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ApBpo ota mpoktikd evog Xvvedpiov Tlaykocpog epPérelag oto omoio Ba mapovoidlovrol ta
QTOTEAEGUATO, TOV TEXVIKOV TNG avaivong eikovag (I124-A5.1)

H opdoa pog aoyondnke apyikd pe tn avdmroén g puebodov enelepyocioc ekdvag amd
UiKpookoémo, m omoio mapovcidonke ekteveg oto [121. Xvykekpyéva avamtoydnke pio
pebodoroyia. n omoio, KATOUETPA ovTOMOTO KOl e okpifelo Tov apBpd tov Poakmmpiov Kot va
vroAoyilel ™ Kapmodeg avantuéng (growth curves) TV amoKidv, UEC® NG KOTATUNOT T®V
HepOVOUEVOV KLTTapoV (single-cell segmentation) 1660 og g1kdveg OV Exovv apayBel amd ontikd
UIKPOGKOTIO OGO KOl GE €KOVES OV £XoVV TapoyBel amd CLVESTIONKO UIKPOGKOTIO GUPMONG LE
axtiveg (confocal laser scanning microscope). H mpotevopevn péBodog, Tov TapovcidoTnKe 6To
I121, eivor evpwotn yoo cOvora dedopévaov mov &xovv mopaybel amd S10QOPETIKOVG THTOVE
UIKPOGKOTIOV, ONTIKO KOl GUVESTIOKO, OALL KOl OO SLOUPOPETIKES TEYVIKES LWMKPOCKOTIOG, OTMG
avtiBeong eaong (phase contrast), pmteivov mediov (bright field) koar pBopiopod (fluorescence).
21 ovvéyela, avortuyOnke pia TpoTdTLRN HEBOJOG Yo TNV avTIoTOoiyIon KuTThpmV (tracking cells)
petalh ocvveydpevov otiypdtunov ewovag (frames) KLTTOPIKOV TOWVIOV Kol Tr Onpovpyio
JEVTPWV KLTTOPIKNG Yevearoyiag (cell lineage tree construction) pe okomd vo mapoakoAovdel Kot va
TOGOTIKOTOLEL TIG WO10TNTEG TOV KLTTAP®Y ava YEVIA (.. KVTTOPIKY EMPAVELD, UNKOG, TAATOG
K.0L).

H g0peon g avtiotoiyiong ovIkeévmY 6€ S1ad0y KA GTIYUIOTUTIO EIKOVOG Elvar Eva BepeAdong
TPOPANUO 0TV VTOAOYIOTIKY Opootn (computer vision) kot ot ovumieon Pivteo (video
compression). To mpoOPAnuo yivetor moO TOAOTAOKO OTOV €VaG AYVOOTOS YEMUETPIKOG
UETOGYNUOTICUOG (LETATOTION, GTPOPN, K.0.) TOPOUOPPAOVEL TO 1010 OVTIKEILEVO GE OLPOPETIKA
OTIYHOTUTIOL €KOVAGS. AVTO elvar cuvnBIGUEVO GE KLTTOPIKES Tovies, OTIS omoieg Ta Paktnpila
HEYOADVOVY, TOAAATANGIALOVTOL KOl GIpd)vovV 1o éva to GAAo! H avtistoiyion kvttdpwv ot
0ok oTrypdTuTo €1IKOVEOV pmopel va yiver apketd mOAOTAOKN, 10img dtav o puOUdg Ayng
OTIYIMOTVTIOV €kOvog (frame rate) eivor yapmAdg Ko dpa Tor KOTTapo LETAKIVOOVTOL TOAD HETOED
Sdoykov otrypdtuney. EmmAéov, ol meplopiopol 6tn ANyn oTiypidOTURIOV otd TO UIKPOSKOTIO
KOTA TN SLApKELN EVOG TEPAIATOC Kol ETELTOL OTNV ENEEEPYAGIA EIKOVOG ELGAYOLV TOAPOLOPPAOCELG
otV emMeaveln TOV PBaktnpiov kabiot®vtag To TPOPANUE TG AVTIGTOTYIGNS KVTTAPWOV KOO TLO
dvokoro. H opdda pag dnuovpynce po TANpos ovtopatorompuévn pébodo mov aviipetomilet Tig
mopamive mpokAnoels. H mpocéyyion mov mpoteiveton eivor eumvevopévn omd aiyopiBupovg
extipmong kivnong (motion estimation) yio cvopmieon Pivteo kot elvar  povn mov Pacileton og emt
toutov (ad hoc) duvopiKd oYNUOTIGUO YELTOVIAS KLTTApOV Kot BEATIOTNG avtiotoiyiong (optimal
matching) axoAovOdvTag T oTpat YKy ToL «diaipet kot Baciieve» (divide and conquer).

