Scalable FPGA accelerator of the NRM algorithm
for efficient stochastic simulation of large-scale
biochemical reaction networks

Evangelos Koutsouradis, George Provelengios, Elias Kouskoumvekakis, Elias S. Manolakos

Department of Informatics and Telecommunications University of Athens, Greece
Email: {e.koutsouradis,eliasm} @di.uoa.gr

Abstract—Stochastic simulation of large-scale biochemical
reaction networks, with thousands of reactions, is important for
systems biology and medicine since it will enable the insilico ex-
perimentation with genome-scale reconstructed networks. FPGA-
based stochastic simulation accelerators can exploit parallelism,
but have been limited on the size of biomodels they can handle. We
present a high performance scalable System on Chip architecture
for implementing Gibson and Bruck’s Next Reaction Method ef-
ficiently in reconfigurable hardware. Our MPSoC uses aggressive
pipelining at the core level and also combines many cores into a
Network on Chip to also execute in parallel stochastic repetitions
of complex biomodels, each one with up to 4K reactions. The
performance of our NRM core depends only on the average
outdegree of the biomodel’s Dependencies Graph (DG) and not on
the number of DG nodes (reactions). By adding cores to the NoC,
the system’s performance scales linearly and reaches GCycles/sec
levels. We show that a medium size FPGA running at ~200 MHz
deliver high speedup gains relative to a popular and efficient
software simulator running on a very powerful workstation PC.

Keywords: Systems Biology, Stochastic Simulation, Biochemical
Reaction Networks, Next Reaction Method, SoC, FPGA, VHDL,
Parallel Processing, Pipelining

I. INTRODUCTION

Systems Biology is a rapidly emerging multidisciplinary
domain, on the cross road of biology, mathematics, computer
science and engineering. It aims to study the dynamical be-
haviour of complex biological systems emanating from the in-
teraction of their components. Biochemical reaction networks
are commonly used to describe regulatory, signal transduction,
or metabolic processes. The ever increasing complexity of
biochemical reaction models, with thousands of biomolecular
interactions, create the need for scalable PC accelerators to
simulate them stochastically in reasonable time and space, at
low cost and power consumption.

There are two main approaches for simulating biochemical
reaction networks. The deterministic methods use ordinary
differential equations (ODEs) to assess trends and steady state
behavior of molecular species trajectories. On the other hand,
Stochastic Simulation Algorithms (SSA) offer a more realistic
alternative, since they mimic how reactions occur in nature
in discrete steps and accounts for the stochasticity inherently
present in biological systems. This approach works even in the
low species counts regime where very interesting phenomena
can be observed.

D.T. Gillespie introduced two popular stochastic simulation
algorithms widely used today by software tools. Assuming
a biomodel with m reaction channels, his Direct Method
(DM) [1] has time complexity in O(m). A later algorithm

by Gillespie, the First Reaction Method (FRM) [2], has the
same asymptotic complexity but is easier to parallelize for high
performance. A remarkable more recent proposal by Gibson
and Bruck [3], the Next Reaction Method (NRM), reduces
complexity down to O(log(m)) and is preferred for large-scale
models with very large m. However, it is a lot more difficult to
parallelize since it has to manage a global data structure that
all units of execution need to share.

Application-specific hardware architectures to accelerate
the FRM SSA using FPGAs have been described in [4] and [5].
The implementation in [4] achieves a throughput of 10 Mega
Reaction Cycles per sec (MRC/s) for small size biomodels.
However it cannot efficiently handle large biomodels with
more than 1K reaction channels. More recently, in [5] we
have introduced a parallel FRM architecture that can handle
biomodels with up to 4K reactions using up to 8 processors,
implemented on a moderate size Xilinx Virtex 5 FPGA.

An FPGA based solution for accelerating the NRM-SSA is
described in [6]. It can handle efficiently biomodels with up to
1K reactions. The key idea of the design is to separate the data
structures (TPUs) from the computation units (TSUs), so that
the architecture can scale up along with the biomodel’s size. In
addition throughput is boosted by allowing multiple simulation
“threads” to proceed in parallel. Although this solution per-
forms well for a small number of modules, as their number in-
creases the interconnection network complexity limits severely
the system’s operating frequency. A more recent solution [7]
proposed a massive parallel implementation of the NRM-SSA
on a Virtex 6 FPGA. The key idea of this interesting design
is to use as many parallel Update Engines as possible, each
one responsible for just one reaction channel, fully pipelined
and shared among different simulation instances. This system
has the ability to process up to 1000 MSteps per second
(also known as MCycles per second) for small size biomodels.
However, its aggressive fine grain parallelism approach leads
to inefficient FPGA resources utilization, severely limiting its
scope to small biomodels with up to 64 reactions.

In this paper, we present a System on Chip parallel ar-
chitecture that efficiently balances performance with hardware
resources available on FPGAs. Our solution can scale to handle
flexibly very large biomolecular networks (with up to at least
m = 4096 reaction channels) while also achieving very high
throughput e.g. ~200 MCycles/sec per core on a Kindex 7
Xilinx FPGA. By using aggressive pipelining the main com-
putation unit (the NRM core) exceeds the operating frequency
of 200 MHz. In addition, by combining many cores into a
Network on Chip system, we can run independent simulations



of biomodels or execute multiple stochastic repetitions of the
same biomodel, and achieve linear performance scaling with
the number of cores. The NRM core’s design exploits the
Dependencies Graph (DG) structure of biomodels, so that the
achieved reaction cycle (step) latency depends only on the
average outdegree (Dgyer) Of the graph and not on the number
of its nodes (number of reactions, m). This leads to a reaction
throughput per core that is independent of m, thus enabling the
efficient simulation of very large biomodels with a medium
size FPGAs.

