗2
i )). Master node SMi

uses the expressions in (6) and calculates the parameters
of the Normal speed models of the two Helper projection
points pij and pik (see Section 3.2). By substituting these
parameter values in (8), SMi calculates the Gaussian
mixture weights wij and wik (see Section 3.3.1). Then, by
applying the resulting mixture weight values into (11)
and (12) the Master calculates the parameters (ûi and
ŝi) of the Normal distribution that best approximates
the Gaussian mixture. Finally, having available these
parameters (ûi and ŝi), along with the prior model
parameters (ui, and si), SMi applies them to equation
(13) to obtain parameters (u∗i , s

∗2
i ) of the posterior speed

model.
Next, Master SMi estimates the local front’s orienta-

tion, φ∗i . As discussed in Section 3.3.2 to update this
parameter the Master finds the coordinates of two points,
K1 = (x1, y1) and K2 = (x2, y2) (see Section S4 for
details), which are expected to lie on the “new” local
front line (see Figure 5c), and applies them directly to
equation (14). Finally, SMi follows the procedure de-
scribed in Section 3.3.3 and updates the evolution di-
rection parameter, δ∗i . All model parameters are updated
using closed form expressions that can be realized easily

Fig. 9: Model Propagation Procedure (UML sequence diagram).

by embedded microprocessors commonly used in WSN
node architectures.

4.3 Model Propagation
After updating its model, Master SMi initiates the Model
Propagation Procedure (see the UML sequence diagram of
Figure 9).

Master node SMi first broadcasts an Update Prior Mes-
sage (UPM(IDi, UMi)). The sensors which serve it {SLm ∈
Ni} when they receive this message update the prior
model information in their tables TSm using the received
model m∗i . Moreover, they update attribute UMi ← m∗i
in the corresponding row of their Masters’ table TMm . In
addition, SMi sends a Master Offer Message (MOM(IDi)) to
the Helper that detected most recently the phenomenon
(it is SHk w.l.o.g. in the running example of Figure 5c)
and asks it to become the new Master. This sensor node
becomes temporarily a Master candidate (SHk → SCk ) and
uses the updated model parameters (m∗i ) to initiate the
Master Check Necessary Conditions procedure (see Section
4.1.1).

If Helper SCk meets the conditions to become the new
Master (as in the example’s case), it accepts the offer
(SCk → SMk ) and replies to SMi with an Accept Master Offer
Message (AMOM(IDk)). When SMi receives this message it
broadcasts a Free Slaves Message FSM(IDi) and changes its
status back to default (SMi → SQi , see Figure 5d). Each
Slave SLm, when it receives the FSM removes from its table
TMm the information corresponding to Master SMi and if
it does not serve any other Master(s), it changes its status
back to Quiescent (SLm → SQm).

On the other hand, if Helper SCk does not satisfy
the necessary conditions to become the new Master, it
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rejects the offer made by SMi by replying with a Decline
Master Offer Message (DMOM(IDk)). This forces SMi to try
exactly the same negotiation with its second Helper
SHj . If SHj also rejects its offer, SMi gives up with its
Helpers, resets in its updated model m∗i the value of
the evolution direction (δ∗i ← 0), broadcasts a Pass My
Posterior Message (PMPM(IDi)) and returns to Quiescent
status. The neighbors ({Sm ∈ Ni}) enslaved to SMi ,
when receiving PMPM broadcast a Pass Posterior Message
(PPM(UMi)) containing the Master’s SMi updated model
m∗i . The neighbors of the nodes Sm when receiving the
PPM they replace their prior model in their table TS with
the updated model m∗i . Finally each neighbor {SLm ∈ Ni}
deletes from its Masters table TMm the information related
to SMi and if it does not serve another Master it changes
its status back to Quiescent (SLm → SQm).

5 EVALUATION OF THE ALGORITHM

We present next simulation results demonstrating the
ability of the proposed collaborative WSN algorithm
to estimate accurately the local evolution characteris-
tics (speed and direction) of a continuous object. The
phenomenon may include multiple diffusion processes
(hazards), possibly expanding at a time varying rate
and/or assuming irregular shapes.