Metd 1o 6tdd10 g Kotdtunong tov Paktnpiov (PA. I121) cg 6Aa T GTIYUIOTUTO LOG KUTTUPIKNG
towviag, ywoo vo dnuovpyndel to dévipo yeveohoyiog pog amoikiog, €mpeme va. ADGOLUE TO
TPOPANLO TG KLTTOPIKNG avTicToiyons. ‘Eotm 01t pia amokio 610 oTiyptoTumo t £xel m KOTTOPA
KOl 6TO EMOUEVO GTIYUOTLTO £XEL N KOTTOPO. O TOTOL AVTIGTOlLY oM G KVTTAPWV pmopet va elval: o)
1-npoc-1, matépog (father cell) mpog ko6pn (daughter cell), onradn avantvén Tov Baktnpiov, P) 1-
TPOG-2, TATEPAG TPOG KOPES, ONAadn Olaipeon tov Paktnpiov, kot akdpa y) 1-mwpoc-N pe N > 2,
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natépag mpog N kOttapo/avrikeipeva, dniadn mpofinue vrép-katdtunong (over-segmentation
error). H PBacwkn 18éa tov adyopiBuov mov avoamtoydnke eivarl yuo ke Paxtiplo tov Tp€Yovtog
OTIYIOTVTTOL oV dgv €xel avtiotoymdel, va opiletoan po yertovid amd Poxtipro. Emerta
YPNOLOTOIDVTOS TOV VKO GLVOLOGTOPAS (covariance matrix) VTG TNG YELTOVIAS O OAyOp1OLOC
opilel o mepoyn avalTNone 61O TPONYOVUEVO GTIYUIOTUTO Kot avalntd HEco GE AT TNV
KOADTEPT OVTIOTOlY1oN OAOKANPNG TN YETOVIAG, Yoo Vo TeTvyel ) PBEATIOT avtiotoiylon kdOe
EMUEPOVG KVTTAPOV. Tehkd, 0 aAyOPIONOG EMKVPAOVEL TO ATOTEAEGUON TNG OVTICTOLYIONG TMOV
Bakmnpiov tpv emavalafet Ty 0o dtodikacia yio KaOe Paxtiplo puéypt OAa o Paktipla va £xovv
avtiotoyynOel (dniadn va tovg £xet avatebel éva matpikd kvtTapo). ‘Encita, mpoywpniooape oty
agloldynon tov odyopibuov avtictoiyions. o mepiocdtepeg Aemtopépeleg mov aPopodv GTOV
alyopiOpo pmopeite va avatpégete oto [apapmmua Evomnra 11

