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Abstract: We prove that for any weight ¢ defined on [0, 1]™ that satisfies a reverse
Holder inequality with exponent p > 1 and constant ¢ > 1 upon all dyadic subcubes
of [0,1]", it’s non increasing rearrangement ¢*, satisfies a reverse Holder inequality
with the same exponent and constant not more than 2"c — 2" + 1, upon all subinter-
vals of [0,1] of the form [0,¢], 0 < ¢t < 1. This gives as a consequence, an interval
[p,po(p,c)) = Ip., such that for any ¢ € I, ., we have that ¢ € L1.

1. INTRODUCTION

The theory of Muckenhoupt’s weights has been proved to be an important tool in
analysis. One of the most important facts about these is their self improving property.
A way to express this is through the so called reverse Holder inequalities (see [2], [3]
and [7]).

Here we will study such inequalities on a dyadic setting. We will say that the
measurable function g : [0,1] — RT satisfies the reverse Holder inequality with
exponent p > 1 and constant ¢ > 1 if the inequality

1 b

(1.1) L[ pydu < C(bla /abg(u)du)p,

b—a J, —

holds for every subinterval of [0, 1].
In [1] it is proved the following

Theorem A. Let g be a non-increasing function defined on [0, 1], which satisfies (1.1)
on every interval [a,b] C [0,1]. Then if we define py > p as the root of the equation

(1.2) M<m>p-c: 1,

Po \po—1
we have that g € L1([0,1]), for any q € [p,po). Additionally g satisfies for every q in the
above range a reverse Holder inequality for possibly another real constant ¢’. Moreover

the result is sharp, that is the value py cannot be increased.
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Now in [4] or [5] it is proved the following

Theorem B. If ¢ : [0,1] — RT is integrable satisfying (1.1) for every [a,b] C [0,1],
then it’s non-increasing rearrangement ¢*, satisfies the same inequality with the same
constant c.
Here by ¢* we denote the non-increasing rearrangement of ¢, which is defined on
(0,1] by
¢*(t) = sup { inf | ¢(z) | }, t € (0,1].

BCio1 | 2€E

|E|=t
This can be defined also as the unique left continuous, non-increasing function, equimea-

surable to |¢|, that is, for every A > 0 the following equality holds:
[{o > A} [=[{¢" > A},

where by | - | we mean the Lesbesgue measure on [0, 1].

An immediate consequence of Theorem B, is that Theorem A can be generalized by
ignoring the assumption of the monotonicity of the function g.

Recently in [8] it is proved the following

Theorem C. Let g : (0,1] — RT be non-increasing which satisfies (1.1) on every
interval of the form (0,t], 0 <t < 1. That is the following holds

(1.3) 1/0tgp(u)du <e. (1 /Otg(u)du)p

for every t € (0,1]. Then if we define py by (1.2), we have that for any q € [p,po) the

following inequality is true

(1.4 + [ s (3 tg(u)du>q,

for every t € (0,1] and some constant ¢ > c¢. Thus g € L9((0,1]) for any such q.
Moreover the result is sharp, that is we cannot increase pg.

A consequence of Theorem C is that under the assumption that ¢ is non-increasing,
the hypothesis that (1.1) is satisfied only on the intervals of the form (0,¢] is enough
for one to realize the existence of a p’ > p fir which g € L¥ ([0, 1]).

In several dimensions, as far as we know, there does not exists any similar result as

Theorems A, B and C. All we know is the following, which can be seen in [3].

Theorem D. Let Qo C R" be a cube and ¢ : Qo — RT measurable that satisfies

(15) @/chpéc- (|22/Q¢>p

for fized constants p > 1 and ¢ > 1 and every cube Q C Q. Then there exists
e = e(n,p,c) such that the following inequality holds;

Sl
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for every q € [p,p+¢€), any cube Q@ C Qo and some constant ¢ = (¢, p,n,c).

In several dimensions no estimate of the quantity e, has been found. The purpose of
this work is to study the multidimensional case in the dyadic setting. More precisely
we consider a measurable function ¢, defined on [0, 1]" = @, which satisfies (1.5) for
any (Q, dyadic subcube of Qg. These cubes can be realized by bisecting the sides of Qg,
then bisecting every side of a resulting dyadic cube and so on. We define by Tan the
respective tree consisting of those mentioned dyadic subcubes of [0,1]”. Then we will
prove the following:

Theorem 1. Let ¢ : Qo = [0,1]" — RT be such that

(1.7) @/Q&%c- <@/Q¢>)p,

for any Q € Ton and some fixed constants p > 1 and ¢ > 1. Then, if we set h = ¢* the
non-increasing rearrangement of ¢, the following inequality is true

(1.8) 1/; WP (u)du < (27 — 2" 4+ 1) (1 /Ot h(u)du)p, for any t € [0,1].