5.1 WSN Simulation Workflow
For the evaluation we developed a flexible simulation
workflow which allows us to generate and execute
realistic WSN simulation scenarios with different sen-
sor node densities, deployment strategies, sensor node
failure probabilities, communication (Rx and Tx) failure
probabilities, and propagating hazard front properties
(shape, speed and acceleration).

The WSN simulation workflow has two main compo-
nents: i) The flexible WSN simulator COOJA (COntiki
Os JAva) [27] for the Contiki sensor node operating
system, and ii) a Matlab-based component which pre-
pares the COOJA input file and at the end evaluates
the estimation accuracy of the proposed in-network al-
gorithm. As shown in Figure 10, the Matlab compo-
nent takes as input information about: a) the deployed
sensor nodes (location, prior model parameters, etc.),
and b) the propagating hazard’s front properties, and
determines the sequence in which the deployed sensor
nodes detect the evolving hazard. After that, it gen-
erates a file (Detection Events Sequence) which contains
for each sensor node the following information: {ID,
location, time of detection, prior model parameters}. This file
is passed as input to COOJA that simulates the proposed
distributed algorithm as if it was implemented by a
WSN consisting of Atmel’s AVR RAVEN nodes [28].
To achieve this, the code every sensor node needs to
run to implement the proposed in-network algorithm
was programmed in C on the Real Time Operating
System (RTOS) Contiki. Using COOJA we simulate the
IEEE 802.15.4 MAC protocol’s byte stream (preamble,

Fig. 10: UML component diagram of Matlab-COOJA based
simulation workflow.

start of frame delimiter, data, and checksum) which is
also used by the Atmel’s AVR Raven nodes. Moreover
using COOJA’s Unit Disk Graph Medium (UDGM) with
a distance loss propagation model [29] (that considers
interferences), we can evaluate the proposed algorithm’s
behavior under different Rx/Tx failure probabilities.

At the end of a simulation, a COOJA Output file is
produced containing: a) The updated model parameters,
b) the number of Rx and Tx messages/Bytes exchanged
in the WSN, and c) the energy consumed for communica-
tion (Rx and Tx). To evaluate the estimation accuracy of
the proposed algorithm, the updated models information
is passed back to the Matlab component which compares
the estimated orientation and speed with the ground
truth values (see Sections S1.2 and S2.2).

5.2 Experimental Setup

A notable advantage of the proposed in-network pro-
cessing algorithm is that it can estimate accurately the
evolution characteristics of a local front using low den-
sity WSNs. Specifically, in our experiments we used
densities 7.5×10−5, 10−4, 1.25×10−4 sensors/m2, which
correspond to 75, 100 and 125 sensor nodes respec-
tively deployed within an 1km2, which are considered
low for environmental monitoring applications. For each
network density case we used a large number of ran-
domly drawn WSN deployments and investigated how
the proposed algorithm performs under different sensor
node failure and communication (Rx and Tx) failure
probabilities (equal to 0, 0.1, 0.2 and 0.3).

In all experiments, the radius of the nodes’ commu-
nication range was set to r = 150m to guarantee that
we have a connected network (every node has at least
one neighbor) for every density scenario. Furthermore,
in order to evaluate how the radius of the sensing range
Rd affects the accuracy of the algorithm we repeated the
experiments with small and large Rd values (equal to
0.1m and 15m). For the sensing models the parameters
were calculated using the equations in (2) for α = 1. Each
sensor node was initialized with the same prior model,
mi = {φi = 0, δi = 0, ui = 5m/min, si = 2m/min}.
The mean speed value of the prior model was inten-
tionally chosen to differ significantly from the simulated
hazard front speeds in order to demonstrate the ability
of the proposed distributed algorithm to estimate the
true model parameter values even when the initial prior
belief model of the sensor nodes deviates significantly
from the reality. The communication energy consumed
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Experiment 1
Sensing Radius (Rd = 0.1m)