Mo v o&oddynon ypnowomomdnkay Vo Towviee KLTIOPOV 7oL  dnuovpyHOnKoy amd
dwapopetikd gpyactipioe. H mpdtn tawvio Eekivd pe téooepo kouttopa S. Typhimurium kot
eEelooetal o€ TE0GEPELS OLAKPLTEG UIKPO-amoikieg pe ~200 kottapa 1 kobepio. H dedtepn tavia
detyvet éva Pakthpio E. Coli mov e€eliooeton og pikpo-omoikio ~50 kuttdpwv. O mivakog aAndeiog
(ground truth, GT) ka1 Yo T1¢ 800 Tovieg Tpoodiopioke amd v ouddo tov AII® (I'-EO).
Apywcd, aflohoyndnke o oiyopiBpovg pog oe oOyKplon pe tov MM vrdpyovia aAyopiduo
avtiotoiyong tov SchintzCells ypnowomowdvtog cvykekpyéveg petpikés. To Tracker Detection
Rate (TDR) opileton g TDR = TP/GT, 6mov True Positives (TP) givor o apBudc tov (evymv
SdOYIK®OY OTIYHOTUTIOV YOpig o@dApata aviyvevong (dNAadn ovTIGTO(IGES KLTTAPOL TPOG
KOTTOpo Tov Oev Exovv PBpebel) ko Ground Truth (GT) eivan 0 cvvolikdg apBudg Tov Cevydv
Sdoyk®V ottypdtumey oty tovia. H tpotevopevn pébodog mapovsialet mord vynid TDR o
v Ta 000 cvvora dedopévav, Tave amd 98,7%. Emmiéov, vreptepel tov vrapydviov puedddmv
akoun kot otov 1n aSloAdynon yivetor pe tovieg mov mapdydnkav and o dikd Tovg EPYACTIPLOL.
Eniong extipudron to Error Rate (ER) mov opilerar wg ER = (FAT+TDF)/GT, 6mov False Alarm
Tracks (FAT) eivor o apilBudc tov aviiotoyynoewv mov £ywvav Yopig va VTEPYOLV GV
npaypatikodtnto, Ko to Track Detection Failure (TDF) eivar o apiBudg tov avtictorynoemv mov
TPEMEL VAL YIVOLV GTNV TPAYUATIKOTNTA GAAQ Ogv TTpaypoatoromOnkay and to cvotnuo. Kot wéit,
Kol oT1g OVo Tovieg  Tpotewvouevn pEBodog mapovosioce e€opetikd yaunio ER, kdtm amd 1%, kot
éva mheoveékTnua vyniotepo amd 3,3% oe oxéon pe v kaAvtepn dwbéoun mpocEyyion otV
avtiotoiylon kuttdpwv. EmmAiéov, n pébodog emtuyydvel moAd younid ER akdun ko oe pikpo-
amolkieg mov TmopovclileTor €EAPETIKG UEYAAOS cLVOOTICHOG Paktmpiov. Mo meplocodTEPES
Aemtopépeleg mov oeopovv otnv afloddynon g pebddov mov avamtOOynke pmopeite va
avatpééete oto [Hapdpmmpua Evotnra 1.

H otpomywn tov «daipet ko Pacideve» mov akolovOndnke amodnydnke kaAvtepn omd Tig
pebdoovg kaboiikng Pedtiotonoinong (global optimization methods). Enedn ta amotedéopata tng
dpPACTNPLOTNTOG OVTNG NTAV TOAD EVOAPPLVTIKA, GUYYPAYOLE L0 EPYOGIN, TOV ETIGLVATTETOL GTO
[Mopdpuo n omoior €ywve deKT KOTOMY KPIoMG TANPOVS KEWWEVOL KOl GLUTEPIAMNEONKE oTO
TPOKTIKA TOV TOAD Yv®OOTOL Yyio Tn moldtnTd tov debvovg ovvedpion, EMBC, 2015 IEEE



Broloykn ohotlki mpOaogyyion tng SYvauikig Moponc EmiBiwong maboydvwN Baktnplakwv oxnpATIopwy - BIOYMENIA

Engineering in Medicine and Biology Society Conference, mov éAape ydpa 610 Middvo g Itariog
tov Avyovsto tov 2015.
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Tracking Single-Cells in Overcrowded Bacterial Colonies*

Athanasios D. Balomenos, Student Member, IEEE, Panagiotis Tsakanikas, Member, IEEE, and
Elias S. Manolakos, Senior Member, |IEEE

Abstract—Cell tracking enables data extraction from time-lapse *"cell movies™ and promotes modeling biological processes
at the single-cell level. We introduce a new fully automated computational strategy to track accurately cells across frames in
time-lapse movies. Our method is based on a dynamic neighborhoods formation and matching approach, inspired by motion
estimation algorithms for video compression. Moreover, it exploits *'divide and conquer'* opportunities to solve effectively the
challenging cells tracking problem in overcrowded bacterial colonies. Using cell movies generated by different labs we
demonstrate that the accuracy of the proposed method remains very high (exceeds 97%) even when analyzing large
overcrowded microbial colonies.