As a consequence h = ¢* satisfies the assumptions of Theorem C, which can be
applied and produce an €1 = £1(n,p,c) > 0 such that h belongs to L(]0,1]) for any
q € [p,p+e1). Thus ¢ € LI([0,1]™) for any such gq. That is we can find an explicit
value of €;. This is stated as Corollary 3.1 and is presented in the last section of this
paper.

As a matter of fact we prove Theorem 1 in a much more general setting. More
precisely we consider a non-atomic probability space (X, u) equipped with a tree Tk,
that is a k-homogeneous tree for a fixed integer k£ > 1, which plays the role of dyadic
sets as in [0, 1]™ (see the definition of Section 2).

As we shall see later, Theorem 1 is independent of the shape of the dyadic sets and
depends only on the homogeneity of the tree T;. Additionally we need to mention that
the inequality (1.8) cannot necessarily be satisfied, under the assumptions of Theorem
1, if one replaces the intervals (0,t] by (¢,1]. That is ¢* is not necessarily a weight
on (0,1] satisfying a reverse Holder inequality upon all subintervals of [0, 1] (see the
related result in [5]).

Additionally we mention that in [6] the study of the dyadic A;-weights appears,
where one can find for any ¢ > 1 the best possible range [1, p), for which the following
holds: ¢ € A‘li(c) = ¢ € L9, for any ¢ € [1,p). All last results that are connected with
A; dyadic weights ¢ and the behavior of ¢* as an A;-weight on R, can be seen in [9].

2. PRELIMINARIES

Let (X, i) be a non-atomic probability space. We give the notion of a k-homogeneous
tree on X.
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Definition 2.1. Let k be an integer such that k > 1. A set Ty will be called a k-
homogeneous tree on X if the following hold

(i) X T

(ii) For every I € Ty, there corresponds a subset C(I) C Ty, consisting of k subsets
of I such that

(a) the elements of C(I) are pairwise disjoint
(b) I=Jc)

1
(c) u(J) = %,u(f), for every J € C(I).

For example one can consider X = [0, 1]", the unit cube of R™. Define as u the
Lebesque measure on this cube. Then the set T of all dyadic subcubes of X is a tree
of homogeneity k£ = 2", with C(Q) being the set of 2™-subcubes of @, obtained by
bisecting the sides, of every Q € Tg, starting from @ = X.

Let now (X, i) be as above and a tree T on X as in Definition 2.1. From now on,
we fix k and write 7 = Tg. For any I € T, I # X we set I* the smallest element of T
such that I* D I. That is I* is the unique element of 7 such that I € C'(I*). We call
I* the father of I in 7. Then pu(I*) = ku(I).

Definition 2.2. For any (X, u) and T as above we define the dyadic mazimal operator
on X with respect to T, noted as M, by

1
(2.1) MT¢(X):sup{/\qﬁ\d,u:mEIET},
u(I) Jr
for any ¢ € LY (X, p).
Remark 2.1. [t is not difficult to see that the maximal operator defined by (2.1) sat-

isfies a weak-type (1,1) inequality, which is the following:

1
MHNH¢>M)§A/ o, A >0,
{MT19o>A}
It is not difficult to see that the above inequality is best possible for every A > 0, and is

responsible for the fact that T differentiates L' (X, p1), that is the following holds: For
1
every ¢ € LY(X,p), lim (I)/d)d,u = ¢(x), p-almost everywhere on X. This can
I

xeleT
p(l) =0 K

be seen in [4].
We will also need the following lemma which can be again seen in [4].
Lemma 2.1. Let ¢ be non-negative function defined on £ U E C X such that

1 1 .
(2.2) @ /E pdp = @ /E pdp = A,

Additionally suppose that
(2.3) o(x) < A, for every x¢ ENE,
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and
(2.4) o(x) < é(y), for every XeFE \ E, and yEF,