The rest of the paper is organized as follows: in Section II
we introduce stochastic simulation and present a summary of
the NRM algorithm. In Section III we discuss our simulation
framework and the interaction of the data structures required
for an efficient hardware implementation. In Section IV we
present an overview of the proposed many-core NRM NoC, the
design of each core and how it operates during the simulation
of a reaction cycle. In Section V, we present the NRM
Processing Unit, the main computational module of a core,
and how it was designed to optimize latency. In Section VI we
present and discuss how the area utilization and performance
of the NRM SoC correlate with the design parameters. We also
report the achieved speed-up, as the number of cores increases,
relative to COPASI [8], a popular software simulator.

II. BACKGROUND

A stochastic chemical reactions network model is com-
posed of n species {Si...,S,} with initial population
{Xi,...,X,} that can interact through m reaction channels
{R1,...,R;,}. To simplify the analysis we consider that all
species are uniformly distributed within some volume € inside
a cell of unit size. This assumption allows us to simplify calcu-
lations by ignoring the spatial effects existing in the real world.
Let X;(t) be the population of species S; at time ¢. The state of
the network at time ¢ is then X (¢) = (X1 (t), Xa(t),, X, (1))
with initial conditions X (¢) = @ at initial time ¢ = t.

Stochastic simulation tracks the above state vector at ap-
propriately chosen discrete time intervals, without explicitly
solving the differential equations governing the underlying
system dynamics to estimate the species trajectories. When a
reaction 7, occurs, the current state z is updated by a factor,
so that X (t + 7) = = + v,,. The state update vector v,, is
equal to (v1y, .., Vnu), Where v;, represents the change in the
molecular count of S; due to the occurrence of reaction R,,.
Each reaction R, is also associated with a probability rate
constant c,,, which is proportional to the reaction rate constant
k. and inversely proportional to the volume €2 (as shown in
equations 7(a) and 7(b) of [2]) .

The probability that a randomly chosen combination of
reactant species can interact and activate a reactions channel
R,, within the next infinitesimal time interval [¢, t+dt] is given
by ¢, dt. The propensity a,(x) of reaction channel R,, at state
X is calculated by multiplying the probability rate constant c,,
by the number of possible combinations of reactant molecules
for I, in state z. Thus for second order reactions with two
reactant species S1, S2, it holds that:

oy = ¢y x X1 x Xo @)

The model described above is a Markov process, where
the next state depends only on the current one. Simulating

this model yields the species trajectories of X (¢). Gillespie’s
original DM SSA is based on the above formulation and speeds
up the process by introducing a new function p(r, u|z,t),
which is the probability that R, is the first reaction to be
activated in the system after the current time ¢ and it occurs
within the infinitesimal time interval [¢,¢ + 7], given that the
current state of the system is X (¢) = z. This has the advantage
that the simulation can advance from one time step to the next,
without the need to simulate in-between times, at which no
reaction occurs. So the update of the reactants and products
happens in discrete amounts and species counts can be even
very low, another notable advantage of SSAs over deterministic
simulation methods.

While the DM SSA works fine for small biochemical
networks, it is hard to parallelize and time consuming for
medium to large size models. Concerned with these issues
Gillespie introduced FRM-SSA. In this algorithm, a putative
next reaction time 7; is calculated for every reaction channel
R;. The reaction channel R, with the smallest putative time
7, is determined and is then “fired” at the end of the Reactions
Cycle (RC). Since the calculation of each putative activation
time 7; can proceed independently of the others, the algorithm
is a good candidate for massive parallelization.

Although the complexity of the FRM SSA is in O(m), the
algorithm can be accelerated if we realize that only a subset of
propensities change as the result of a reaction event. Starting
from this simple observation, Gibson and Bruck introduced the
NRM SSA, with computational time complexity O(log(m))
[3] . We list below all steps of the algorithm:

1. Initialization:

t =1y and & = x.

Generate the Dependencies Graph (DG).
Evaluate propensity functions a;(x) at state .
Determine the time 7; to the next I2; reaction:

7 = t+ (1/a;(x)) * In(1/r)) @

where 7; is a unit uniform random number.
e.  Store the 7; values in an indexed priority queue Q.

oo

2. Let R, be the reaction with 7, is smallest stored in Q.

3. Determine the new state after Reaction R,,: t = 7, and
z = +v,, where v, is the state change vector for R,,.

4.  For each edge (4, ) in the Dependency Graph DG:
o If a=p, set
= (/au@) s n(1/r) +t @)
o If a#pu, set
Ta = (Qaold/Qa) * (Taora — 1) + 1 4)
If ¢ is greater than the desired simulation time, halt.

6. Record (z,t) and go to step 2.

The NRM algorithm comprises two distinct phases. The
first phase includes initialization steps (la) to (le) performed
once during each simulation repetition to prepare all the needed
data structures. The second phase includes steps (2) to (6) and
will be referred to as a Reactions Cycle (RC). In every RC, the
NRM uses formula (3) to re-calculate the 7, of the (winner
reaction) (R,) and formula (4) to re-normalize the putative
times 7, of every dependent reaction (R,).



g
5 13
g 12
® 11
& 10
< 9
-g 8
7
2 5
5
4
3
2
1 |
o 11 111 | 1 11 1
01234567 8 91011121314151617 181920212223 242526272829 30313233343536373839
D
Fig. 1. Histogram of dependent reactions for the ASYN biomodel [9] [12].

The y-axis is the number of reactions in the model with the same D value.

According to equation (1), the propensity a; of a reaction
depends on the quantities of the reactant species. If these
quantities change, as a result of another reaction R, then only
the affected propensities «; should be re-calculated along with
the affected 7. Therefore, when a reactant or a product species
of R, is a reactant of another channel R;, we say that these
R; reactions depend on R, and call them dependent reactions

(Ra).