I. INTRODUCTION

Data analysis of time lapse microscopy "cell movies" is an important tool allowing us to "zoom in" and observe
dynamic biological processes at the single-cell level [1]. Recent studies have noted its importance for investigating how
stochasticity (biological "noise™) affects gene regulation, aspects of cell growth, cell proliferation etc. [2]. Mathematical
models are important to form and test hypotheses for such phenomena [3]. Time-lapse movies can provide an
abundance of time course data, extremely valuable for mathematical models' calibration and validation. However, the
accurate, automated segmentation and tracking of individual cells, as they grow, move and divide in expanding
bacterial colonies, remain major challenges [4]. Manual cell counting and tracking across frames is extremely laborious
and error prone. Therefore, automation strategies are essential before we can add time-lapse image analysis in the
arsenal of high throughput methods for systems microbiology.

Finding correspondences, or matches, between objects across successive image frames is a fundamental problem in
computer vision [5] and video compression [6]. The problem becomes more complicated if an unknown transformation
deforms the objects in different frames. This is often the case in time-lapse cell movies, since cells grow, proliferate,
and push each other! Establishing cells correspondence across frames can become very complicated, especially when
the frame rate is low and cells move a lot across frames. In addition, limitations of image capturing and pre-processing
(segmentation) introduce deformations in extracted cell curvatures, making cell matching even harder.

Several software packages support the segmentation and tracking of cells in time lapse movies. Among them we
mention TLM-Tracker [7], CellTracer [8], and Schnitzcells [9]. TLM-Tracker [7] employs two overlap based
algorithms for tracking, namely overlapping boxes and overlapping regions, and allows users to choose among them
based on the tracking problem complexity. CellTracer [8] uses neighboring cells information to compute likelihood
scores for cells' identity between successive time steps and then applies an integer programming based method to
generate cell correspondences and construct the colony's lineage tree. Schnitzcells [9] segments cells and tracks them in
a frame-to-frame manner using an energy function optimization method [10]. However, all the aforementioned tools
suffer from several limitations, the most important being, (i) lack of tracking automation and, (ii) lack of accuracy in
overcrowded regions. They often require intense human involvement to be able to track cells in frames with
considerable cell movement and/or cells overpopulation.

*This work was supported by the action THALIS-BIOFILMS, co-financed by EU (European Social Fund-ESF) and Greek national funds
through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)-Research Funding
Program: THALES. Investing in knowledge society through the ESF.

A. D. Balomenos is with the Informatics and Telecommunications Dept., University of Athens, Greece (e-mail: abalomenos@di.uoa.gr).

P. Tsakanikas is with the Food Science and Technology Dept., Agricultural University of Athens, Greece (e-mail: tsakanik@di.uoa.gr).

Prof. E. S. Manolakos is with the University of Athens, Greece (e-mail: eliasm@di.uoa.gr) and Visiting Scholar, Wyss Institute of Biologically
Inspired Engineering, Harvard University.
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We introduce a new, fully automated approach overcoming the above limitations. In conjunction with our accurate
cell segmentation algorithms that proceed cell tracking (to be presented elsewhere), it enables high throughput analysis
and efficient estimation of single-cell properties in growing microbial communities, thus forming the basis for the
development of a single-cell micro-environment analytics platform. Besides their robustness, even in overcrowded
micro-colonies, the proposed methodology offers several new capabilities: tracking of multiple micro-colonies in the
field of view, lineage trees construction for each micro-colony, visualization on the tree of single-cell properties as they
evolve in time (e.g. cell length, area, distance from the colony's centroid, GFP intensity, etc.), visualization of cell
tracks across frames etc. To the best of our knowledge, our approach, which is inspired by mation estimation for video
compression [6] [11], is the only one based on a dynamic ad hoc cell neighborhood formation and optimal matching
following a divide and conquer strategy.

The rest of the paper is organized as follows. In Section Il we present an overview of the developed tracking strategy. In
Section 111 we show that it is accurate and outperforms state-of-the art methods when colonies become overcrowded.
Finally, in Section IV we summarize our findings and point to work in progress.
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Figure 1. Schematic overview of the proposed tracking methodology. (1) Cells correspondence in frame t (f;) and frame t+1 (f.1), (2) Dilation of cell
c and cell neighborhood definition, (3) Definition of the search region in f,, (4) Optimal matching, (5) Matching validity check.