P (f) 75 nodes 100 nodes 125 nodes
Orient. Speed% Orient. Speed% Orient. Speed%

0 4.69/10.78 13.04/13.2 4.22/10.31 12.43/13.9 3.97/9.89 12.15/13.19
0.1 4.91/10.32 13.29/12.91 4.31/10.17 12.91/14.11 4.04 /10.03 13.01/13.41
0.2 5.01/10.2 12.97/13.13 4.63/10.82 13.22/13.67 3.86/10.41 12.88/13.01
0.3 5.23/10.97 13.53/13.66 5.08/10.74 13.09/14.42 4.24/10.19 12.92/13.38

Sensing Radius (Rd = 15m)
0 5.21/11.12 13.92/14.25 4.67/10.3 13.54/13.66 4.59/10.25 13.59/13.97

0.1 4.99/10.83 14.07/14.88 4.54/10.88 14.81/13.31 4.63/10.16 13.82/14.24
0.2 5.07/10.74 13.96/14.91 5.19/10.46 13.27/14.82 5.11/10.72 13.64/14.4
0.3 4.86/10.89 13.71/14.7 5.03/10.97 14.35/14.69 4.97/10.58 14.01/14.82

TABLE 2: Experiment 1 results summary: The Median/Inter
Quartile Range of the orientation error (in degrees) and per-
cent speed error under different network density, node failure
probability, and sensing radii conditions. For each entry the
reported statistics were computed based on 200 simulation
runs (50 random WSN deployments x the 4 Rx/Tx failure
probability cases considered).

by the simulated AVR Raven nodes was measured using:
a) their maximum power (3dBm) for transmission (at
this power level the communication range of the AVR
RAVEN nodes is approximately 150m) and b) reception
sensitivity -101dBm (fixed). Finally, we used the policy
that a sensor node retransmits a message only once
if it does not receive an acknowledgement from its
recipient(s).

5.3 Results and Discussion
In the conducted experiments the diffusive phenomenon
(continuous object) was simulated using either a Mat-
lab program or FLogA a wildfires behavior simulator
developed in our group [30]. To evaluate the accuracy
of the proposed distributed algorithm, we compared
the estimated direction and speed of the local fronts
to the corresponding ground truth values. A detailed
description of the evaluation metrics used is provided
in Sections S1.2 and S2.2.

5.3.1 Experiment 1: Multi-source diffusive hazards
In the first experiment a complex diffusive phenomenon
is modeled as two circles of fixed centers and radii
increasing with equal but time varying rates. The cir-
cles represent two distinct diffusive hazards which start
entering the WSN deployment area at the beginning
of the simulation. As the circles grow, they start to
overlap and form a complex front line before they
cover half of the deployment area. In order to help the
reader visualize the complex phenomenon and get a
sense of the model updates as they take place during
its propagation, we provide a video animation (created
using Matlab) as Supplementary Material (see file Exper-
iment1TwoFronts.mp4 [31]). A discussion of the video is
also provided in Section S1.1.

Modeling propagating hazards with circular shapes is
justified because: a) Fick’s second law indicates that the
diffusion of a substance emanating from a single point
source covers a circular area whose size is increasing
at a rate indicated by the diffusion coefficient [32]. b)
Moreover, the circle’s properties allow us to evaluate
analytically the speed and direction estimation errors
(see Section S1.2).

Fig. 11: Experiment 1: Total number of model updates, mean
number of messages and Rx/Tx energy consumed per model
update, for each node failure and Rx/Tx failure probability
considered (density = 100 sensor nodes per km2).

As observed from Table 2, the parameters estimation
accuracy of the proposed algorithm is rather insensitive
to changes in sensor nodes density, node failure proba-
bility, and Rx/Tx failure probability. This was also con-
firmed by comparing pairwise the means of error den-
sities using Student’s t-test. For all cases the difference
of the means was found to be insignificant at the 0.05
significance level. Before applying the t-tests we verified
that the usual assumptions (normality, variance homo-
geneity and independence) hold for all datasets com-
pared. Moreover, the results indicate that the accuracy
slightly decreases when the sensing radius Rd increases.
This is so because an increase of the sensing radius
implies increasing the uncertainty associated with the
front line’s location at the time of the hazard’s detection.
This in turn implies increasing the uncertainty regarding
the estimated mean speed values uih, h ∈ {j, k} used
to estimate the local front’s orientation and speed (see
Section 3.2 for details).