The NRM represents dependencies using a Dependencies
Graph (DG). In the DG, there is a vertex for each reaction
R; and an arc (j,k), from reaction R, to every dependent
reaction Rj. So, assuming that d is the total number of affected
reactions during an RC, there are D = d — 1 edges towards
other reactions R, which depend on R, (outdegree of node
R,)). Finally, based on the NRM, equation (3) re-calculates the
time 7, of I, and (4) re-normalizes the time 7, of every R,.

If we analyze a real biomodel and the dependencies among
its reactions, we will most definitely observe that each reaction
has a different D i.e. outdegree of DG nodes is not the same.
Let us consider for example the ASYN biomodel we have
introduced in [9] [12], to simulate how Alpha-synuclein’s
(ASYN) oligomerization disturbs the homeostasis of dopamin-
ergic neurons, a mechanism believed to contribute to the onset
of Parkinson’s disease. The biomodel has m = 136 reactions
and n = 90 species. In Figure 1 we show the histogram of D.
We observe that there are 18 reactions with D = 0, 4 reactions
with D = 39 and the mean value of is D¢, = 16.

III. SIMULATION FLOW
A. Simulation Framework

The stochastic simulation framework we have developed
includes a complete end-to-end simulation flow summarized
in Figure 2. The simulator’s primary input is the biomodel file
supplied by the end-user in standard SBML format [10]. We
have developed a parser (in C++) that can read the SBML file
and extracts all essential information that is stored in three
binary files: The st_table.bin containing the initial values of
all species (n), the rt_table.bin describing all reactions (m),
and the dg_table.bin capturing the inter-reaction dependencies.
Each file is used to initialize a corresponding data structure,
as discussed in Section III-B. Moreover, the user specifies
simulation parameters, such as the total simulation time (7;,,),
the output results sampling (reporting) period (Ts4.,,) and the
desired number of repetitions (R) of a model’s simulation,
which are stored in the parameters.bin file.

SBML | | conr
Cxml) ||

S
% User

Host PC
SBML output | SSA
(xml) files Results Parser
(.bin)
PCle
Transfer
SSA PCle Development
— N
Biomodel Parser Drivers Board
input _ Ui _
files = SSA - Application s E
parameters (.bin) C/C++11 5 NRM =
é SSA SoC | =
H E
(YHD__L Sk JTAG S
jenerics —— | .
—— | Bitstreams .bit iMpact
DB

Fig. 2. The simulation flow including the Host-PC and the FPGA device.

The complete NRM SoC has been described as a paramet-
ric IP core in VHDL. The top-level parallel architecture is a
Network on Chip (NoC) with C independent NRM cores, each
using a different pseudo-random number generator and being
responsible to perform R repetitions of a model’s stochastic
simulation. We have used the IP core to build a library of SoC
bitstreams for many combinations of the design parameters
C, m, n and D ... We have experimented with NRM SoCs
containing up to C' = 16 cores. Moreover, the biomodels can
have up to 3"¢ order reactions, with m and n values that vary
from 256 to 4096 and D¢, from 4 to 128. Upon parsing the
SBML model file, we can select the most appropriate already
synthesized SoC bitstream in the library to program the FPGA.

The stochastic simulation is initialized by sending from
the host PC all of the above input files through the PCle
component of the NRM SoC. During each sampling period,
every NRM core sends back to the host PC the state vector
of the simulation it performs. When the simulation completes,
all output results are written into a binary file. Subsequently,
a simulation output parser tool analyzes this file and produces
a separate results file for each simulation repetition (run)
performed by a processing core, including all species counts at
each reporting period, as well as aggregate species statistics,
such as the minimum, maximum, average population values
over all repetitions.

B. Data Structures

Before the execution of a simulation, the Species Table
(ST), the Reactions Table (RT) and the Dependencies Graph
(DG) are the three important data structures that should be
properly initialized. Figure 3 illustrates how these data struc-
tures cooperate to provide the necessary data, given the winner
reaction R,,. The ST contains the initial counts of all species
and is a simple table with n rows (depth) and 32-bit width.
The RT stores all of the reaction channel data. It has m rows
(depth) and each row includes 8 pointers to the ST table (3
for the reactant and 5 for the product species), the reaction
rate constant (c,) and the state change vector (v,). Lastly,
the DG contains the Dependency Graph of the model. It has
depth m, width (Dgyer + 3) * log(m) bits and is organized as
two distinct parts. Each row of the first part is associated with
a reaction and stores the number of its dependent reactions
(D) along with a pair of elements (i,j) that form as a directory
index to the second part. The second part is a table of pointers,



r__ —— |
| D | Row Cblumn *Pointers |
m
| |
I e— ey Do |
RT ST
Cu | Vu [SP1]sP2][sP3 Z:; > | s1
- 52
SP3 s3
m > 23—
H n
Vi
— [t
Fig. 3. The interaction between the data structures.

where each pointer holds an address to a reaction of the RT,
depending on R,,. Given the winner reaction I, (it is Ry in
the example of Figure 3) we read the directory index (first
part) and then extract D pointers (second part), starting from
the location (row, column) where the directory index points
to (i.e. location (1,7) in our example). Since D differs across
reactions, these pointers are not necessarily aligned and thus
the dependencies of a reaction may occupy more than one line
in the second part of the DG. This allows us to efficiently store
more pointers in less memory and handle models of arbitrary
dependent reaction profiles (e.g. see the ASYN biomodel of
Figure 1).