Then, for every p > 1 the following inequality holds

1 1
(2.5) M(E)/Eﬁbpdﬂﬁu(ﬁ)/ﬁdf)dﬂv

3. WEIGHTS ON (X, u,T)
We proceed now to the

Proof of Theorem 1. We suppose that ¢ is non-negative defined on (X, u) and
satisfies a reverse Holder inequality of the form

(3.1) ,u(ll)/f(bpdu <c- (/L(lj)/l¢d,u>p,

for every I € T, where ¢, p are fixed such that p > 1 and ¢ > 1. We will prove that for
any t € (0,1] we have that

(3.2) 2 /0 16" (WPdu < (ke — k+1) (1 /0 t ¢*<u>du)p,

where ¢* is the non-increasing rearrangement of ¢, defined as in Remark ?7, on (0, 1],
and k is the homogeneity of 7. Fix a t € (0, 1] and set

/<z>

Consider now the following subset of X defined by

(3.3) Ei={x e X : Mro(z) > A},

Then for any x € E¢, there exists an element of 7, say [, such that
1

3.4 x €l and — odu > Ay

(34 ! p(lz) I

For any such I, we obviously have that I, C E;. We set Sy = {I, : x € E;}. This is
a family of elements of 7 such that (J{I : I € S} = E;. Consider now those I € Sy,
that are maximal with respect to the relation of C. We write this subfamily of Sy,
as i, = {I; : j = 1,2,...} which is possibly finite. Then S}, is a disjoint family of
elements of 7, because of the maximality of every I; and the tree structure of 7. (see
Definition 2.1).

o0
Then by construction, this family still covers Ey, that is £y = U I;. Forany I; € S <,;§t

j=1
we have that I; # X, because if I; = X for some j, we could have from (3.4) that

[ ortu= [ o= " =1 [ s
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which is impossible, since ¢* is non-increasing on (0, 1]. Thus, for every I; € S</¢>t we
have that I7 is well defined, but may be common for any two or more elements of S(’i)’t.
We may also have that I7 C I} for some I;, I; € S:;ﬁ,t'

We consider now the family

Loy={I;:j=12..}CT.

As we mentioned above, this is not necessarily a pairwise disjoint family. We choose a
pairwise disjoint subcollection, by considering those I J* that are maximal, with respect
to the relation C.

We denote this family as
we=10 :5=12,.. .}
Then of course
U7s:derng,=J7:7€L,
Since, each I; € S;)’t is maximal we should have that

1

(35) u(I3) I

de/l S Ata

Now note that every I7 contains at least one element of Sy, such that I € C(I})).
(one such is I;,). Consider for any s the family of all those I such that I* C I7 . We

write it as
S ={I €S}, " C I},

For any I € Séxt, , we have of course that

1 .
M(I)/Igbdu > Ay, so if we set Ks = U{I :TeSy,.}

We must have, because of the disjointness of the elements of family S;s’t, that

1
1(Ks) K

Additionally, K5 C I7 and by (3.5) and the comments stated above we easily see that

(3.6) ddu > Ay

1 * *
(3.7 LI} < () < (),
By (3.5) and (3.6) we can now choose (because p is non-atomic) for any s, a measurable
1
set By C I]’?“ \ K, such that if we define I's = K; U Bg, then ——— odu = Ag.
° w(Ls) Jr,

We set now E} = UI]’-:
S

F:UFS, A:UAS,

where Ay = I7 \ I, forany s =1,2,... .
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Then by all the above, we have that
1
'uA=E; and /qﬁdu:At,
! w(I') Jr

which is true in view of the pairwise disjointness of (I j’:):il

Define now the following function

= (¢/I)": (0, u(I)] — RT,

Then obviously

1 w(l)
= g [
By the definition of h we have that h(u) < ¢*(u), for any u € (0, u(I")]. Thus we
conclude:
1 () i 1 w(I)
(3.9) M(F)/o gb(u)duzlm/o h(u)du = A, = /¢

From (3.8), we have that u(I") <t, since ¢* is non-increasing.

We now consider a set £ C X such that (¢/E)* = ¢*/(0,t], with u(E) =t and for
which {6 > ¢*(t)} C E C {6 > ¢*(1)}.

It’s existence is guaranteed by the equimeasurability of ¢ and ¢*, and the fact that
(X, ) is non-atomic. Then, we see immediately that

1/t _
m/}fgﬁdu:t/oqﬁ(u)du—m.