In Figure 11(a) we see that the total number of model
updates is reduced as the nodes failure and Rx/Tx fail-
ure probabilities increase. A higher node failure proba-
bility implies a reduction of the operational sensor nodes
participating in the distributed algorithm i.e. a reduction
of the effective network’s density. This in turn implies
fewer neighbors within a sensor’s communication range,
making it more difficult for a Master Candidate to satisfy
the necessary conditions to become a Master (see Section
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4.1.1 - Forming a Local Cluster). Moreover, increasing the
Rx/Tx communication failure probability implies higher
difficulty for the sensor nodes to collaborate with their
neighbors in order to update the parameters of a local
front model.

Figures 11(b) and 11(c) show (for the 100 sensor nodes
per 1km2 density case) the mean number of Rx and Tx
messages exchanged in the network per model update.
From the presented line plots when the Rx/Tx failure
probability increases in the range [0, 0.1] we observe
a significant increase of messages per model update
for each node failure probability curve. This can be
explained if we consider that Rx/Tx failures trigger
message retransmission which increases the number of
messages exchanged over the network. Another interest-
ing observation is that this trend becomes less profound
as the nodes failure probability increases. This behavior
can be explained if we consider that: a) increasing node
failures implies an effective network density reduction
and therefore a reduction of the mean number of neigh-
bors within a node’s communication range and thus
a reduction of the mean number of the Rx and Tx
messages exchanged in the neighborhoods. b) When
the node failure probability is non-zero, retransmission
is triggered even when the Rx/Tx failures probability
is zero, since the failing nodes are not able to send
the required acknowledgments. These triggered retrans-
missions increase in turn the mean number of the Rx
and Tx message exchanged over the network. Thus, the
already increased number of messages for the non-zero
node failure probability cases explains why we observe
a smoother increment of the mean number of messages
when the Rx/Tx failure probability increases in the range
[0, 0.1].

Figures 11(b) and 11(c) also suggest that for zero
Rx/Tx failure probability the mean number of Rx and Tx
messages per model update for all the non-zero nodes
failure probability cases is almost equal (Rx) to or larger
(Tx) than the corresponding Rx and Tx mean number
of messages of the zero node failure probability case.
At first glance this behavior may seem counter-intuitive
since for the non-zero nodes failure probability cases the
effective density of the network is reduced and there-
fore we would expect the mean number of messages
exchanged per model update to be smaller. However,
this is not the case since the potential retransmission
triggered if node failure probability is non-zero increases
the number of messages exchanged over the network.

Moreover, in Figures 11(b) and 11(c) we also observe
that as the Rx/Tx failure probability increases in the
range [0.1, 0.3] the mean number of the Rx and Tx
messages per model update remains almost unchanged
for node failure probabilities 0 and 0.1 and increases
only slightly for larger node failure probabilities with
values 0.2 and 0.3. To explain this behavior we have
to consider the following four mechanisms which affect
the number of messages exchanged per model update:
a) The increase of node and Rx/Tx failure probabilities

Experiment 1
Average Percent Change Compared to 100 Nodes Density Scenario

Nodes Total Mean Mean Mean Mean
Density Updates Rx Mess. Tx Mess. Rx Energ. Tx Energ.

75 -37.4/2.9 -15.8/3.7 -8.9/5.1 -15.2/3.9 -5.8/4.5
125 +31.9/5.3 +18.3/4.9 +12.6/4.7 +17.3/5.4 +7.6 /4.1

TABLE 3: The average percent change (increase(+), decrease(-
))/stdvs of the a) total number of model updates, b) mean
number of Rx and Tx messages exchanged per update, and
c) mean Rx and Tx energy consumed per update, for the 75
and 125 nodes (per km2) density scenarios relatively to the 100
nodes density scenario.