Il. CELL TRACKING APPROACH

A. The general idea

After cells segmentation is completed and in order to construct the lineage tree of a colony, we need to solve the cell
tracking problem. Suppose that a colony in frame t (to be called f, from now on) has m cells and in the next frame t+1
(fi+1) it has n cells. Cell correspondence relations (matches) can be: 1-to-1 (father-to-daughter; proliferation), 1-to-2
(father-to-daughters; division), and even 1-to-N, N>2 (father to N cells/objects; e.g. over-segmentation error). The
general idea of our approach is first for every unmatched cell ¢ in the current frame f.., to define an appropriate
neighborhood of cells. Then using the covariance structure of this neighborhood to define a search region in the previous
frame f,, and search inside it for the best matching of the cell neighborhood's image, in order to establish an optimal
correspondence of cells in the neighborhood. Finally the algorithm validates the cells matching result before repeating the
same procedure until all cells are matched (have been assigned a father). Our method is inspired by motion estimation
[11], a basic operation for video compression [6].
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B. Processing Stages

The objective of the algorithm is to locate candidate fathers (cells in f;) for each daughter cell ¢ of the current frame fi.;.
In the sequel we focus w.l.0.g. on a cell ¢ in f.; to describe how the algorithm works. For example in Fig. 1 Panel 1 right
cell c=4.1 (in f..;) should be matched to its father cell 4 (in fy).

Stage 1. Cell neighborhood Definition: For each cell ¢ in the current frame fi.; we find unmatched cells with centroids
inside a hypothetical disk centered at ¢ with radius R equal to the average length of cells in f..;. For example let's assume
that for cell c=4.1 this disk includes all colored cells (in f..;), see Fig. 1 Panel 1 right. The algorithm then dilates cell c by
using a disk structuring element [12] of radius r equal to the average cell width (see Fig. 1 Panel 2 left). Then it identifies
the cells "touched" by the dilated cell c. These cells are the first order neighbors of ¢ (Fig. 1 Panel 2 right). Then, it may
apply the same dilation procedure again to the first order neighbors in order to find the second order neighbors of ¢, and
so on. This recursion is repeated L times, where L is an upper bound for the layers of neighbors considered, resulting in
the definition of the neighborhood of c (called N,). The value of L depends on the location of ¢ and the size of the
colony, and is larger for cells close to the colony's centroid.

Stage 2. Search area definition (Fig. 1 Panel 3): In order to match efficiently the defined neighborhood Ni.; with
candidate neighborhoods within the previous frame f,, we should first define an appropriate search area S; in f.. Initially
we estimate the covariance of the pixels matrix of cells in Ni.; and use it to compute the Mahalanobis distance [13] of
each pixel of f; to the image of the centroid of N..; into f (see the cross in Fig. 1, Panel 3 left). Then we find the k nearest
neighbor (KNN) pixels [13] to the centroid image (green area Fig. 1, Panel 3 left). Finally we select uniformly a subset of
I points, among the kNNs, to form the set of points, S;, for the candidate centroids of the best neighborhood in f;i.e. the
one matching optimally N..;. We remark that parameters | and k take values proportional to the size of the size of Ny in
pixels. As it is apparent the algorithm exploits the orientation of N..; (covariance structure) to estimate the direction of its
motion between consecutive frames and thus constrain the number of candidate matchings to be evaluated.

Stage 3. Compute/Evaluate the candidate matchings: We now place the image of the centroid of N, to each point
in S; and create | score matrices, S; having |M+,| rows and m columns each. The (i,j)-th element of a score matrix is the
overlap score of the i " cell in Ny and thej cell of f; defined as:

S]] area(c(i’m)ﬂc(j’t))/area(c(i’m)Uc(j’t)).(l)
Then for each S,we also compute its overall overlap score
0= > max (si). @