At the beginning of a new reaction cycle, the hardware
unit designated to handle the DG has knowledge of the IR,
information. Therefore, it can start exporting its dependent
reactions, the R,,’s, the one after the other in a steaming, fully
pipelined fashion. For each R,,, the RT handling unit forwards
its reactant species pointers (SP) to the ST. Subsequently, each
dependent reaction’s address and reactant species counts are
forwarded to the processing element of the NRM core where
only the necessary propensity calculations are performed. This
interaction of data structures is shown for R, = R; and
Ra = Rj (the first dependent reaction of R;) in Figure 3.

IV. NRM NoC AND CORE ARCHITECTURE

A simplified version of the NRM NoC architecture is
shown in Figure 4. The architecture consists of C independent
NRM cores connected in a star topology. The cores com-
municate with the PC through a custom switch, using round
robin arbitration and the AXI4 Stream Interface protocol that
is based on a Master/Slave communication model.

Each NRM core can execute R stochastic simulation repe-
titions of a biomolecular reaction network. Figure 5 provides
a simplified block diagram of the NRM core consisting of
the following six units: (1) the NRM Processing Unit (NPU),
(2) the Species Time Update Unit (STU) which updates the
molecular species populations (stored in ST), the values of the
current simulation time (%s;,,,) and the last sampling (reporting)
time (tgqm), (3) the Simulation Control Unit (SCU) which
commands the simulation flow and the transmission of results
back to the host PC, (4) the Species Table Initialize Memory
System (STI MS) storing the initial counts of the n species, (5)
the Input Interface Unit (IIS) receiving the simulation data, and
(6) the Output Interface Unit (OIS) responsible for sending the
simulation results back to the host PC.

The NPU is the most important component of the NRM
core. It performs all NRM computation steps except from the

NRM NoC — C NRM CORES

NRM NRM NRM
CORE CORE " CORE
K !
PCle AXIS4 A ~
CORE BRIDGE > AXIS4 SWITCH
axiss = I 1 1
Interfaces >
NRM NRM  NRM
CORE CORE CORE

Fig. 4. The NRM Network on Chip top level architecture.

species updating step. The main units of NPU are the three
memory subsystems (DG, RT and ST) storing and managing
the data structures (DG, RT and ST respectively) in the
available FPGA BRAMs and the Processing Element (PE) that
performs the arithmetic computations. The PE unit consists of
three subunits: The Comparator Tree (CoT), which implements
the parallel hardware version of the NRM’s Indexed Priority
Queue (IPQ), table T, a memory unit which stores all the times
7; and feeds the CoT, and the Recalculation Unit (RU), which
re-calculates the 7; of the reactions affected by the current
winner reaction R, based on equations (3) and (4) of the
algorithm.

The NRM core operates in three distinct phases : initializa-
tion, computation and updating. Figure 5 shows an example of
those phases during a reactions cycle. The initialization phase
has two stages, l.a and 1.b. During stage l.a (signaled by
Init_a) the IIS receives simulation data from the host PC
and initializes the ST table of STI MS. It also initializes the
RT tables and the NPU’s pseudo-random number generators
(RNGs), with their initial seeds. During stage 1.b (signaled by
Init_b) the STI MS uses the saved data in order to initialize
the NPU’s ST table. Stage 1.a occurs only at the beginning
of the simulation while 1.b is repeated at the beginning of
each stochastic simulation repetition (if R > 1). These two
stages are combined through a 2x1 multiplexer (see MUX (1)
in Figure 5). The SCU asserts the signal Init_Rep to trigger
stage 1.b if the number of completed repetitions is less than
the desired value (R).

During the computation phase 2, the NPU performs steps
4 and 5 of the NRM and updates the putative times 7; of the
affected reactions. The SCU asserts the signal Start Sim
to trigger phase 2 if the current simulation time has not been
reached the desired simulation time set by the user (tsim <
Tsim)~

Subsequently, during the updating phase 3, the STU cal-
culates the new molecular species populations according to
stoichiometry vector v, of the R, and the new values of
tsim and tgqm. After the species updating, the core moves
again to phase 2 and the SCU starts a new reaction cycle if
tsim < Tsim. During a reactions cycle the core uses a 2x1
multiplexer (see MUX2x1 (3)) to connect the STU’s output to
the rest of the units.

The SCU commands the whole simulation flow. The end
of a stochastic repetition is signaled by the condition tg;,,, >
Tsim - At this point the SCU checks if the counted repetitions
reached the desired limit (R). If so, the SCU terminates the
simulation, otherwise it triggers a new initialization phase 1.b
through the signal Init_Rep. The SCU is also responsible
of starting the transmission of simulation results. After every
reaction cycle, the SCU checks if ;g1 > tsam. If S0, it triggers



NRM CORE

Initialize (a, b)
Phase (1)

Compute (t,)
Phase (2)

Update Sim State
Phase (3)

MS

Init (b) (DG PE
Init (a)

[] L]
[ ] L]
[ ] L]
. : ]
'
| } |, ES 2,
STI S 2 '
= L]
[ ] P » ]
' '
' '
0

s

<
< .
= & }—l-»‘ SPU —p oIS

‘ SCU <——————————————— Updated Species Counts and Sim Time-

\ Send Results \ /

Fig. 5.

The NRM core architecture overview.

the OIS unit (through the signal Send Results), which in
turn starts transmitting the simulation results back to the host
PC.

V. NRM PROCESSING ELEMENT ARCHITECTURE

The NRM Processing Element (PE) is the main compu-
tation unit of the NRM core. As mentioned before, the PE
receives information associated with the winner reaction, re-
calculates or re-normalizes the putative times of the dependent
reactions and in parallel performs all required comparisons in
order to determine at the end the next winner reaction.