increases the mean number of messages exchanged over
the network due to the triggered retransmissions. b)
The increase of the node and Rx/Tx failure probabilities
increases the probability of “zombie” clusters formation
(see Section 4.1.1), i.e. clusters in which the sensor node
malfunctions and Rx/Tx failures render the Master node
incapable to update its model parameters. The messages
exchanged (wasted) within “zombie” clusters combined
with the smaller number of model updates increase the
mean number of messages required per model update.
c) On the other hand, the increase of the nodes failure
probability reduces the effective network’s density and
therefore the mean number of the Rx and Tx messages
exchanged over the network. d) Finally, the increase of
the Rx/Tx failure probability reduces the probability
for a sensor node to receive or transmit successfully
a message, which in turns reduces the total number of
Rx and Tx messages. The line plots in Figures 11(b)
and 11(c) suggest that for node failure probability 0
and 0.1 the increse of the mean number of messages,
caused due to mechanisms (a) and (b) is counterbalanced
by the message traffic reduction mechanisms (c) and
(d) and therefore no significant changes are observed
as the Rx/Tx failure probability increases in the range
[0.1,0.3]. However, for higher node failure probabilities,
i.e. 0.2 and 0.3, the more frequent formation of “zombie”
clusters combined with the more frequent triggering of
retransmissions results to a small increase of the mean
number of messages per model update in the same
Rx/Tx probability of failure range.

Figures 11(d) and 11(e) show the mean energy con-
sumed for Rx and Tx communications per model up-
date. As expected, due to the direct relation between
the Rx/Tx messages (Bytes) and Rx/Tx communication
energy, the energy and messages per model update
line plots follow similar trends. However, as the Rx/Tx
communication failure probability increases we observe
a small increase of the gradient of the energy line plots
as compared to the corresponding line plots for the
messages. This behavior can be explained if we consider
that an increase of the Rx/Tx failure probability makes it
more difficult for a Master node to find a qualified new
Master and eventually forces it to broadcast a message
to its Slaves so that they propagate its updated model to
their neighbors (see Section 4.3 Model Propagation). The
message broadcasted by the Slave nodes (PPM(UMi))
carries the information of the Master’s updated model
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and therefore requires the transmission of many bytes
which increases the mean Rx and Tx energy consump-
tion.

Finally, we have to mention that the corresponding
Figures for the 75 and 125 nodes per km2 density
scenarios follow similar trends and are therefore sub-
ject to similar interpretations. Due to space limitations
the corresponding plots are provided in Section S1.3
(see Figures S3, S4). However, in Table 3 we sum-
marize the differences (average percent change) rela-
tively to the 100 nodes per km2 density scenarios. The
provided statistics were computed by considering as
sample points all local front model updates from all
node density ({75, 100, 125}) and failure probability cases
({0, 0.1, 0.2, 0.3}). We observe that as the network density
increases (decreases) the total number of model updates
also increases (decreases). This is as expected since a
higher (lower) nodes density implies more (fewer) neigh-
bors within a sensor’s communication range, making
it more easy (difficult) for a Master Candidate node
to satisfy the necessary conditions to become a Master
(see Section 4.1.1 - Forming a Local Cluster). Finally, the
increased (decreased) number of neighbors also explains
why the mean number of Rx and Tx messages exchanged
and energy consumed per model update increases (de-
creases) with the increase (decrease) of the network
density.

In Section S1.4, we also provide experimental eval-
uation results showing how the algorithm performs
in cases where the “real” probabilistic sensing model
differs from the sensing model assumed by the sensor
nodes (model mismatch conditions). The results suggest
that the accuracy of the local front evolution parameter
estimates (orientation and speed) is rather insensitive to
sensing model mismatches.

5.3.2 Experiment 2: Diffusive hazards with irregular
shapes
The objective of Experiment 2 was to evaluate the ability
of the proposed distributed algorithm to estimate accu-
rately the evolution parameters of hazardous phenom-
ena having non-geometric irregular front shapes, large
propagation speed variations, etc. To generate hazards
with such more realistic characteristics we employed
FLogA [30], a web-based interactive software tool (devel-
oped in our group) which allows us to draw a forest area
anywhere in Europe over Google Earth [33], insert fire
ignition points (”hotspots”), define wind direction and
speed scenarios, and then simulate and geo-animate the
evolving wildfires under different conditions (see Section
S2.1).