We are going now to construct a second set E C X. We first set El =1

Let now = ¢ Ei. Since I' O {M7¢ > A;}, we must have that Myg(z) < Ay
But since T differentiates L'(X, 1) we obviously have that for p-almost every y € X :
d(y) < M7é(y). Then the set 2 = {x ¢ Ey : ¢(z) > My¢(x)} has p-measure zero.

At last we set E = Ey U2 = I'U 2. Then u(E) = p(I') and for every z ¢ E we
have that ¢(z) < M7o(z) < A;.

Let now = ¢ E. By the construction of E we immediately see that ¢(z) < ¢*(t) <

1/t ~
t/ ¢*(u)du = Ay. Thus, if ¢ ¢ E or x ¢ E, we must have that ¢(x) < Ay, that is
0

(2.3) of Lemma 2.1 is satisfied for these choices of E and E. Let now z € E \ £ and
y € E. Then we obviously have by the above discussion that ¢(x) < ¢*(t) < ¢(y).
That is ¢(z) < ¢(y). Thus (2.4) is also satisfied. Also since E = I" U {2, we obviously

have _¢dp = Ay, so as a consequence (2.2) is satisfied also.
n(E) JE

Applying Lemma 2.1, we conclude that

{E)/Eﬂduﬁl;@/]?#du,
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or by the definitions of E and E that

L[ e < L
(39) + [ wrans — [ oan

Our aim is now to show that the right integral average in (3.9) is less or equal that
(k¢ — k4 1)(A¢)P. We proceed to this as follows:

We set {p = m @Pdp. Then by the notation given above, we have that:
K r

=i (L= [ o)
~an( S v X [ o)

1 o
(3-10) = M(F);ps,

where the p, are given by

ps—/ ¢pdﬂ—/ PPdpu, for any s=1,2,....
I A
Js

We find now an effective lower bound for the quantity / ¢Pdu. By Holder’s inequality:
As

Since Ay = I7 \ I';, (3.11) can be written as

fy - f o)

(3.12) /As PPdu > (M](Sfﬂ) =

We now use Holder’s inequality in the form
(A1 4+ A2)P < )\11) " )\127

(014 og)p=t = gP71 0571’
which holds since p > 1. Thus (3.12) gives

1
Since ——— odp = Ay, (3.13) gives
(L) Jr, b )

for \;>0 and o;>0

/I % ¢du)p () - (A,

Js

1
PPdp > ———— (
A, M(Ijs)p_l

so we conclude, by the definition of pg, that

p
(3.14) 2R PPdp — M(Il)pl</] ebdu) + u(ls) - (Ar)?,
Js Js s
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Using now (3.1) for I = I;fs, s =1,2,... we have as a consequence that:
1 p AP
3.15 psgcl*(/ ¢d> + (T .
(3.15) ( )M(Ijs)p,l - 1 (L) (Ar)
Summing now (3.15) for s = 1,2,... we obtain in view of (3.10) that
310 tr< o 1>f}1(/ ¢du>p+ (imr )
' = u(I) (T3 \ e R |
1
Now from ——— / odp < Ay, we see that
@) )i
1 oo
tr < s (e= D S0 H(E;) - (4P + i) - (A1
s=1
H(ET) ]
3.17 = |(c—1 + 1] - (4P,
(317) (o000 ] - (4

Since now Ef O I' O Ey, by (3.7) we have that

W(E;) < ku(Ey) < ku(D).

Thus (3.17) gives

1 /
——— | Pdu < [k(c—1)+ 1](Ay)P.
Using now (3.9) and the last inequality we obtain the desired result. H

Corollary 3.1. If ¢ satisfies (3.1) for every I € T, then ¢ € L9, for any q € [p,po),

where pg is defined by PP ( Po )p~(l<:c—k‘-|-1) =1.
Po po—1

Proof. Immediate from Theorem 1 and A. O

Remark 3.1. All the above hold if we replace the condition (3.1), by the known Muck-
enhoupt condition of ¢ over the dyadic sets of X. Then the same proof as above gives
that the Muckenhoupt condition should hold for ¢*, for the intervals of the form (0,t],
and for the constant kc — k + 1. This is true since there exists analogous lemma as
Lemma 2.1 for this case (as can be seen in [4]). Also the inequality that is used in order
to produce (3.13) from (3.12) is true even for negative exponent p < 0. We ommit the
details.
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