As Figure 6 shows, the PE consists of three main units:
table T, a memory unit that stores all the reaction times
7;, the Comparator Tree (CoT), responsible to determine the
reaction with the minimum time 7; stored in table T, and
the Recalculation Unit (RU), which re-calculates the winner
reaction’s time (7,,) using equation (3) and re-normalizes the
dependent reactions time (7,) using equation (4) of the NRM.

As Figure 6 shows, table T is the entry unit of the PE,
while the RU and the CoT are running in parallel. At the
beginning of an RC, the PE receives the necessary data of
all the affected reactions. At the same time, the RU starts
executing calculations and “read-mark” the ¢, time values
stored in table T (the “read-mark” operation will be explained
later in this section). When the RU finishes the “read-mark”
operation, table T starts feeding the CoT with 7;. Considering
the fact that the height of the CoT depends on m and is
configured to minimize the comparison time, the CoT is able
to finish before the RU has executed all its computations. At
the end, when the RU finishes, the results of the CoT and the
RU are compared and the next winner reaction is determined.

A. The Comparator Tree and table T units

The CoT is a scalable binary tree of comparators, with
height H, as a generic parameter in its VHDL description.
To maximize the parallel export of data, table T is split into
2H parts, as many as the leaf nodes of the CoT. Since m
is the total number of reactions, each part of table T stores
m/2H reaction times. Due to the fact that all BRAMs are dual
ported memories, on every clock cycle table T sends 2(7/+1)
data words to the leaf nodes and m/2(7+1) clock cycles are
required to feed the CoT with the whole table T. Finally, after
Leor = m/Q(H“) + H +1 clock cycles, all data have reached
the root node, where the Keep Min unit compares the CoTs
results and stores the reaction with the overall minimum 7.

Ti.(mle).“..Tj,1 c

Tree Min Tj

Tj,m.. 4..Ti.(m-m12H)

Read
EE—— Enable

Write

... Raz, Ra1, Ry table T

Trew

Keep Min ——»

...Tat.o1d, Tp.old

...Raz,Ra1,Rpy
Enable EE—

Comparison ...K2,K1 i
wite [X1,X2,X3] Unit Min Ta
Enable Enable

o
F

portA

Ctl | port| FIFO n
Vector

notemp

Fig. 6. The NRM Process Element architecture.

In addition, table T, as a data structure, supports read and
write functions. These allow the Recalculation Unit (RU) to
read the old reaction times (7,;4) and write the updated values
(Tnew). Every time the RU reads a time value from table T, at
the same time it sets the value of this reaction to the maximum
floating-point number in order to prevent the reactions that
are not updated from reaching the root node. To perform this
“read-mark” operation, we configured all the dual port BRAMs
to “Read First” mode and so we can “Write after Read* using
only one port on every clock cycle. In this way, the RU can
“read-mark” the 7,;4 from table T using the first port and write
the updated 7, using the second port. Finally, in order to
avoid any conflict, while the CoT is enabled, table T disables
both read and write functions.

B. The Recalculation Unit

The Recalculation Unit (RU) performs all computation
steps of the NRM. In order to implement equations (3) and
(4), it includes several floating point computation modules
and a local table to store the old reaction propensities. By
observing that both equations contain almost the same cal-
culations, differing only on their inputs, we implemented a
pipelined datapath consisting of three parallel branches feeding
a common branch, as illustrated in Figure 7. Each branch
executes one or more computation steps and the common
branch combines the results before calculating a 7,,¢,,. In order
to activate the correct branches, during each reaction cycle, the
NRM core forwards to the RU the data of the winner reaction
and subsequently its dependent reactions.

We managed to set the latency of the modules in such a
way that all branches are synchronized and produce results at
the same time. Branch A includes the Propensity Unit and a
division module. The Propensity Unit needs 14 clock cycle
(cc) to calculate the a; of a reaction and the division module
needs 17 cc first to execute (1/c,) for the winner reaction
and then (o, o1q/@q) for every dependent reaction. Branch B
calculates the difference between the current simulation time
teim and T, o1q. Although this subtraction requires 11 cc, a
shift register (SR) extends the latency of branch B to 31 cc.
Finally, branch C computes the logarithm of a unit pseudo-
random number. In case we want to re-calculate 7, based on
(3), branch C is activated. In case of a dependent reaction, if
the @, oia 7 O then branch C remains inactive. However, if
O 0ld = 0, branches A and C are activated in a proper way
as to re-calculate 7, based on (3) and not based on (4). So,
branch C needs 4 cc to examine the a4, 1 cc to enable the



... Raz, Rat,

... Raz, Ra1, SR
B

... Cp2, Cpt

Propensity |... Ola,0lp1
[51,52,83] [ —— o Tnew
— ++r Olold1/Qla,1/0lp
H
H

Propensity | --- Olold2,0lold1
Table 1 '

Branch A

Mul Fit

Comparator Tree

m
ST

Lcot = +H+1

v Ta1,Ta2 H
Ta-t H
H tsim —t> H

-log(rj)

Branch B

Common Branch

enable T Log
S5 RN P Gnit

Branch C

Fig. 7. The Recalculation Unit datapath.

Mersenne Twister unit and produce a pseudo-random number,
6cc to convert the result to a uniform number and 20 cc to
compute the logarithm. Thus, Branch C has a latency of 31 cc
in total.

At the end, the Common branch combines the results of
branches A and C in order to compute equation (3), which re-
calculates the 7,,. Depending on 14, the Common branch
combines the results of all branches, so if aqg g # 0 it
performs (4) to re-normalize 7, else if aq, o1q = 0 it performs
(3) to re-calculate 7,. Overall, the Common branch has a
latency of 11 cc..

At the end, all results go through the Keep Min unit, which
compares and keeps the reaction with the smallest updated
time. The RU has latency Lry = 42 cc to update the time of
an affected reaction. In addition, D + 1 more cc are needed to
determine the smallest update time 7.