Using FLogA we defined a square forest area (of 1km2)
at Hymettus mountain in Attica Greece and generated
5 different wildfire scenarios. Altering the hotspot loca-
tions and prevailing wind conditions (speed and direc-
tion) gives rise to different wildfire propagation patterns
(see Section S2.1 and Figures S6-S10). Similarly to Experi-
ment 1, we evaluated the proposed algorithm’s behavior

considering different: a) sensor node densities (75, 100,
125 nodes per 1km2), b) sensor node deployments (10
per wildfire scenario), c) sensor node failure and Rx/Tx
failure probabilities (with values {0, 0.1, 0.2, 0.3}), and
d) small and large sensing range radii (with values
{0.1m, 15m}).

Due to space limitations the results are summarized
in Table S2 and Figures S12-S14 which are isomorphic
to Table 2 and Figure 11 respectively. By comparing
corresponding table entries we observe that the mean
speed and direction estimation errors are on average
larger in Experiment 2, but only 4.26% and 2.74o degrees
respectively (with standard deviations 0.46% and 0.42o

degrees), despite the irregularities and the more dy-
namic evolution characteristics of the considered wildfire
fronts.

In addition, in order to investigate how wind speed
affects the accuracy of the algorithm we compared the
estimation errors under strong vs. light wind speed
conditions (for details see Section S2.1). For strong wind
scenarios the mean speed and direction errors are larger
on average by 3.92% (standard deviation 0.69%) and
1.91o degrees (standard deviation 0.53o) respectively
relatively to light wind conditions. This modest error
differential is justified since strong winds produce larger
front line variations which are more difficult to track.

In all wildfire scenarios described above the wind
speed and direction were considered constant within
the whole forest area. In order to investigate how their
spatial variation affects the estimation errors we used
WindNinja [34], a tool that generates spatially varying
wind field parameters by modulating a reference speed
and direction value taking into account the terrain’s
geomorphology, and repeated the same simulations. We
observe that the speed and direction estimation errors
increased on average by only 1.41% and 0.88o degrees
(with standard deviations 0.61% and 0.38o) respectively,
despite the fact that spatially varying wind speed and
direction cause locally more irregular wildfire evolution
patterns.

As mentioned in the Introduction, most in-network
processing schemes reported in the literature try to delin-
eate dynamically the boundaries of an evolving continu-
ous object using a dense array of deployed sensor nodes
[5]–[10]. These schemes do not attempt to estimate the
local front line’s evolution characteristics or predict their
spatiotemporal evolution. One notable exception is the
work in [11], [12] where the authors introduced a simple
way to estimate, as we do, the speed and direction of
the local front. They use them to implement a “wake
up” mechanism to decide which “sleeping” nodes to ac-
tivate selectively for near term front tracking in order to
reduce the network’s overall energy consumption. How-
ever, PRECO (PREdictive Continuous Object tracking
scheme) requires global sensor nodes synchronization [5]
rendering it impractical even for medium size WSNs.
Nevertheless, for completeness purposes we compared
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Rd
Exp. 1 Exp. 2 Exp. 2 Var. Wind

Orient. Speed% Orient. Speed% Orient. Speed%
0.1m 4.31/10.68 12.84/13.07 6.92/11.84 16.88/16.13 7.84/12.42 18.51/17.42
15m 4.79/10.89 13.52/13.96 7.21/12.03 17.31/16.92 8.17 /12.61 18.76/17.54
PRECO 28.15/22.54 39.62/89.15 29.03/23.17 40.84/92.89 29.42/23.26 43.23/94.2

TABLE 4: The Median/Inter Quartile Range of the orientation
error (in degrees) and percent speed error of the proposed in
network algorithm (under different sensing radii assumptions)
and PRECO method for all conducted experiments.

it to our method under the scenarios of Experiment 1,
Experiment 2, and Experiment 2 with spatially varying
wind parameters.