1IN 4|
i.e. the sum of maximum overlap scores of each cell in N (i row) with a cell in f, (jth column). This maximum
establishes a candidate correspondence between each cell i in Ny, (daughter cell) to one and only one cell j in f; (father
cell). When considering all rows of the score matrix this leads to a candidate matching of all cells of neighborhood N4
to father cells in the previous frame f..
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Figure 2. Lineage Tree Visualization of cell area evolving with time as cells grow and divide. Triangular (circular) nodes depict time points
(resolution 5 min) in the life of an external i.e. on micro-colony’s boundary (internal) cell.
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Stage 4. Determine the optimal matching (Fig.1 Panels 4): We choose the candidate neighborhood in f, with the
highest overall score Oy, to be called the N.. Then we create a new matrix S which has |N,, ;| rows and |~,| columns
and its elements are defined as:

~ _ (S if cell i corresponds to cell ;
ij—{ ! . .(3)
0 otherwise
The nominal case for this matrix is to contain columns with one or two non-zero elements, because each father cell
should correspond to at most two daughter cells.

Stage 5. Validate the optimal matching (Fig.1 Panels 5-6): Considering the aforementioned expected nominal
behavior, we assess the validity of the optimal matching by estimating the total overlap score for each father cell j in Ny
Oj= D S.(4

1<i<|N,

If for every cell j=1,2,... [V,|, the score O; is greater than a threshold T and less than 1 (maximum overlap) the optimal
matching is accepted; all cells in Ni.; and N, are considered matched and removed from the cells-to-match and fathers’
lists respectively. Otherwise, the optimal matching is rejected and all cells in Ny, are marked as "problematic”. If the
same cell has been marked repeatedly (e.g. 3 times) it is removed from the cells-to-match list and placed in an exclusion
list. This scheme allows us to continue the processing while also separating difficult cells-to-match cases, usually cells
that were divided or moved radically between consecutive frames. The algorithm will revisit these "problematic™ cells
and try to find their fathers again at the end of the process, when the problem has become simpler, i.e. when the large
majority of cells have been matched.

We repeat this process until each cell in fy, is either matched with a cell in f; or removed from the cells-to-match
list. At this point we try again to match the excluded "problematic" cells by following the same five-stage process. If
this fails to match all remaining cells, we lower the threshold T, reset the excluded cells list and repeat the same
process. Finally, when all cells in two consecutive frames are matched, or T is down to 0.5, the algorithm proceeds with
the next pair of frames until all pairs have been processed. Any unmatched cells at this point are most probably over-
segmentation artifacts.

C. Construction of the Lineage and Division Trees

As the algorithm tracks cells across frames it simultaneously creates a lineage tree, keeping record of the attributes
of each individual cell (see Fig. 2). When a tracking step is completed, the algorithm searches the tree to find the father
of each matched cell and inserts a new node under it. At the end, the algorithm returns as many lineage trees as the
number of cells in the initial frame. Given these lineage trees, our method generates recursively another useful tree
structure, the so called divisions’ free. Division trees record only cell division events and each node depicts an
individual cell's "life attribute” (e.g. the average cell length).

I1l. RESULTS AND DISCUSSION
A. Evaluation

Two cell movies created by different labs were used in the comparative evaluation. The first movie starts with four
S. Typhimurium cells which grow to become four discrete micro-colonies with ~200 cells each [3]. The second movie
shows an E. Coli micro-colony of ~50 cells [9]. The tracking ground truth for both movies was determined by experts.
In order to evaluate the proposed method, we compared its performance to that of Schnitzcells [9]. since this is the most
recent software package and gives satisfactory tracking results for both movies. However, Schnitzcells failed to
segment the first movie, so to evaluate the tracking methods fairly we provided as input to Schnitzcells the manually
refined results of our segmentation algorithms (not discussed in this paper).