C. Datapath and Latency Analysis

The NRM Processing Element works in two modes. The
initialization mode is activated once, at the beginning of every
simulation repetition, and aims to initialize the table T and the
propensity table. In this mode, the RU calculates and stores a
putative time 7; for all the reactions of the model, the CoT
remains inactive, and at the end the first winner reaction is
determined. In the second mode (running sim) the PE executes
all required computations to determine the next winner reaction
of each RC, based on steps (4)-(5) of the NRM.

As mentioned before, the RU “read-marks” all the 7,4
times from table T. When the RU produces a 7., it forwards
the updated value to table T. If the CoT is not enabled, then
the RU has access to table T and uses one port to update
the marked value. However, if the CoT is enabled, the RU
has no access to table T and thus we use a distributed FIFO
to temporary store the results of the RU. In order to avoid
overflow, the FIFO’s depth must be equal to the maximum
number of results that RU can produce, while the CoT is
enabled, i.e. equal to the RU’s pipeline depth. Finally, when
table T becomes available again, all of the data from the FIFO
are forwarded to it, while the core enters the species updating
phase.

In conclusion, we have managed to design a high perfor-
mance and fully pipelined datapath, with a latency that depends
only on parameter D. Including all required computation
steps and a few control steps, the PE latency is Lpr =

£ Recalculation Unit E
b ©
] Ly, ~42cc s
2 ¥ @ & N
F F & P
& & & & & &
— & @ &S & S &
=1 DG>RT>sT| | | | | | ST Update
| |
D (D+1) f 34 ce
Occ 10cc 14cc (14+D)cc 56 cc « (58 + D) cc (92+D) cc
Fig. 8. Reaction Cycle Latency (L rc) analysis.

max(Lgu, Loor)+D+146 = Lry+D+T7 =49+ D. So, as
the biomodel’s complexity m is increasing, Lpg is not affected
and the performance of the PE remains unchanged. Finally, as
Figure 8 illustrates, the NRM core needs Lrc = 92 + D cc
to complete all phases of a reaction cycle (Reaction Cycle
Latency). Note that Lz depends on the number of dependent
reactions (D) of the winner reaction and not on m. This is
due to the design of a high performance computation unit,
the NRM Processing Element, and the latency hiding methods
we used for the CoT, in order to avoid extra latency while
determining the next winner reaction.

VI. AREA AND PERFORMANCE EVALUATION

In this section we present and discuss how the area and
performance of the NRM SoC correlates with the design
parameters. We first focus on FPGA resources utilization
and operating frequency. Then, we present the performance
evaluation of our NRM SoC using a benchmark biomodel with
complexity that can scale. Finally, we analyze its performance
while simulating a typical model from the EBI Biomodels Data
Base [11]. In order to do so, we measured the achieved speed-
up as the number of cores increase, relatively to COPASI [§]
a popular and efficient software simulator.

Our NRM SoC design was implemented on a Xilinx
Kintex-7 board containing a medium size XC7K325T-2 FPGA
with 203800 LUTs, 445 BRAMs (445x36 Kb) and 840 DSPs.
The NRM SoC architecture was captured as an IP in parametric
VHDL and uses several floating-point IP cores. All computa-
tion modules and data structures were implemented using the
available FGPA resources (DSPs and BRAMs) and use single-
precision floating-point format (32 bit, IEEE - 754).

Finally, for software simulations we employed COPASI
[8], a popular and efficient single threaded software simulator,
developed using C++. We run COPASI on a very powerful
workstation PC with an Intel Core i7 4790K CPU running at
4.4GHz with 32 GB of RAM under GNU/Linux O/S.

A. Resources Utilization

Figure 9 summarizes the resources utilization (post place
and route) and the max. operating frequency for several con-
figurations of the parametric NRM SoC. All of them use one
core, but differ in terms of the maximum number of reactions
(m) and the average number of dependent reactions (Dgyer)
they can handle. We chose to report the total LUTs (left axis)
and BRAMs (right axis) since these are the resources mostly
affected by the problem size parameters of interest. Some
FPGA resources are not fully utilized (e.g. DSPs) or change
in a similar way as the LUTs (e.g Slices and their associated
registers).



23000 240 230 230 220 | 230 220 220 220 250

22000 *\*_»\*—"—MK\-*——-)K_)K F
£2 21000 | 20 S
= 20000 | <
= 150 o2
5 19000 ! —
i 18000 § 100 O
& 17000 ; g
£ 16000 T 50 £
= (BN BE BN BN BN R
< S at60 . . | o =

Daver 4 8 16 32 a 8 16 32

m 512 (H=3) 1024 (H=4)

LUTs 15726 15793 16266 16892 16208 16445 16816 18338
== RAMSs 36 37 39 a3 as 46 as 53
—<Op. Freq. 240 230 230 220 230 220 220 220

a)

23000 i 250

22000 210 200 200 200 | 200
@ I ol > 190 190 200 &
— 21000 2 ; 2 c 170 s
= Poos i 150 §
45 19000 %
i) 115000 i 100 =
o 17000 4 Y

| o

g 16000 i s0 £
= 15000 | =

14000 ! o

Daver 4 8 16 32 a 8 16 32

m 2048 (H=5) 4096 (H=6)

LUTs 17684 17756 18123 19411 20521 20709 21236 22357
== RAMSs 74 77 82 92 135 140 151 173
—<Op. Freq. 210 200 200 200 200 190 190 170

b)
Fig. 9. Area Utilization (LUTSs Left Axis - BRAMs right Axis) and operating

frequency when Daver = 4, 8, 16, 32 and a) m = 512, 1024, b) m = 2048,
4096

The NRM SoC contains several data structures needed to
store the simulation’s input data. Most of them are simple
structures with depth m and 32-bit width. But, there are two
special memory structures, the DG and table T of the NRM
PE that significantly affect the total number of BRAMs used
by the design. In our implementation we handle the DG as
a table whose depth is always m but the width is variable
and equal to (Dgyer + 3) * log(m) bits. In order to achieve
the required variable width, FPGA synthesis tools combine as
many BRAM blocks as needed and manage them as a unified
table. Unfortunately, as the number of combined BRAM blocks
increases, this may complicate the FPGA routing and affect
the operating frequency. As we see in Figure 9, for the same
m the maximal operating frequency drops by 10-30 MHz, as
D¢ increases between SoC configurations emanating from
the same IP core using FPGA synthesis tools.