Table 4 provides for each Experiment, the orientation
error (in degrees) and the percent speed error when us-
ing the proposed in-network algorithm and PRECO. For
each table entry the reported statistics were computed
by considering as sample points all local front updates
from all node density ({75, 100, 125}) and failure prob-
ability cases ({0, 0.1, 0.2, 0.3}). Our method is shown to
outperform considerably (for all sensing radii scenarios)
PRECO, resulting to smaller estimation errors. When
using very high node densities (thousand of sensor
nodes per km2) PRECO achieves reasonable accuracy,
however it fails to estimate correctly the spatiotemporal
characteristics of the continuous object in WSNs with
practical sensor densities. This behavior can be explained
if we consider the following:

PRECO considers as a local front (boundary line), a
line segment that connects two adjacent special Bound-
ary Nodes (BN), called Master Boundary Nodes (MBN).
It uses the location coordinates of the corresponding
fixed MBNs to calculate the orientation parameter of
a local front. In contrast, our method calculates the
orientation of a local front based on the coordinates
of two points (K1 and K2) estimated using two local
speed observations of the diffusive hazard’s front line
(see Section 3.3.2). Our orientation estimation approach,
which is independent from the sensor node locations,
explains why this parameter’s estimation accuracy is al-
most insensitive to WSN’s density variations (see Section
5.3.1 paragraph 3). Moreover, the small number of MBNs
present at low and realistic WSN density scenarios leads
to a coarser piece-wise linear approximation of the diffu-
sive hazard’s boundary, which in turn explains the larger
orientation estimation errors when using PRECO.

Finally, to estimate the evolution speed of a boundary
line, PRECO uses the locations and time of detection
of the MBNs and of their neighbors. As indicated by
PRECO’s speed equations (see formulas on page 4 in
[11]), the speed’s estimation accuracy depends on the
number of MBN neighbors and their positions relatively
to the continuous object front’s evolution direction. In
general, it is expected that as the number of MBN
neighbors increases the accuracy of the local front speed
estimates will also increase. A detailed presentation of
the comparison results is provided in Section S3.

Finally, to assess the practicality of the proposed algo-
rithm for real world WSN implementations we ported
it to the Atmel Raven WSN platform [28]. Using an

embedded 8-bit CPU (ATmega1284P) clocked at 8 MHz
the average time required by a Master node to update
and propagate its local model parameters was 523ms
(492ms for computation and 31ms for communication),
a fact fully supporting the claim that of our approach
is suitable for real world WSN-based environmental
monitoring applications.

6 CONCLUSIONS

We presented a distributed WSN algorithm for estimat-
ing accurately the spatiotemporal evolution parameters
(orientation, direction and speed) of the local front of
a diffusive hazard. It is based on a Bayesian parame-
ters estimation procedure implemented in a collabora-
tive fashion by dynamically formed clusters (triplets)
of sensor nodes. The algorithm updates the local front
model parameters and propagates them to sensor nodes
situated in the direction of the hazard’s propagation in a
fully decentralized manner. Extensive simulation results
show that the proposed scheme can estimate accurately
the time-varying local parameters of different types of
irregular fronts, while using WSNs of realistic density.
Moreover, its estimation accuracy is robust to changes in
WSN density, sensor node failures and communication
link failures.

Model parameters are updated based on closed form
algebraic expressions making the presented approach
practical and appealing for real-world hazard tracking
applications. Relatively to other published schemes, our
in-network algorithm exhibits the following unique char-
acteristics: It works with low and realistic density WSNs,
it is robust to sensor node and communication link fail-
ures which are certainly expected in harsh environments,
and does not require any sensor node clocks synchroniza-
tion, which is very difficult to achieve anyway even in
small scale WSNs operating in non-harsh environments.

We are currently developing an algorithm which com-
bines the produced local front model estimates dynam-
ically, as they become available to a fusion center, to
construct an estimate of the overall hazard’s front line
and ”project” it (propagate it in space and time) to the fu-
ture. This will allow us not only to make predictions but
also characterize the associated uncertainty in a Bayesian
manner. Front line predictions of course will be more
accurate in areas populated with more sensors. This
will enable the dynamic assimilation of WSN extracted
information into integrative decision support systems for
large scale environmental monitoring, hazard tracking
and evolution prediction applications.
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