Evaluation was performed following two methods. First, we evaluated the two algorithms using a frame-based
approach, similar to the one proposed in [14], based on the estimated Tracker Detection Rate (TDR) defined as:

TDR=TP/GT, (5)

where True Positives (TP) is the number of frames with no tracking errors (i.e. cell-to-cell correspondences that were
undetected or non-existing) and ground truth (GT) is the total number of frames in the movie. As we can see in Figure
3(a), the proposed method exhibits very high TDR for both datasets, over 98.7%. Moreover, it outperforms Schnitzcells
even when using their own movie. As we observe in Fig. 3(b), Schnitzcells made errors mainly in the last frames where
the micro-colonies become overcrowded and tracking becomes very difficult. So, to investigate the overpopulation
effects we focused in the last few frames (79-86) and evaluated the two algorithms using also a tracks based approach, a
more strict variation of the one presented in [14][15]. Here we consider as ground truth (GT) tracks with trajectory and
lifespan extending to, or beginning after, the 79" frame. Specifically, we estimated the Error Rate (ER) that is defined
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as:
ER=(FAT+TDF)/GT , (6)

where False Alarm Track (FAT) is the number of non-existing but detected tracks (a track is considered non-existing
when it differs at least in one time point from the ground truth), and Track Detection Failure (TDF) is the number of
existing but undetected tracks. Again, in both movies the proposed method exhibited an extremely low ER, under 1%,
and an advantage higher than 3.3% relatively to the best currently available cell tracking approach. Moreover, our
method exhibits a very low ER even in highly overcrowded micro-colonies. It seems that the divide and conquer
strategy we follow is better than global optimization methods in such situations. As cell numbers increase
exponentially, it is more probable for global optimization methods to get trapped to local minima.

TABLE I. EVALUATION ON OVERCROWDED MICRO-COLONY

TP | FAT | TDF | ACC ER
‘Proposed 911 21 21 97.7% | 4.5%

Moreover, in order to check if the proposed method remains robust when the overcrowded colonies become very
large we assessed its performance (Table 1) considering two consecutive frames of a salmonella cell movie (frames 75
and 76, GT=932 cell matches). We observe that our method achieves very high Accuracy (over 97%) and very low ER
(under 5%). Due to lack of space we provide in [16] the two successive image frames used (5 min. apart). We mark
cells on the same track using the same color. Gray cells are those that were not matched correctly. We remark that most
errors occur close to the large colony’s boundaries, which indicates that our approach is indeed robust to severe over-
population occurring at the colony's central region. Cells on the boundary exhibit usually higher mobility, so it is
expected for some tracking errors to occur in the periphery, especially if the frame rate is small.
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Figure 3. Evaluation. (a) Top: Frame based TDR of the methods under evaluation in E. coli and S. Typhimurium cell movies. Bottom: Error Rate for
the last frames 79-85 with severe overcrowding. (b) Error distribution of Schnitzcells (red) and proposed method (blue) in the S. Typhi. movie. More
than 50% of the errors occur in the last two frame pair matchings.

B. Tracks Visualization

Figure 4 illustrates how our method can constitute a useful visual analytics tool to microbiologists. Here, we
visualize with pseudo-color single-cell tracks allowing us to assess how each cell's distance from the colony's centroid
varies with time during its lifespan. We observe that more distant cells exhibit, on average, higher mobility (higher
track "slopes™) than cells near the centroid. This is expected and conforms to physical rules since boundary cells can
move unconstrained compared to internal cells. The scatter plot quantifies the correlation of cell’s velocity to cell’s
maximum distance from the colony's centroid.
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Figure 4. Each colored line corresponds to a cell track depicting the cell's distance from the colony’s centroid as a function of time (time-series).
Max. distance from colony centroid and cell velocity are correlated (scatterplot, Spearman Correlation = 0.54).

IVV. CONCLUSIONS AND FUTURE WORK

We presented a new divide-and-conquer cell tracking strategy inspired by block matching motion estimation for video
compression. It can be used to track bacteria automatically and quantify at the single-cell level how their morphological
and expression characteristics evolve with time. The algorithm is shown to outperform state of the art methods in
overcrowded colonies. Moreover the single-cell attributes extracted from analyzed time-lapse movies can be visualized
over lineage trees or cell track trajectories which can help microbiologists formulate new hypothesis for further
experimental or modeling work.

We currently work on combining cell segmentation and cell tracking algorithms into a closed loop system in order to
improve their accuracy and robustness. The structure of the lineage tree can help us identify and correct segmentation
errors (e.g. due to over-segmentation) which in turn can improve cell tracking. This is especially useful since there is no
automatic way to assess cell segmentation quality, while there are several ways to assess tracking quality.
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