On the other hand, the total number of BRAMs required for
table T depends on the height H of the CoT unit. Considering
the CoT’s architecture described in Section V, table T is
divided into 27 parts, as many as the leaf nodes of the tree,
where each part reserves a BRAM of depth 1024 words and
a fixed 32-bit width. In order to keep low the number of
clock cycles required by the CoT to determine the next winner
reaction, as m is increasing so does the height H of the CoT
and therefore table T is split into more parts of the same size.
As a result, every time we double m, the height of the CoT is
increasing by one level and thus table T requires twice as many
BRAMs. Moreover, the CoT demands a significant number of
LUTs and every time its height increases by one level, twice
as many comparators are needed, leading to the consumption
of even more LUTs.

In conclusion, the area scalability of the NRM SoC archi-
tecture is an important issue that demands special attention in
order not to reduce the operating frequency, while utilizing the
minimum amount of resources. On the specific FPGA device

TABLE I PERFORMANCE EVALUATION - LCS MODELS
NRM SoC - xc7k325t-2ffg
m Reactions Reactions a
¢ TReal Through; Throughput®.
(Number of ea Cycles roughput
Reactions) (Seconds) (Millions) (MRC/s) (MCyclesfs)
512 48,55 102,04 2,10 203.70
1024 98,30 204,48 2,08 201.76
2048 198,59 409,37 2,06 199.82
4096 301,08 614,39 2,04 197.88

* Throughput is obtained by multiplying Reactions Throughput (MRC/s) by
the average number of clock cycles per reaction cycle (Lrc = 97).

we used, BRAMs is the limiting resource and so we can fit a
network with up to C=16 NRM cores, configured for medium
size bio-chemical reaction networks (n = m = 256, H =
2, Dgyer = 16), or up to C=2 NRM cores, configured for very
large biomodels (m = n = 4096, H = 6, Daver = 96). More-
over, the operating frequency can be improved by performing
manual FPGA floor-planning and more cores can be added by
using a larger Virtex-7 family FPGA.

B. Performance Evaluation

In order to determine the performance of our NRM SoC, to
highlight the importance of the average number of dependent
reactions as the critical parameter and to prove that throughput
is not affected by the total number of reactions (m, biomodel’s
complexity), we simulated a Linear Chain System (LCS),
which is a scalable benchmark model, having the following
form:

ki
S’i mod m + S(i+1) mod m — S(i+2) mod m + S(i+3) mod m (5)

All reactions R; are of 2™ order and i = 0,2...m — 1, with m
in the range 512 to 4096. When a reaction channel is activated
the four molecular species are affected, so the propensity of the
winner reaction and another four reactions need to be updated,
irrespectively of m. So, according to the NRM, we must re-
calculate only the winners reaction time 7,,, using equation (3),
and re-normalize the times 7, of the four dependent reactions,
using equation (4).

Considering the benefits of the NRM and taking advantage
of the hardware parallelization, our design is implemented in
such way as to avoid the extra latency that is needed for
accessing the Index Priority Queue. As discussed in Section
V, when m increases, the height of the CoT also increases, in
such a way that no extra clock cycles are needed to find the
next winner reaction.

Table I summarizes the simulation results of the LCS
benchmark biomodel for four different m values. In order to
assess the performance of our implementation, we measured
the total simulation time (real time - T}..,;), the total number of
Reactions Cycles that occurred during the simulation and then
calculated the Reactions Throughput (in Mega Reaction Cycles
per second - MRC/sec) and the Throughput (in Mega Cycles
per second - MCycle/sec). By keeping the operating frequency
fixed (at 200 MHz) and gradually increasing the number
of reactions, we show that the SoC’s throughput is ~200
MCycles/s per NRM core (called MSteps/s in [7]). The latter
is only slightly affected by the biomodel’s complexity (m) and
it is practically constant even for very high m values, since it
depends only on the average number of affected reactions. In
the case of the LCS benchmark biomodels, Daver = 4 since



TABLE II. PERFORMANCE EVALUATION - ASYN [9] BIOMODEL

COPAST* NRM-SSA SoC
Repetitions 8000 16000 8000° 16000°
Treaqr(sec) 1378 2768 70.58 77.6
Speed-Up 1 1 19.52 35.67
Reactions
Throughput N/A N/A 17.86 30.47
(MRC/s)
Throughput d
(MCycles/s) N/A N/A 1928.88 3290.76

*Intel Core i7 4790K CPU at 4.4GHz with 32 GB of RAM under GNU/Linux OS.

8 NRM-SSA Cores (220MHz)

¢ 16 NRM-SSA Cores (200MHz)

d Throughput is obtained by multiplying Reactions Throughput (MRC/s) by the average
number of clock cycles per reaction cycle Lrc = 108cc

by construction D = d — 1 = 4 for all reactions (see formula
5). So, if we configure our NRM SoC to have C NRM cores,
then the throughput can be multiplied by C, to effectively
become C' * 200 MCycles/s. Thus, it becomes apparent that
by using a large enough FPGA and a SoC with more than 5
cores it becomes possible to reach a throughput in the range
of GCycles/s.

The NRM SoC was validated by simulating a curated
biomodel from the EBI Biomodels database. As we discussed
earlier, ASYN is a medium-size biomodel characterized by
m = 136, n = 90 and Dgyer = 16. As Figure 1 shows,
the reactions are not affected in the same way and so the
dependencies profile is not uniform as for the LCS benchmark
biomodels. In this case, the PE re-normalizes a different
amount of 7,’s and therefore its latency (L) in not the same
for all RCs.

Due to the fact that ASYN models a real world biolog-
ical system, we should execute a large number of stochastic
repetitions in order to assess the stochastic behaviour of the
molecular species trajectories. To achieve high performance,
we configured the NRM SoC to have more than one core.
Each core is independent, using a different pseudo-random
number sequence and assigned to perform 1000 repetitions
of the simulation. The configuration parameters of each core
are m = n = 256, Dgyer = 16 and H = 2. Each
repetition simulates the ASYN bio-model for Ty;,, = lweek
and the chosen sampling period is T4y, = lhour. Finally, we
configured COPASI to execute the same simulation.

Table II presents the results of two different configurations
of the NRM SoC as compared to COPASI. The simulation
results not only validate the NRM SoC’s architecture but also
demonstrate the efficiency of our FPGA hardware accelerator
relatively to a popular software solution. Comparing the exe-
cution times of software and hardware realizations, we observe
that our MPSoC with 8 NRM cores running at 220 MHz
achieves a speedup factor of 19.52, while the MPSoC with 16
NRM cores at 200 MHz achieves an almost double speedup
factor of 35.67. Moreover, the throughput of our MPSoC
with 16 NRM cores is more than 3 GCycles/sec proving the
high efficiency of our implementation and its optimal scaling
characteristics when the workload of the simulation repetitions
is split among independent cores.

VII. CONCLUSIONS

The demonstrated efficiency and scalability of our NRM
MPSoC accelerator for stochastic simulation is a result of

a flexible configurable IP core and a well designed parallel
architecture for FPGAs. To maximize performance we split the
simulation repetitions workload on many independent NRM
cores, each one capable of simulating biomodels with up
to m = 4096 reactions on a medium size FPGA device.
To maximize throughput, the core’s design minimizes the
reactions cycle latency which depends only on the outdegree of
the biomodel’s DG and not on its complexity. The independent
operation of the NRM cores in the MPSoC circumvents
scalability problems that prior implementations were facing,
due to their need for communication and synchronization of
shared modules. By simulating real and benchmark biomodels
we have demonstrated the high speedup gains of the MPSoC’s
FPGA implementation against a popular and efficient software
simulator. Our MPSoC can reach performance in the range of
Gcycles/sec, the highest reported in the literature, even when
using a medium size FPGA running at ~200 MHz.

ACKNOWLEDGEMENTS

This work has been supported by research grant
“StochSoCs” No 3828 (Manolakos, PI) implemented within
the framework of the operation “ARISTEIA II”, co-funded
by the European Union (European Social Fund) and national
resources through the Operational Programme “Education and
Lifelong Learning”.

REFERENCES

[1] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp.
2340-2361, 1977.

[2] D. T. Gillespie, “Stochastic Simulation of Chemical Kinetics,” Annual
Review of Physical Chemistry, vol. 58, no. 1, pp. 35-55, 2007.

[31 M. A. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation
of Chemical Systems with Many Species and Many Channels,” The
Journal of Physical Chemistry A, vol. 104, no. 9, pp. 1876-1889, 2000.

[4] M. Yoshimi et al., “An FPGA Implementation of High Throughput
Stochastic Simulator for Large-Scale Biochemical Systems,” in IEEE
Field Programmable Logic and Applications, 2006, pp. 1-6.

[5] O. Hazapis and E. Manolakos, “Scalable FRM-SSA SoC Design for
the Simulation of Networks with Thousands of Biochemical Reactions
in Real Time,” in [EEE Field Programmable Logic and Applications
(FPL), Sept 2011, pp. 459-463.

[6] M. Yoshimi et al., “Practical implementation of a network-based
stochastic biochemical simulation system on an FPGA,” in IEEE Field
Programmable Logic and Applications (FPL), Sept 2008, pp. 663—-666.

[7]1 D. Thomas and H. Amano, “A fully pipelined FPGA architecture
for stochastic simulation of chemical systems,” in IEEE Field Pro-
grammable Logic and Applications (FPL), Sept 2013, pp. 1-7.

[8] S. Hoops et al., “COPASI - a COmplex PAthway SImulator,” Bioinfor-
matics, vol. 22, no. 24, pp. 3067-3074, 2006.

[9] E. Ouzounoglou et al., “In silico modeling of the effects of alpha-
synuclein oligomerization on dopaminergic neuronal homeostasis,”
BMC Systems Biology, vol. 8, no. 1, p. 54, 2014. [Online]. Available:
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000559

[10] M. Hucka et al., “The systems biology markup language (SBML):
a medium for representation and exchange of biochemical network
models,” Bioinformatics, vol. 19, no. 4, pp. 524-531, 2003.

[11] C.Li et al., “BioModels Database: An enhanced, curated and annotated
resource for published quantitative kinetic models.” BMC Systems
Biology, vol. 4, p. 92, Jun 2010.

[12] E. Ouzounoglou et al., “Modeling of alpha-synuclein effects on
neuronal homeostasis,” Model of the Month, EMBL-EBI BioMod-

els Database, Available: https://www.ebi.ac.uk/biomodels-main/static-
pages.do?page=ModelMonth/2015-03, [Mar, 2015]



